1.Morphology of the four Klebsormidium strains Klebsormidiales, Strepto-phyta BIOTA 14614.7 African Strain A A, BIOTA 14613.5e African Strain B B, SAG 384-1 Arctic Strain C and BIOTA 146
Trang 1Contents lists available atScienceDirect
Journal of Plant Physiology
j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / j p l p h
Living in biological soil crust communities of African
deserts—Physiological traits of green algal Klebsormidium species
(Streptophyta) to cope with desiccation, light and temperature
gradients
a University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
b University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
a r t i c l e i n f o
Article history:
Received 24 July 2015
Received in revised form 31 August 2015
Accepted 2 September 2015
Available online xxx
Keywords:
Aeroterrestrial algae
Biological soil crust
Ecophysiology
Morphology
Photosynthesis
Respiration
a b s t r a c t
GreenalgaeofthegenusKlebsormidium(Klebsormidiales,Streptophyta)aretypicalmembersofbiological soilcrusts(BSCs)worldwide.ThephylogenyandecophysiologyofKlebsormidiumhasbeenintensively studiedinrecentyears,andanewlineagecalledsupercladeG,whichwasisolatedfromBSCsinarid southernAfricaandcomprisingundescribedspecies,wasreported.ThreedifferentAfricanstrains,that havepreviouslybeenisolatedfromhot-desertBSCsandmolecular-taxonomicallycharacterized,were comparativelyinvestigated.Inaddition,Klebsormidiumsubtilissimumfromacold-deserthabitat(Alaska, USA,supercladeE)wasincludedinthestudyaswell.Photosyntheticperformancewasmeasuredunder differentcontrolledabioticconditions,includingdehydrationandrehydration,aswellasunderalight andtemperaturegradient
AllKlebsormidiumstrainsexhibitedoptimumphotosyntheticoxygenproductionatlowphoton flu-encerates,butwithnoindicationofphotoinhibitionunderhighlightconditionspointingtoflexible acclimationmechanismsofthephotosyntheticapparatus.Respirationunderlowertemperatureswas generallymuchlesseffectivethanphotosynthesis,whiletheoppositewastrueforhighertemperatures TheKlebsormidiumstrainstestedshowedadecreaseandinhibitionoftheeffectivequantumyieldduring desiccation,howeverwithdifferentkinetics.Whilethesinglecelledandsmallfilamentousstrains exhib-itedrelativelyfastinhibition,theuniseratefilamentformingisolatesdesiccatedslower.Exceptone,all otherstrainsfullyrecoveredeffectivequantumyieldafterrehydration.Thepresenteddataprovidean explanationfortheregularoccurrenceofKlebsormidiumstrainsorspeciesinhotandcolddeserts,which arecharacterizedbylowwateravailabilityandotherstressfulconditions
©2015Z.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
Onaglobalscale,biologicalsoilcrustcommunities(BSCs)form
themostproductivemicrobialbiomassoftheEarth’s‘CriticalZone’
This zone is also defined as heterogeneous, nearsurface
envi-ronmentinwhichcomplex interactionsinvolvingrocksurfaces,
soil,water,airandlivingorganismsregulatethenaturalhabitat,
andhencedeterminetheavailabilityoflife-sustainingresources
dis-turbedlandscapes,suchasvolcanicareas,glacierforefields,flood
plains andmany drylands,BSCs representthepioneer
commu-∗ Corresponding author.
E-mail address: ulf.karsten@uni-rostock.de (U Karsten).
