Hai quả cầu mang điện có bán kính và khối lượng bằng nhau được treo ở hai đầu sợi dây có chiều dài bằng nhau. Người ta nhúng chúng vào một chất điện môi ( dầu) có khối lượng riêng p1 và hằng số điện môi e. Hỏi khối lượng riêng của hai quả cầu p phải bằng bao nhiêu để góc giữa các sợi dây trong không khí và trong chất điện môi là như nhau
Trang 1*)(:
?(/):(0
B 0 0
B
DR
&<
?L:(B*
)
?(/P):(/P)/
?(/):(0Q
&<
D
B BP
B 0 0
B B B
Trang 2] % < > L M , ' ^ < > L 9 6N @
1 ( B B
2 1
sin.2
kq r
q kq
ααα
απεε
απεε
α
tg l
kq tg
l
q P
P l
q tg
.sin.16
sin64
.sin16
2 0 2
2 0
2 0 2
2 0
2
=HM@
( ) ( )30 30 0,157( )sin
.2,0.16
10.4.10.9.1
0 0
2 2
2 7 9
N tg
−
)(16)(016,081,9
157,0
g kg
Trang 3[ &" < > $ C) d O M ; < > L S & & ' @
1 1 2 2 0 1
2 0
.sin
2 0 1
.sin
q P
hS & % @
Vg P
Vg mg
[ : ?) :B? :C?) O@
ρ
ρρααε
αα
2 2 2 2
1 1 2 1 1
.sin
P P
)(
tg.sin
tg
1 1 2 1 2 2 2 2
2 2 2 2 0
tg.sin.tg
.sin
tg.sin
ααε
ααε
ααε
ρρ
−
=
HM ; @ ε1 = 1 ; ε2 = 2 ; α1 = 300; α2 = 270; ρ0 = 800 (kg/m3)
) / ( 2550 800
30 30 sin 27 27 sin
27 27
0 0 2 0 0 2
0 0 2
m kg tg
tg
tg
=
− 2.
Trang 42 34 % ' % d U $ Y) ρ0 =ρ1,ε2 =ε,ε1 = 1) O@
2 2 2 1 2 1
1 1 2 2 2 2
2 2 2 1
.sin
.sin
sin
sin
.sin
αα
ααε
ερ
ααα
αε
ααερ
ρ
tg
tg tg
ερ
2 2
r4
er
vm
πεε
=
mr4
er
4.m
e.rv
0
2 2
0
2 2
πεε
=
mr2
emr
4
ev
0 0
2
πεε
=HM) O@
)/(10.6,110.10.1,9.10.86,8.1.2
10.6,
10 31 12
19
s m
Trang 5P % c e) !) 1 - X % 6Z L 6N S % , ' \ @ < C (+1R <B * (+1R <C ( (+1 l% 8 % 34 n N= , '
10 86 , 8 1 4
10 5 10 3 4
3 2
2 12
8 8 2
o E F2 - <C % 34 < @
) ( 10 30 ) 10 3 (
10 86 , 8 1 4
10 10 10 3 4
3 2
2 12
8 8
AC AB
' 42 15 28
, 0 10 30
10 4 ,
3 3 2
F
F tg
e
!1
Trang 6) ( 10 11 , 3 ) 10 30 ( ) 10 4 , 8 ( 2
0 2 2
0
0 1 1
) ( 4 ) (
q q C
B
q q
πεεπεε
0cos)(
3 0 1 2 0
0 1 2
1
sin 2
sin 2
sin 4
2 sin sin
AB
q q l
q q F
F
F
πεε
αα
απεε
Trang 7r
q dQ dF
0 0 2 4
=
2 0 0 2 2
2
2 0 0 2
2
cos
Qq d
r
Qq F
εεπααεε
π
π π
=
=
=
−HM@
) ( 10 14 , 1 ) 10 5 (
10 86 , 8 1 2
10 ).
3 / 5 (
10
2 2 12
2
9 7
3
Trang 8= 34 t u J , 6Z @
2 0
2 2
0
1
) ( 4 ) ( 4
2 1
AN
q AM
q E
=
)/(10
10.3)10.4(
10.810
.86,8
2 8 12
m V
2 0
2 2
0
1
) ( 4 ) ( 4
2 1
BN
q BM
q E
10.3)
10.5(
10.810
.86,8
2 8
Trang 9cos 2
2 1 2
9 2
10 7 9
2 cos
cos 2
2 2 2 2 2
2 2
2 2
=
− +
=
− +
=
− +
=
NC MC
MN NC
MC NC
MC NC
MC
)m/V(10.87,8)10.9.(
10.86,8.4
10.8)
CM(4
q
8 2
0
1
−π
πεε
)m/V(10.50,5)10.7.(
10.86,8.4
10.3)
CN(4
q
8 2
0
2
−π
πεε
i9 @
) / ( 10 34 , 9 23 , 0 10 50 , 5 10 87 , 8 2 ) 10 50 , 5 ( ) 10 87 , 8
C
E
sinEsinsin
Esin
θα
'096792
,010
.34,9
)23,0(1.10.87,8
2 4
2 0 2
1 0 2
1
214
4
2
q r
q r
q E
E
E
πεεπεε
πεε
Trang 10Q > H \ h % , ' < X & > ) , 6Z , p \ h % ,' B< X & > : ? ; & > % < B<
0)
l(
2r
14
)l(
2r
l− =
)cm(14,421
102
Trang 110 1
36 25 14
2 4
2 2
a
q a
q E
E E E
2
a
q E
q E
Trang 128 ' $# @
0
=+
T
O@
0 2
;
εε
σq Eq F mg
2309 , 0 81 , 9 10 10 86 , 8 1 2
10 10 4
9 5 0
F
tg
εε
σα
0 13
D ey
z _
α e
! ey
Trang 13/ 3 2 2 0 2
2 2 2
.
4
.
dr r b dQ
b r
b b
r
b b
= + +
=
εε
σπεε
2 2 0
0
2 / 3 2 2
11
20
12
a b r
b b
r
dr r b
dE
E
a r
εε
σεε
σεε
Trang 14(8.10 ) (/ 6.10 ) 226(V/m)
1
11
10.86,8.2
10E
2 2 2
2 12
8
≈+
2 0
11
2
lim
εε
σεε
σ
=+
2/ 1 2 1
1
b
a b
+
0 2
0
2 2
0
2 2
2
) (
4
2
1 1
q b
a b
a b
a E
πεεπεε
πσεε
σεε
2
dh R R
r
dh r dh
r dQ
x
Trang 15' 67 6 = L L - $ Y) ' 6N , 6Z 3v 3 ; L
0 2
/ 3 2 2
2
dh R h dQ h
r
h dE
2
022
2
εε
σεε
σεε
dh R
h dE
E
R
10.86,8.1.4
10
12
9
m V
q dx
l
q dq
2 0 2
Trang 16( ) (R x ) dx
l qR
dx l
q x R
R x
R r
dq dE
2 / 3 2 2 0 0 0
2 2 0
0 2
2 0 0 2
0 2
4
4
1cos
.4
+
=
++
d)tgRR.(
cos
Rl
4
qRdx
xRl4
qRdE
0 2 0 2
0 0
0 tg
R x
2 /
2 /
2 / 3 2 2 0 0
0 2
α α
αα
πεεπεε
0 0 0
0 0
0
0 0
0 0
0 0
qR
2
l.lR2
qlR
4
sinq2sin
lR4
qd
.coslR
4
αα
ααπεε
ααπεε
α α
10
12
7
m V
−π
2
/1
11
E
εεσ
2 2 2
1
/ 1
E E E
Trang 17h R
0 0
0
2
εεεε
l R
q E
0 0
1 2πεε
=
( )N l
R
q q Eq
7 16 0
0
2 1
5 , 1 10 4 10 86 , 8 1 2
10 2 10 7 , 1 2
Trang 181 10 3 10 2
6 5 0
N
L Eq
−
−εε
Trang 19o , 6Z v vB T X ; @
1 2 2
0
2 2
0 1
2 1
q
qx
l
xx
l4
qx
4q
EE
(l x)
q
qx
q
qx
l
x
2 1 2
q
q
q1q
qlx
2 1
1 2
1 2 1
q x
l x
2 1
q x
l x hay
x
2 1
1
x l x
l x
l x
E
−
=
−+
=
πεε
λλ
λπεε
Trang 20r l x l x dx
x l x Edx
U
r l
r
ln ln
ln 2
1 1
λπεε
λπεε
U
ln 0πεελ
r l
U l
l l
l E
ln
2 ln
2
2 2
0
πεεπεε
001 , 0
149 , 0 ln 15 , 0
1500
.)