nities that form the basis for further ecosystem development
as algae, cyanobacteria and lichens, and are characterized as
‘ecosystem-engineers’formingwater-stableaggregatesthathave multi-functionalecologicalrolesinprimaryproduction,nutrient andhydrologicalcycles,mineralization,dusttrapping,weathering andstabilizationofsoils(e.g.Castillo-Monroyetal.,2010).Dueto theextracellularmatrixofcyanobacteriaandalgae,soilparticles areaggregatedformingacarpet-likebiofilm,whichreduceserosion
bywindandwater.Arecentreviewclearlyindicatedthe impor-tantecologicalroleofBSCsforglobalcarbon(C)fixation(about7%
ofterrestrialvegetation)andNfixation(about50%ofterrestrial biologicalNfixation)(Elbertetal.,2012)
Terrestrialfilamentousgreenalgaeofthecosmopolitangenus Klebsormidium (Klebsormidiophyceae, Streptophyta) are often http://dx.doi.org/10.1016/j.jplph.2015.09.002
0176-1617/© 2015 Z Published by Elsevier GmbH This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
Trang 2asrivers,lakes,bogs,soil,rocksurfaces,treebark,sanddunes,and
BSCsfromalpineregionsorevendeserts(Rindietal.,2011;Karsten
providedsofarthemostcomprehensivephylogenyofthisgenus
usingITSrRNAandrbcLsequences.Theseauthorsshowedseven
main superclades A–G; which included sixteen well-supported
clades.WhilesupercladeAcontainedspeciesofthecloselyrelated
genusInterfilum(Mikhailyuketal.,2008;Rindietal.,2011),
super-cladesB–FcomprisedallKlebsormidiumspeciessofardescribed
Mostinteresting,anewlineageofKlebsormidiumtermed
super-cladeG,whichwasisolatedfromBSCsinaridsouthernAfricaand
comprisingundescribed species,wasforthefirst timereported
theknownKlebsormidiumspeciesdifferedintheirultrastructure
andtexture ofcellwalls Membersof thesupercladesB, C and
E were characterized as mesophytic and hydrophytic lineages,
becausetheyexhibitedfilamentswithgelatinizedcellwallsthat
easilytransformintoshortfilamentsorevenintoindividualcells
D,FandGweresuggestedasxerophyticlineagesbecauseofdense
andratherstrongfilamentswithoutmucilage(Mikhailyuketal.,
2014).TheseauthorsdescribedsupercladeGmembersalsoas
typ-icalAfricangroup.ThiswasagainsupportedbyRyˇsáneketal.(2015)
whomentionedthatalthoughcollecting200Klebsormidiumstrains
fromEurope,NorthAmericaandAsia,theycouldnotfindasingle
genotypeofsupercladeG
Becauseofthewidebiogeographicdistributionandoccurrence
in so diverse environments, the physiological traits of various
InterfilumandKlebsormidiumspecieshavebeenrecentlystudied
concerningacclimationmechanismsagainstdesiccation,
tempera-ture,visiblelight;UVRandpHgradients(Karstenetal.,2010,2014;
investigated sofar weremembers of the supercladesA–F, and
thatdependingonthesuperclademembershipthephysiological
responsepatternssuchasdesiccationtolerancecanbequite
differ-entasexemplarilydescribedforthetwocoexistingKlebsormidium
dissectum (superclade E)and Klebsormidium crenulatum
(super-cladeF) in alpine BSCcommunities of theAlps (Karstenet al.,
desic-cationtoleranceofbothKlebsormidiumspeciescanbeexplained
bydifferencesintheirmorphologicalandstructuralfeaturessuch
asstrongversusweakfilaments(Karstenetal.,2010;Holzinger
dif-ferencesmaybeattributedtodifferentphysiologicaltraits,e.g.K
crenulatum(supercladeF)hasbeenshowntohaveamorenegative
waterpotential(=−2.09MPa)comparedtoK.nitens(superclade
E,=−1.67MPa)(Kaplanetal.,2012)
overviewon thedistributionof BSCs over Africa, pointing to a
concentrationofthesemicrobioticcommunitiesinthesouthern
andsouthwesternpartofthecontinent.Laterandinamore
com-prehensiveway,Büdeletal.(2009)undertookanintensivefield
monitoringand samplingin drylands along a transect
stretch-ingfromtheNamibian–AngolanborderdownsouthtotheCape
Peninsula.TheseauthorsreportedsevenBSCtypeswhichcould
bedifferentiatedonthebasisofmorphologyandtaxonomic
com-position,anddocumented29greenalgalspeciesincludingsome
undescribedKlebsormidiumspecies.Büdeletal.(2009)concluded
thatBSCsareanormaland frequentvegetationelementinarid
andsemi-aridsouthwesternAfrica,andthat rainfrequency and
durationofdryperiodsratherthantotalannualprecipitationare
theecologicalkeyfactorsforthedevelopment,differentiationand
compositionofthemicrobioticcommunities