(4
2 1 0
2 0
1 2
r l r
q q l r
l
q r
q q A
+
=+
−
=
πεεπεε
10.2.10.9,0
12
6 6
Trang 211 0 2
0 1
Q R
Q q A
πεεπεε
πεε
) ( )
( 4
4
0 2 0
2
R r
qr R
r
r q
+
= +
=
εε
σπεε
σπ
2 12
2 2 7 7
10 42 , 3 10 11 10 86 , 8 1
10 10 3 / 1
dq dV
+
=πεε
p , " 3 > k h @
+
= +
=
=
2 2 0 2
2
Q h
R
dq dV
V
πεεπεε
p , " k : (?@
Trang 22( ) ( )
V R
Q
10 4 10 86 , 8 1 4
10 9 / 1
8 0
=
=
−π
Q
10.310
.410.86,8.1.4
10.9/1
8 2
2 0
=+
=+
qdA
0πεε
2 0 r
r
rln2
qr
lnrln2
qr
dr2
qdA
A
2
λπεε
λπεε
r
rln.q
10 50 10 86 , 8 1
9
7 12
X , 6Z > & > & O , 6Z & n 6 % 8
: ? 6N & •
Trang 23lf 6Z &' 9 6 I) O@
dl E
V
++
+
−
=
DA CD
BC AB
dl.Edl.Edl.Edl.E
E
Trang 242 dS r dh
R
dh q dh R R
q dq R
r
2
.
2 4
πα
qdh hx
x h r R
dh q x
h r
dq dV
2 8
2 8
.
4 0 2+ + 2 = 0 2 + 2 + 2 + = 0 2+ 2+
=
πεεπεε
πεεi9 ) , " 3 > S L @
[ ]
2 0
) (
) ( 0 2
2 2 0
) ( 2 16
16 2
8
.
2
2 2
2
x R
x R t xR
q t
dt xR
q hx
x R R
dh q dV
V
x R
x R hx
x R t R
+
=
= +
=
R x x
q
R x R
q x
R x R xR q
0
0 0
4
4 8
πεε
πεεπεε
p , " < > L :V (? S L :V z?@
R
q V
0 4πεε
=
B p , " \ # < > L ) % S L X & > :V z o ?@
(R a)
q V
+
= 4πεε
z
V
Trang 252 0 2
x
xdx h
x
dq dV
+
= +
= +
=
εε
σπεε
πσπεε
p , " 3 > G @
0 0
0 0 2 2
2 4 4
2
2 2
2 2
2
h
h R t t
dt h
x
xdx dV
V
h R
h h
x t
R
+
=
= +
=
=
+ +
σεε
σεε
σ
i9 @ V = ( R2 +h2 −h)
0 2εε
hS & % @
)0v(mv
2
1mv2
1mv2
1
(m/s)
10.26,310
.1,9
10.5.10.6.10.6,1.2m
eEd2m
A2
2 4
19
−
−
Trang 26U = = 10 4 5 10 − 3 = 50
( 2)
8 4
12 0
0
/ 10 86 , 8 10 10 86 , 8
E
εεσ
6Z S , ' \ < C (+1 : 1? <B C (+1 : ]? ' ,, " e !
9 e!1] O e! Y ) !1 C ) @
( )m BC
AB BD
AC= = 2 + 2 = 42 + 32 = 5
( )V AD
q AC
q
3 10 86 , 8 4
10 3 5
10 86 , 8 4
10 3
4
8 12
8 0
2 0
πεεπεε
( )V BD
q BC
q
5 10 86 , 8 4
10 3 3
10 86 , 8 4
10 3
4
8 12
8 0
2 0
πεεπεε
i9 @ U =V A−V B =72( )V
CC ' - , 6Z & \ 38 , ' < (01 [ \ 1 " \] " / ) s : (rC? (01) sB B (01 : ?
Trang 27p , " 1 ] $# n , " 3 s sB @
V BC
Q AC
Q
V C
200 10
6
10 2 10
6
10 3 / 10 10
86 , 8 1 4
1
4
4
2 9 2
9 12
0 2 0
1
≈
− +
πεεπεε
V BD
Q AD
Q
V D
141 10
2 6
10 2 10
2 6
10 3 / 10 10
86 , 8 1 4
1
4
4
2 9 2
9 12
0 2 0
1
≈
− +
πεεπεε
Trang 28v Eq mg
mg
=
−
1 1
2 1
v
v1U
mgdEv
)vv(mgq
(1 0 , 5) 4 , 1 10 ( )C 600
10 81 , 9 10 5
2 14
B 2 H% - G , & 38 \ [ e " 1 [ ] " !
R
q V
V r
q V
Trang 29mg k kv
mgd
Uqv kd
Uq v kv d
mgd v
d
10.2.10.5,6.300.2
10.2.81,9.10.22
2 2 12
1 2 2
Trang 301 2 0
R R 2 1
R
Rln2
EdrV
2 1 0 ln 2
R R
V
V −
= πεελ
(C/m)
10 23 , 0 3
10 ln
50 10 86 , 8 1
≈
= πλ
(V/m)
63510
.5,6.10.86,8.1.2
10.23,0r
2
8
tb 0
≈
=
−π
πεελ
3 0
2
3 3
4 4
.
εε
ρεε
πρεε
r q
0 2
0 2
/ 0 2
/ 2
/
88
3.32/23
ρεε
ρεε
ρεε
a
a r dr
r Edr
V V
a
a a
a a
Trang 31, , " 4 6N ' 5 @
U R
R
3 / 10 ln
450 10 86 , 8 1 2 /
ln
2 ln
2
7 12
1 2 0 1
2 0
λ
r L
r S
L q
π
λσπ
σσλ
2
2
2 2
7 2
7 1
10 10 2
10 207 , 0 2
; / 10 1 , 1 10 3 2
10 207 , 0
λσπ
π
λσ
πεελ
3 / 10 ln 10 3
450
≈
=
Trang 32; 0
r
q E
Trang 33hX < > L & $% &' ( ) , " C((i ' 9 X , S - < > L
p , " - < > L & $% &' z 6N ' 5 @
R
q V
0 4πεε
=
4 R S
q=σ =σ π
0 0
2 R R 4
R 4 V
εε
σ
= πεε
π σ
=
( 2)
8 12
0 2,66.10 C/m
1,0
300.10.86,8.1R
< > L & $% &' $# $# B)* S % ) , "
- X < > L B((i) - < > L & B((i ' , ' - ^ < > L
) ( 4
2 0
1 21
11
1
r a
q r
q V
V
V
− +
= +
=
πεεπεε
r
q r
a
q V
V
V
0 2 0
1 22
21 2
4 ) (
4πεε − + πεε
= +
=
o
10.94
Trang 349,368
,010.9,4
8,9.10.4
−
αα
T
mg T P
` > % < > L @
( ) ( )m ( )cm l
x= 2 sinα = 2 0 , 1 sin 36 , 90 = 0 , 12 = 12
hS & % @
απεε
πεε
4 sin
0
2
Tx q
x
q T
(0,12) sin(36,9 ) 2,1.10 ( )C
10.9,4.10.86,8.1 4
Q > H < ƒ ( q=2,1.10−8( )C ` O@
x.qR
x4
qR
4
qV
V
V
0 0
0 12
11 1
−
=
−+
=+
=
πεεπεε
πεε
10.11.10.10.86,8.1 4
12,0.10.1,2
2 2
67 ) w O@ iB B C(( :i?