Asecophysiological studiesongreen algae fromAfrican hot desertBSCsaremissing,andbecauseofthisconspicuously differ-entsupercladeGintheKlebsormidiumphylogeny,ourmajorgoal wastocharacterizeforthefirsttimesomeoftheavailablestrains Photosyntheticactivityundercontrolleddehydrationandrecovery conditionsandalongtemperatureandlightgradientswere com-parativelyinvestigatedinthreeAfricanKlebsormidiumstrains.For comparison,Klebsormidiumsubtilissimumfromacold-desert habi-tat(Alaska,USA,supercladeE)wasincludedinthestudyaswell Themainhypothesiswastoevaluatewhetherphysiologicaltraits are present which influence desiccation, temperature and light toleranceinthesespecificKlebsormidiumgenotypes.Ofparticular interestwastoconsiderwhethertheenvironmentalconditionsof theoriginalhabitatarereflectedintherespectiveresponse pat-terns
2 Materials and methods
2.1 Strainoriginandcultureconditions TheKlebsormidiumstrainsofthesupercladeG-BIOTA14.614.7 (=AfricanStrainA),BIOTA14.613.5e(=AfricanStrainB)andBIOTA 14.614.18.24(=AfricanStrainC)—wereoriginallycollectedand iso-latedbyProf Burkhard Büdelin theframeofthe international BIOTA project(Büdelet al., 2009), and kindlyprovided forthe presentstudy.ThespeciesKlebsormidiumsubtilissimumSAG384-1 (=ArcticStrain)waspurchasedfromTheCultureCollectionofAlgae
at Göttingen University;Germany (international acronym SAG;
habitat and origin, meteorological data, as well as taxonomic assignmentsaresummarizedinTable1
The4Klebsormidiumstockculturesweremaintainedin Erlen-meyer flasks (volume 250–500mL) filled with modified Bold’s BasalMedium(3NBBM;StarrandZeikus,1993),whichisahighly enrichedpurelyinorganicmediumcontainingvarioustrace met-als,fewvitaminsandtriplenitrateconcentration,butnocarbon source.Identicalcultureconditionsand equipmentwasapplied
asdescribedforKlebsormidiumdissectum(KarstenandHolzinger,
2012),i.e.cellswerekeptat20◦Cand35–40molphotonsm−2s−1 underalight-darkcycleof16:8hL:D(OsramDaylightLumiluxCool WhitelampsL36W/840,Osram,Munich,Germany).Photonfluence ratemeasurementswereuntertakenwithaSolarLightPMA2132 cosinecorrectedPARsensorconnectedtoaSolarLightPMA2100 radiometer(SolarLightCo.Inc.,Philadelphia,USA).Forall exper-imentsalwaysvitallog-phaseculturesexhibitingcomparablecell densitieswereused
2.2 Lightmicroscopy Algaeof log-phase cultures usedfor physiological measure-ments(AfricanStrainsA–C,ArcticStrain)werealsoinvestigated witha Zeiss Axiovert200Mmicroscope(Carl Zeiss Microscopy GmbH,Jena,Germany),equippedwitha100×1.3NAobjectivelens andanAxiocamMRc5cameracontrolledbyZeissAxiovision soft-ware.Forcontrastenhancement,differentialinterferencecontrast (DIC)wasapplied.Furtherprocessingofimageswasperformed usingAdobePhotoshop(CS5)softwareversion12.1(Adobe Sys-tems,SanJose,CA,USA).Celldimensions(cellwidthandlength) weredeterminedbymeasuringa minimumof 20cells andthe length:width (L:W) ratio was calculated Mean values±SD are shown
2.3 Dehydrationandrecoveryexperiments Forthedesiccationexperimentsanewhighlystandardized
set-upwasappliedtofollow thekineticsofcontrolleddehydration
Trang 3Table 1
Characterization of the Klebsormidium isolates collected from dry regions Strain number, habitat and origin, taxonomic assignment according to the suggested clades of Rindi
et al (2011) are given The meteorological data include monthly air temperature, monthly rainfall days, monthly precipitation (mm) and annual precipitation (mm) ( www worldweatheronline.com ) The sequence accession numbers include complete and partial sequences, respectively, of the different ribosomal regions SAG: Sammlung für Algenkulturen, Göttingen, Germany.
Assigned species, strain
number and
synonym used in the
text
Habitat and origin Meteorological data Clade assignment
according to Rindi et al.
(2011)
Sequence Accession (18s rRNA, ITS1, 5.8s rRNA, ITS2, 28s rRNA)
Klebsormidium sp.
BIOTA 14614.7
African Strain A
Biological soil crust, BIOTA observatory Grootderm, succulent Karoo, South Africa 28 ◦ 36 44.1 S
16 ◦ 39 45.0 E leg.: Burkhard Büdel
14 March 2001
Air temperature:
13.5–20.6 ◦ C Monthly rainfall days:
0–14 Monthly precipitation:
0 to 34.2 mm Annual rainfall: 56 mm
Klebsormidium sp.
BIOTA 14613.5e
African Strain B
Biological soil crust, BIOTA observatory Koeboes, South Africa,
28 ◦ 45 51.1 S
16 ◦ 98 38.3 E leg.: Burkhard Büdel
12 March 2001
Klebsormidium sp.