D
_
Bα
Trang 35< > L & $% &' + * M ; $# X HN 3 3K O ,
3 & % &\) 6N ' X , 6N s C (+1 ' , " ,' - ^ < > L
V r V
C q V r V
10 13
8 2
1 0
≈ +
= +
−π
πεε
( )
( )C r
r
Qr q
C r
r
r Q q
8 8
2 1
2 2
8 8
2 1
1 1
10 5 8 5
5 10 13
; 10 8 8 5
8 10 13
= +
=
= +
= +
=
- < > L ^ 9= $# & O S X , ' < b & X, ' <y U < > L O O $8 , & • 1w b O 6ZN= M < > L ; J
n X S L $# ( ] O) & < > L 6N M J ) <y w $8 L < >L
Trang 364 r
q E
q E
4 sin
0 1
0 0 2
2ESq
S2.E
εε
σεε
Trang 372 max
a2
C= 4πεε0 = 4 π 1 8 , 86 10−12 1 ≈ 1 , 1 10−10
p , " - < > L @
( )V C
q V CV
6
10.910.1,1
10.5,42
10.9.10.1,12
( )F R
C= 4πεε0 = 4π 1 8 , 86 10−12 6 , 4 106 ≈ 7 , 1 10−4
O@
( )V C
Q V C
Q V CV
10 1 , 7
Trang 38/ ln
ln
2 1
2 0 0
2
1
mv r
R
l l qU dx r R x
qU A
l l qU
5,1/5,3ln.10.1,9
5,2/3ln.2300.10.6,1.2/
ln
/ln
31
19 1
r R
rR x
10 3 10 3
10 4 10 3000 4
4
2 2 2
2 2 2
0 2
πεε
1 X 4 , L $% &' $> z ) zB C ) , , "
6Z [ \ % X & > C " \ % X & > B B
Trang 39R R x
R R U E
−
mvr
1r
1.RR
RRqUdxRRx
RRqUA
2
1 2 1 2
2 1 0 r
2
2 1 0
2 1 0
rr
rr.RRm
RRqU2
.2.10.3.10.2.10.1,9
10.10.3.10.2300.10.6,1
2
2 2 2
0
2 1
P G r
m Gm
L $ ) O@
2 0
2 2 2
2 0 2 2
rg r
q W
W k
kGP
11 6
12 2
2
81,9
04,0.10.67,6.10.10.86,8.1.4
Trang 40' , 3 67 67 - , % 4 , 1 ) 1B) 1C 1 $ " , 3 - ^
2 1
2 1
C C
C C C
C C
5 , 0 5 , 0
5 , 0 5 , 0 3 2 1
2
+
= + +
=
B B Y@ :1 rr 1B? 1C
( F)
C C C
C C C
5 , 0 ) 5 , 0 5 , 0 (
5 , 0 ) 5 , 0 5 , 0 ( )
(
) (
3 2 1
3 2
+ +
+
= + +
C C CU
Trang 41hS & % @ q=C1U1; q2 =C2U2
( )V442
6.4C
C
UCU
UCC
CCU
C
2 1
2 1
2 1
2 1 1
1
=+
=+
U C
4 2
6 2 2 1
1
+
= +
1
C
C C
4 2 3 1 1 '
C C C C
C C C C C
+ + +
+ +
=
% ‚ 5 @ :1 1B? rr :1Co 1Y?