BIOTA 14614.18.24
African Strain C
Biological soil crust, BIOTA observatory Grootderm, succulent Karoo, South Africa,
28 ◦ 36 44.5 S
16 ◦ 39 52.4 E leg.: Burkhard Büdel
14 March 2001
Klebsormidium
subtilissimum
SAG 384-1
Arctic Strain
Snow, Port Barrow, Alaska, USA;
cold-desert climate isolated 1952 R.A Lewin
Air temperature:
−29.1–8.3 ◦ C Monthly rainfall days:
4 to 12 Monthly precipitation:
2.3–26.7 mm Annual rainfall:
114 mm
and subsequent rehydration on theeffective quantum yield of
photosystemII(PSII)usingnon-invasivepulseamplitude
modu-lation(PAM)fluorometry(Karstenetal.,2014).Alwayslow-light
acclimatedsamples(35–40molphotonsm−2s−1)weremeasured
withaPAM2500(HeinzWalzGmbH,Effeltrich,Germany).Cellsof
eachKlebsormidiumisolatewereconcentratedassmalllightgreen
spotson4replicateWhatmanGF/Fglassfibrefilters(Whatman,
Dassel,Germany).Ontoeachfilterexactly200Lofthe
respec-tivehomogeneousalgalsuspension(c.1–2mgchlorophyllaL−1)
wasappliedusinganEppendorfpipette.Usingdefinedstarting
vol-umesoflog-phaseculturesguaranteedreproducibility,sinceitis
difficultorimpossibletoobtainreliablewatercontentsinsmall
quantitiesofalgalfilaments.Themoistfilterswerepositionedon
perforatedmetalgridsontopoffourglasscolumnsinsidea
trans-parent200mLpolystyrolbox.Eachoftheseboxeswasfilledwith
100goffreshlyactivatedsilicagel(SilicaGelOrange,CarlRoth,
Karlsruhe,Germany)andsealedwithatransparenttoplid.The
rel-ativeairhumidity(RH)conditionsinsidetheboxeswererecorded
withaPCE-MSR145S-THminidataloggerforairhumidityand
tem-perature(PCEInstruments,Meschede,Germany).Thedatashowed
thatwithinthefirst30mintheRHdeclinesfromabout30%to10%
andremainsafterthatalmostunchangedatthislowairhumidity
pointingtoareproducibledryatmosphere(Karstenetal.,2014)
Thechambersweremaintainedat22±1◦Cand40molphotons
m−2s−1PAR(cultureconditions)(Osramlightsourcesseeabove)
whichreflectsthenaturalaveragetemperaturesinthehabitatsof
thedessertstrainsandpreventslightstressduringmeasurements
Theeffectivequantumyield(F/Fm’)ofphotosystemII(PSII)
wasregularlydeterminedduringthedehydration period(upto
500min dependingon thestrain)using thePAM 2500
accord-ingtheapproachofGentyetal.(1989).F/Fmwascalculatedas
(Fm −F)/Fm withFasthefluorescenceyieldoflight-treatedalgal
cells(40molphotonsm−2s−1)andFm asthemaximum
light-adapted fluorescenceyieldafter employinga 800ms saturation pulseasdescribedbySchreiberandBilger(1993).ThePAMlight probewaspositionedoutsidethecoverlidoftheboxes(always
2mm distance) toguarantee undisturbed RHconditions inside, i.e.allfluorescencemeasurements wereperformedthrough the polystyrollids.ThedistancefromthePAMlightprobetothealgal sample onto theglassfibrefilters wasalwayskeptconstant at
10mm.Sincethewatercontentoftheappliedsmallcellnumbers (200Lsuspension)isalmostimpossibletoestimate,we under-tookpreliminaryexperimentsusing25–50timeshigherquantities
ofalgalbiomass,andestimatedthatthefinalremainingwater con-tentaftercontrolleddesiccationusingthedescribedapproachwas between5and10%ofthecontrol(datanotshown).Whileour des-iccationset-upguaranteescomparativeandreproduciblestarting andendpointsofcellularwatercontents,itfailstodescribeany kineticsofwaterloss
Afterthedehydrationperiod,thedriedglassfibrefilterswere transferredtoanewpolystyrolboxwhichwasfilledwith100mL tapwaterinsteadofsilicageltocreateahighhumidityatmosphere (>95%).Thefilterswererehydratedbyadding200Lofthe stan-dardgrowthmediumtoeachalgalspotandrecoveryof(Fm −F)/Fm
wasfollowedwiththesamemethodologyasdescribedabove 2.4 Photosynthesisandrespirationunderlightandtemperature gradients
A Presens Fibox 3 oxygen optode (Presens, Regensburg, Germany)wasappliedtorecordphotosyntheticoxygen produc-tionrates underrisingphoton fluencedensities(PI curves)and respiratoryoxygenconsumptioninthedark.Theoxygensensor wasattachedtoa3mLthermostaticacrylicchamber(typeDW1, HansatechInstruments,Norfolk,UK)combinedwithamagnetic
Trang 4absorption.Always 2.8mLlog-phaseKlebsormidiumsuspensions
ofknownchlorophyllaconcentrationwereaddedtothechamber
supplementedby0.2mLofaNaHCO3stocksolution(resultingin