4 3
4 3 2 1
2 1 2 '
C C
C C C C
C C C
+
+ +
=
4 3
4 3 2 1
2 1 4 3 2 1
4 2 3 1 2
1 '
'
C C
C C C C
C C C
C C C
C C C C C
C
+
+ +
= + + +
+ +
1
C
C k C
4 2 2
2 1 4
2 4 2 2 1
1 1
1 1
1
k C k
k C k
C k C
k
C k C
k C k
C C C k C k
+
+ +
= +
+ +
= +
+ +
+ +
Trang 42( ) 2
4 2 4 2 2 2
1 1 1
2 2 2 1 2 4 2 4 2 2 1 2 2
1k
1kk1k
1kCkCkCCkkC
+
+++
++
=+
++
⇔
2 1
2 1 1 2
2 1 2
2 2
1 1 1
2
1k
kkk1k
kkk
k1k
1kk1k
1kk
+
−
=+
−
⇔
−+
+
=+
k12+ 1 = 22 + 2 ⇔ 1− 2 1+ 2 + =
⇔
)0k,0kdo(k
k1 = 2 1> 2 >
⇔
4 3 2
1
C
CC
80100C
UU
UU
Trang 43, , " $> - 4 , 6; & = O , @
( )V C
q
10 2
10 6
10.2.2
10
2 3 2
C U C q q
2 1
2 2 1 1
C C
U C U C U
+
+
=A{ 6N - % 4 , 6; & M @
x x
1B1
A
Trang 442 2
2 2 1 1
1
U C U
2
2
U C U C U C C
1
2 2 2 1 1 2 2 2 2 1 1 2 1
CC2
UUCCC
C2
UCUC2
UC2
UCWW
Q
+
−
=+
+
−+
.10.5,0.10
2
2 6
−
−
=
Trang 45D d
U E
E n = = ; n = =εε0
d
U1E
1E
4 12
m/C10.15,110.2
40010
.86,815,
Trang 46( ) ( ) ( )
R
Eh E
E
0 0
1 cos
1
θε
εε
r dS
sin
πσθ
πσ
R2
E1dh
.Eh1.2.R4
h
0 h
ε
εε
εππεε
2 3
R2
E1dE
E
εε
R
R h R
E E
−
−
=
32
3εε
ε
ε3
1 E
=
hX 4 , = q O 5 , :ε /? & > % $> ()Y ) ,, " $> B((i ' @
1200 5
3 =
=
Trang 47B h9 X , S $> 4 ,
( 2)
5 5
12 0
0
/ 10 59 , 1 10 3 10 86 , 8
E
εεσ
0 5 8 , 86 10 3 10 1 , 33 10 / 1
d
S U
C
2 12 1
0 1 1
10.5,0
10.10.86,8
S
d d
SU C
Q U U C
3
300 1
2
1 1 0 2
1 0 1 2 2 2
=
ε
εεε
εε
1 X 4 , = q ) & > % $> ()( Q $> n L 3L O
# HM , ε Y)* b L = > S % $> X , , " $# $
\ 9 X , ' &" 3L $# /)B ( (1r B
h9 X , ' &" @
Trang 4810 2 , 6 01 , 0 1
'
12 6 0
εσ
Q Fd
0
2 2 2
2
( 2)
6 2
3 12
10
10 9 , 4 10 86 , 8 6 2 6
5 2
1 1
εσ
hX 4 , L O X 5 , u J ; # HM , ε P)
k & & ' !% &' % $> * z / : C B? l% 8 ,
Trang 491 4 , 6 X , 4 , ‚ H H ^ 4 , O % $> S
r R
Rr C
Rr12
rR
Rr2rR
Rr2
CC
F10.34,110
10.5.10.6.10.86,8.17.2
2 2
0 2 1
0
d
S C d
S C
Trang 50=++
=++
0 3 2 1 0 3 2 1
11
1111
d d d S d
d d S C
C C
(10 )d1d
S C
εε
εε
− +
C C C
C C
2
+
= +
=
ε
εε
C C
C C C
C C C
C
ε
εε
1
1 2 2
1 2 1
2
1 2
1
≈ +
−
= +
−
=
− +
Trang 51o i; | z@ 3
0 0
3 0
0
2
4 3
) 3 / 4 (
) 3 / 4 (
4
R
qr r
R
q E
r q
r
πεεεε
πεε
πρ
εε
0 0
2
4 4
.