2mMNaHCO3finalconcentration)toguaranteesufficientcarbon
supplyduringmeasurements.Thelightpathinsidethemeasuring
chamberwas10mm,andtheappliedlightlevelswerecarefully
determinedwithaHansatechQRT1PARsensor(Hansatech
Instru-ments,Norfolk,UK).Thisquantumsensorwasverticallypositioned
insidethecuvetteallowinglightsource(halogenlamp)calibration
fromtheside(90◦ angle)and therebyovercomingthepotential
difficultiesassociatedwithaccuratelymeasuringPARlightlevels
withinthe small chamber Beforethe onset of increasing
pho-tonfluenceratesrespirationwasmeasuredindarknessfollowed
byexposureof thealgal cells tonine light levelsrangingfrom
0 to 500mol photons m−2s−1 PAR (photosynthetically active
radiationfor10min)at22◦Cusingacombinationof4different
HansatechA5neutralfilters(HansatechInstruments,Norfolk,UK)
AllO2rateswerenormalisedtototalchlorophyllaconcentration,
rangingfrom3to6g3mL−1,whichweredeterminedaftereachPI
curvemeasurement.Weusedchlorophyllaconcentrationas
ref-erenceparameter,becausecelldensitiesofthe4Klebsormidium
strainsweredifficulttodeterminebecauseofthefilamentous
mor-phologyandthefactofuncontrolleddisintegration intosmaller
fragmentsofsomeoftheisolates.The3mLKlebsormidium
suspen-sionwasfilteredontoaWhatmanGF/Fglassfibrefilterusingaglass
Pasteurpipette,andchlorophyllaandbextractedbyadding3mL
dimethylformamide(DMF)followedbyphotometric
calculatedandfittedwiththemathematicalphotosynthesismodel
characteristicparameters:␣,positiveslopeatlimitingphoton
flu-encerates(molO2h−1mg−1Chl.a(molphotonsm−2s−1)−1;Ic,
lightcompensationpoint(molphotonsm−2s−1);Ik,initialvalue
oflight-saturated photosynthesis(molphotons m−2s−1)
Fur-thermore,themaximumphotosyntheticrateinthelight-saturated
range(molO2h−1mg−1Chl.a)wascalculated
Sincewiththehalogenlampoftheoxygenoptodesystemonly
500molphotonsm−2s−1 couldberealized(seeabove),aPAM
2500wasadditionallyusedtoapplyphotonfluenceratesupto
1432molphotonsm−2s−1forthedeterminationoflight-induced
rETRandpossiblephotoinhibitoryeffects.Cellsofeach
Klebsormid-iumstrain weretransferredon4replicate WhatmanGF/Fglass
fibrefiltersuntilalightgreenspotwasvisible.Thesemoistfilters
werealsopositionedinthetransparent200mL,tapwaterfilled
polystyrolboxes,andtreatedasalreadydescribed.Algalcellswere
exposedto13photonfluencedensities(PFDs)for30seach(rapid
lightcurves)rangingfrom1upto1432molphotonsm−2s−1.The
actiniclightwasprovidedbyaredpowerLED(630nm)ofthePAM
2500.Aftereach lightexposure,asaturatingpulsewasgivento
detectFmandF/Fm .TherelativeelectrontransportrateofPSII
(rETR)wascalculatedaccordingtoKromkampandForster(2003):
rETR= F/Fm PFD
where F/Fm =the effective PSII quantum efficiency and
PFD=photonfluxdensity
All measurements were undertaken under at 22±1◦C
Photosynthesis-irradiance(PI)curves as rETRvs PFDwere
cal-culatedtocheckwhetherthe4strainsofKlebsormidiumexhibit
indicationsofphotoinhibition
Theeffectofrisingtemperaturesonphotosyntheticand
res-piratory response patterns (referenced tochlorophyll a) in the
fourKlebsormidiumstrainswasdeterminedusingaThermoHaake
K20refrigeratedcirculator(ThermoFisherScientificInc.,Waltham,
Massachusetts,USA)connectedtothemeasuringchamber.Allalgal
Fig 1.Morphology of the four Klebsormidium strains (Klebsormidiales, Strepto-phyta) BIOTA 14614.7 (African Strain A) (A), BIOTA 14613.5e (African Strain B) (B), SAG 384-1 (Arctic Strain) (C) and BIOTA 14614.18.24 (African Strain C) (D) taken from 1 month old liquid cultures (A) Cell filament and 2-cell-fragment with clearly visible pyrenoids (arrowheads), cross-wall protuberances (white arrow) and pari-etal chloroplasts with margins protruding towards the cell centre (black arrows) (B) Ovoid and cylindrical individual cells with one pyrenoid per cell (arrowhead) and spherical chloroplast-free districts at the cell poles (arrows) (C) Short cell fila-ments and detaching cells (black arrows) Pyrenoids are marked with arrowheads and cross-wall protuberances with white arrows (D) Cell filament with pyrenoids (arrowheads) and prominent cross-wall protuberances (arrows) Scale bars equal always 10 m.