r
q E
q r E
πεεεε
0 2
R r R
q dr
r R
q dr
r R
qr W
2 5
6 0 2 0
4 6 0
2 2
2 3 0 0
1
40058
84
.4
.2
1
πεεπεε
πεε
ππεε
q dr r
q dr r r
q W
0 2 0
2 2
0
2 2
2 2 0 0
2
8
18
18
4.4
.2
1
πεεπεε
πεε
ππεε
Trang 52o lf = L = %= " D n@ ] % , ' > 5 V J , S { %
$ \ 5 @
2 2 0 2 1 0 1 1 1 2 2
1
n n n
n n
n
D E E
D E
o lf = L "= " D t @ ] = 67 ) , 6Z & $8 > 6U
$U % , ' > 5 ) @
2 1 2 1 0
2 2 0 1
1 2 1
ε
εε
εε
=
t
t t
t t t
D
D D
D E E
2 1 2 2 1 1 2
ε
εα
α
=
=
t n n
t
D
D D
D tg
tg
Trang 53' 6Z X [ 6Z - X 3k , q 3 X \ % 3k, B ! " 6Z X 3k , … *e
5
ππ
5
1
ππ
5
2
ππ
H H
Trang 546; [ = ' H = ' 6; J ) N= ; O O@
' 25 18 3
1 6 , 79
5 ,
I
10 12 2
30 10
2 2
20
2
2 1
1
ππ
ππ
BM
I AM
I
10 6 2
30 10
4 2
20
2
2 2
1
ππ
ππ
B O W 6; [ 36;
BM
I AM
I
10 13 2
20 10
3 2
30
2
1 3
2
ππ
ππ
Trang 552 )
( 2
2 3
=
x l
I x
l
I x
I H H H H
ππ
0x10
2x5
1x1
2 2
−
−+
50x
0x1550
Trang 5610.2
310
22
1
2
2 1
1
ππ
I
10.2
310
22
1
2
2 2
1
ππ
Trang 57120 cos 60 cos 20 4
cos cos
2
0 0
2
ππ
θθ
1
2 4
cos 2 4
cos cos
H b a
b a
I a
I r
απ
θθ
2 2 4
b a
a b
I H H
b b
a b a
I H
H H H H
ππ
2 2 2
2 4
3 2 1
2
=++
=+++
=
m A
3,0.16,0
3,016,0.6
Trang 582 3 12
16 2 1
4 12
2 4 2
2 / cos
cos
; 6
3 2
3 3
1
2 2 2
2 2
+
= +
a a
x
a r
a a
m A x
I H
/ 9 3
/ 3 6 / 3 5 , 0 4
2 / 3 2 14 , 3 4
cos cos
1
1 1
θθ
r
rdl.I.4B
=
πµµ
)cos.(cos
Ib
.4
)cos.(cos
IB
B
DE BC
π
θθ
µµπ
θθ
2 0 2
2 0
b4lb4
lI
b4l
2/.b4
Ib
2.4
cos2
I
B
+
=+
=
=
π
µµπ
µµπ
Trang 59(5.10 ) 2,24.10 ( )T
.42,010.5
4
2,0.28,6.10.4.1
2 2 2
I
10 2 4
0 1 20 4
2 cos 0 cos
π
2 1
B
R4
cos4cosIR
4
4
3cos0cosIH
π
ππ
π
π
−+
−
=
(A/m)
3,772
1,04
12
2.20
2
1,042
21.20
++
+
=
ππ
hX 3 3K 3 6N M X O */( 16Z X 3k , <
Trang 60[ 6Z 3 - O g e T = 67 T W @
0
0 0
0
28sin.a2
)28cos1(R
4
180cos28cosIR
4
152cos0cosIH
ππ
π
+
=
−+
−
=
(A/m)
10.8,328sin.05,0.2
)28cos1(30
π
θθ
4
) cos (cos 1 20
n R
θππθ
n R
n n
I
πππ
ππ
π
πππ
π
.2cos4
sin2.cos
4
2
cos2
Trang 61tg R
nI H
π
µµµµ
n tg R
I B
/ 2
0 /
µµπ
πµµ
/ 3 2 2 0
3 0 2
0 2
2 2 4
4 4 cos
.
h R
IR R
h R IR
dl r
IR r
R r
dl I dB
dB
B
+
= +
π
µ
π
µπ
µα
o 1> 5 [ x : (?@
( )T R
I R
IR
7 0
3
2
1,0.2
1.10 422
Trang 622 7 2
/ 3 2 2
2
1 , 0 1 , 0 2
1 , 0 1 10 4 2
−
−
≈ +
= +
2 1 1 2 1
R
Ur2
lR
Ur2
lr2
l.r
Ir2
l.r
IHH
H
ππ
2
USS
/l.r2
UlS
/l.r2
Ul
2 2
2 2 2 1
2
=
πρπρ
ρπρ
x
Trang 632
1
US r
r
US S
l r
U R
U r r
I
H
πρπ
10 2 2
H H H
Trang 642R h
IR B
R R
I B
2 2
2 7
2 / 3 2 2
2
2 , 0 1 , 0
1 , 0 1
, 0
1 2
3 10 4 1
2
2 1
−
−
≈ +
+
= +
R
IR
2 2
2 7 2
/ 3 2 2
2
4
2,01,0
1,0.3.10.4
42
−
≈+
=+
R R
I B
2 2
2 7
2 / 3 2 2
2
2 , 0 1 , 0
1 , 0 1
, 0
1 2
3 10 4 1
2
2 1
−
−
≈ +
−
= +
24
2
2 / 3 2 2
2 0 2
/ 3 2 2
2
+
−+
=
a R
IR a
R IR
Trang 65dl I dH r
d I dS I
dp m
π
απ
α
4
4
.
; 2
.
N
R d
k dr k
r
2
=
dr Rr
NI dH dr
2 2
3 R
2 / d
2 m
3
03,0.10.100.3
NIR2
/d
R3
rR
NIdr
R
NIrdp
RlnR2
NI2/d
RrlnR2
NIdrRr2
NIdH
H
R
2 / d
(A/m)
9010
.5,1
03,0ln03,0.2
10.100
O H c HM _ rE•
Trang 662
π
ϕθθπ
ωθ
πππ
0
2 /
2 / 3 R
0
4 3 2
2 3 m
R8
q3dV.cosr.R34
q.2dp
π
ϕθθ
π
0
2 /
2 /
2 R
0
4
3 r dr 1 sin d sin dR
8
q3
3i h x
Trang 67[ ]
0
2.2/
2/3
sinsin
.0
R5
r.R
πθθ
.3
4.5
R.R8
q35
qR2
.3
4.5
R.R
3
ωπ
π
ωω
ππ
qR L
P m
2 2
5
dS.BSd.B
Ilr
lrlln2
Ildx
.x2
l r r
0
π
µπ
µπ
µ
1
21ln2
02,0.30.10
Trang 68( t 0) ( )Wb
4 4 cos 10 6 ,
16,00cos.1 05,0
cos cos
θφ
Trang 69I l
d H
1
I r H
1 2
. π
2
2 2
2 2
.
R
Ir r R
I r
r H
π
π
2 2
10 5
2 2
2
−
−π
i; B * @ H 16(A/m)
10 5 2
5 2
Trang 70Et 9 67 $ Y BC) O@
=
=
i i
I r
B
1
0 2πµ
10 10 4 2
R R
0
R
Rln.2
Ildr
.r2
IdS
.B
2
µπ
µφ
(Wb)
10.8,71
50ln2
1.10.10
3 , 0
2