isolateswereexposedtoninetemperaturestepsrangingfrom5to
45◦Cin5◦CincrementsaccordingtoKarstenandHolzinger(2012) Aftertreatmentwiththehighesttemperature(45◦C) photosyn-thesisandrespirationweremeasuredagainafteratemperature reductionto30◦Ctolookforrecoveryeffects
From the final photosynthetic and respiratory rates (mol
O2mg−1 Chl a h−1) the gross photosynthesis:respiration (P:R) ratiosforeachtemperaturewerecalculated
2.5 Statisticalanalysis All oxygen measurements (optode) were carried out with threeindependentreplicates(n=3)whileallmeasurementofthe effectivequantumyield(performedbyPAM)wereperformedin fourindependentreplicates(n=4).Theshowndatarepresentthe respectivemeanvalues±standarddeviation
Statisticalsignificance ofthemeansoftheeffectivequantum yieldofdehydratedandrehydratedsamples,aswellasalloptode dataweretestedwithone-wayANOVAfollowedbyaTukey’s mul-tiplecomparisontesttofindsubgroupsofmeanswithsignificant differences.AnalyseswereperformedwithInStat(GraphPad Soft-wareInc.,LaJolla,CA,USA)
3 Results
3.1 Lightmicroscopy TheAfricanStrainAformeduniseratefilamentsandeachcell containedoneparietalchloroplastwithaprominentpyrenoid sur-rounded bystarch grains (Fig 1a).The chloroplast coveredthe wholelengthofthecellandabout2/3ofthecellcircumference, whilethecentralpartofonelongitudinalmarginoftenprotruded distinctlytowardsthecellcentre(Fig.1a).Mostcrosscellwalls exhibitedprotuberancesofwallmaterialononeoroppositesides
ofthesamecrosscellwallandoccasionallythecrosswallappeared swollen(Fig.1a).Fragmentationintosmallcellfilaments(2–6cells) wasscarcely.Thecelldiameterwashomogenously(Table2 while thecelllengthvariedmore(Table2 resultinginacelllengh:width
Trang 5Table 2
Cell dimensions (length and width in m) and length:width (L:W) ratio of the four
Klebsormidium strains investigated (n = 20 ± SD) Capital letters (length), small
let-ters (width) and cursive small letters (L:W ratio) indicate significant differences
between the dimensions Data were analysed by one-way ANOVA followed by
Tukey’s post hoc test (p < 0.001) Cell length and width of each strain was compared
by a standard two-sample t test and significantly differences are marked with an
asterisk (p < 0.001).
BIOTA 14614.7 7.8 ± 1.2 A 6.8 ± 0.3 a * 1.2 ± 0.2 a
BIOTA 14613.5e 7.6 ± 1.4 A 4.1 ± 0.4 b * 1.9 ± 0.4 b
SAG 384-1 13.7 ± 4.0 B 5.5 ± 0.5 c * 2.5 ± 0.8 c
BIOTA 14614.18.24 8.0 ± 2.1 A 8.8 ± 1.0 d 0.9 ± 0.3 a
(L:W)ratioof 1.2±0.2 (Table2).Cellsof AfricanStrainBwere
significantly(P<0.001)narrower,butthecelllengthdidnot
dif-fersignificantly(P<0.001)fromAfricanStrainA(Table2).African
StrainBoccurredunicellularlyandtheparietalchloroplastwasless
expanded,covering1/3−2/3ofthecellandusuallydidnotreach
towardsthepolesoftheovoidorcylindricalcells(Fig.1b).The
lon-gitudinalmarginsofthechloroplastweresmoothanditexhibited
onepoorlydevelopedpyrenoid(Fig.1b).Cellsweresurroundedby
athinmucilagelayer(Fig.1b).ThecellshapeoftheArcticStrain
appearedsimilartoAfricanStrainB,however,theywere
signifi-cantlywiderandlonger(Fig.1c,Tab.2).Filamentsshowedastrong tendencytodisintegrationandmostfilamentscontained2–4cells Each cellexhibited one parietalchloroplast embeddinga small pyrenoid(Fig.1c).Thelongitutinalmarginsofthechloroplastwere smooth(Fig.1c).Somecrosscellwallsexhibitedprotuberancesof wallmaterialonoppositesidesofthesamecrosswall(Fig.1c) Cellsweresignificantlylongercomparedtotheotherthreestrains, resultinginaL:Rratioof2.5±0.8(Tab.2).AfricanStrainCformed uniseratefilamentsandthecellwidthandlengthdidnotdiffer significantlyfromeachother(P<0.001;Table2,Fig.1d).Eachcell containedonechloroplasttouchingthecrosswallsandcovering
∼3/4ofthecellcircumference(Fig.1d).Thelongitudinalmargins
ofthechloroplastweresmoothanditcontainedoneclearly vis-iblepyrenoidsurroundedbystarchgrains(Fig.1d).Sometimes, prominentcrosswallprotuberancesoccurred(Fig.1d)
3.2 Lightrequirementsofphotosynthesis Thephotosyntheticoxygenproductionwasstimulatedbyrising photonfluencedensitiesinall4Klebsormidiumisolatesasreflected
inPIcurvesfromwhichcharacteristicparametersforthe descrip-tionofthelightrequirementswerederived(Fig.2;Table.3).African StrainsBandCandtheArcticStrainexhibitedlight-saturatedPI curves withmaximum oxygenproduction rates between 137.5
Fig 2. Dark respiration and photosynthetic oxygen evolution as function of increasing photon fluence densities up to 500 mol photons m −2 s −1 in the four Klebsormidium isolates BIOTA 14614.7 (African Strain A), BIOTA 14613.5e (African Strain B), BIOTA 14614.18.24 (African Strain C) and SAG 384-1 (Arctic Strain) (n = 3, mean value ± SD) The dotted line represents in the 3 African Strains a fitted curve of the data measured according the photosynthesis model of Webb et al (1974)
Table 3
Photosynthesis-irradiance curve parameters of the Klebsormidium strains studied Data were recorded as oxygen evolution using an oxygen optode at 25 ◦ C and for the 3 African Strains fitted with the photosynthesis model of Webb et al (1974) without photoinhibition ␣: positive slope at limiting photon fluence rates (mol O 2 mg−1Chl.
a (mol photons m−2s−1)−1); I c : light compensation point (mol photons m−2s−1); I k : initial value of light-saturated photosynthesis (mol photons m−2s−1) In addition, the chlorophyll a: chlorophyll b ratios are given Data represent mean values ± SD of 3 replicates The significance of differences among the strains, as indicated by different letters (capital letters for ␣; small letters for I c ; cursive capital letters for I k ) was calculated by one-way ANOVA (p < 0.001) and Tukey’s post hoc test.
Klebsormidium sp BIOTA 14614.7 (African Strain A) 5.73 ± 1.39 A 14.65 ± 2.27 a 18.83 ± 2.69 A 2.43 ± 0.26 a Klebsormidium sp BIOTA 14613.5e (African Strain B) 10.93 ± 2.56 B 4.44 ± 0.78 b 19.99 ± 3.16 A 2.10 ± 0.31 a Klebsormidium sp.BIOTA 14614.18.24(African Strain C) 12.40 ± 1.96 B 5.86 ± 1.19 b 14.11 ± 2.71 B 2.07 ± 0.17 a Klebsormidium subtilissimum SAG 384-1 (Arctic Strain) 8.29 ± 2.63 B 10.55 ± 2.09 a 23.56 ± 3.34 A 1.86 ± 0.15 b
Trang 6Fig 3. The effect of increasing photon fluence densities up to 1432 mol photons
m −2 s −1 on the relative electron transport rate (rETR, mol electrons m −2 s −1 ) in 3 of
the studied Klebsormidium strains (n = 4, mean value ± SD) BIOTA 14614.7 (African
Strain A), BIOTA 14613.5e (African Strain B), and SAG 384-1 (Arctic Strain) BIOTA
14614.18.24 (African Strain C) showed the same curve shape as BIOTA 14613.5e
(African Strain B) and hence was not shown All measurements were done at
22 ± 1 ◦ C.
and182.9molO2h−1mg−1 Chl.a.Incontrast,AfricanStrainA
didnot reachlight-saturationuptotheapplied500mol
pho-tonsm−2s−1,resultinginamaximumoxygenproductionofonly
79molO2h−1mg−1Chl.a(Fig.2).Noneoftheinvestigated
Kleb-sormidiumsamplesexhibitedanyindicationofphotoinhibition,at
leastuptothehighestphotonfluencerateof500molphotons
m−2s−1tested.Todoublecheckthatindeednophotoinhibitionis
visibleinthe4Klebsormidiumstrains,relativeelectrontransport
ratesasfunctionofincreasingphotonfluencerateupto1432mol
photonsm−2s−1weremeasured(Fig.3 andnophotoinhibitory
effectcouldbedetermined.WhileAfricanStrainAshoweda
rel-ativelylow␣value(photosyntheticefficiencyinthelightlimited range)of5.73molO2h−1mg−1Chl.a(molphotonsm−2s−1)−1, this valuewas significantlyhigher in theAfrican StrainsBand
Cand theArcticStrain(p<0.05)(Table3).The4Klebsormidium strainsexhibitedrathersimilarIcvalues(lightcompensationpoint) between4.4and 14.7molphotonsm−2s−1,and Ik values (ini-tiallightsaturationpoint)rangingfrom14.1to23.6molphotons
require-mentsforphotosynthesis(Fig.2).Inaddition,theChl.atoChl.b ratiosinallinvestigatedstrainsweresimilarbetween1.86and2.43
3.3 Temperaturerequirementsofphotosynthesisandrespiration Theeffectofincreasingtemperaturesongrossphotosynthetic oxygenproductionandrespiratoryoxygenconsumptioninthe4 Klebsormidiumstrainsclearlypointedtoisolate-specificdifferences (Fig.4).TheAfricanStrainsAandCshowedasimilarresponse pat-ternwithrisingphotosyntheticactivityfromlowvaluesat5–10◦C
uptomaximumvaluesbetween30and35◦C,followedbyasharp decline and complete inhibition between 35 and 45◦C (Fig.4) AlthoughAfricanStrainBexhibitedalsolowoxygenevolutionrates between5and10◦C,andoptimumphotosynthesisat30–35◦C,this straincouldmuchbettercopewith40◦Cwherestill50%ofthe maximumcouldberecorded,whileat45◦Cphotosynthesiswas notdetectable(Fig.4).Incontrast,theArcticStrainshowedalready
at5and10◦Crelativelyhighoxygenevolutionrates,andabroad optimumphotosyntheticactivitybetween15and35◦C,followed
byadrasticlossat40and45◦C(Fig.4)
Inallsamplesrespirationat5and10◦Cwasnotdetectableor verylow, while temperaturesbetween>10◦C and 30–35◦C led
toa continuous,andalmostlinearincreaseinrespiratory activ-ityuptothemaximumvaluesbetween−41.4and−84.9molO2
h−1mg−1Chl.a(p<0.001)(Fig.4).Furtherincreasesin
tempera-Fig 4. Photosynthetic oxygen development and respiratory oxygen consumption in mol O 2 h−1mg−1Chl a measured at 200 mol photons m−2s−1as function of increasing temperatures in the four studied strains of Klebsormidium (n = 3, mean value ± SD), BIOTA 14614.7 (African Strain A), BIOTA 14,613.5e (African Strain B), BIOTA 14,614.18.24 (African Strain C) and SAG 384-1 (Arctic Strain) Significances among the treatments were calculated by one-way ANOVA (p < 0.001) Different capital (net photosynthesis) and small letters (respiration) represent significant differences among the temperatures as revealed by Tukey’s post hoc test.
Trang 7Fig 5. Photosynthesis and respiration in mol O 2 h −1 mg −1 Chl a measured at
200 mol photons m −2 s −1 at 45 ◦ C (see Fig 3 ) and after transfer back to 30 ◦ C in
the four studied strains of Klebsormidium (n = 3, mean value ± SD), BIOTA 14614.7
(African Strain A), BIOTA 14,613.5e (African Strain B), BIOTA 14614.18.24 (African
Strain C) and SAG 384-1 (Arctic Strain) Significances among the treatments were
calculated by one-way ANOVA (p < 0.001) Different capital (photosynthesis) and
small letters (respiration) represent significant differences among the temperatures
as revealed by Tukey’s post hoc test.
tureupto45◦CledtoamoderatedecreaseinrespirationofAfrican
StrainC, whilethe remainingKlebsormidiumstrainsshowedan
unaffectedrespiratoryrateatthishightemperature(Fig.4).The
photosynthesisandrespirationdataindicateconspicuously
differ-enttemperaturerequirementsforbothphysiologicalprocesses
After treating all samples with 45◦C, temperature was
decreasedto30◦Candtheshort-termrecoverypotentialof
pho-tosynthesisandrespirationevaluated(Fig.5).ThethreeAfrican
Strainsshowedverysimilarresponsepatterns,i.e.withdeclining
temperaturesthenegativephotosynthethicratespartially
recov-eredtozeroor slightlypositive values.Butalsotherespiratory
activityreturnedtolowrates.Incontrast,theArcticStrain
exhib-itedlesshigh,butstillstrongnegativephotosyntheticactivityand
arespirationvaluesimilartothatbetween20and25◦C(Fig.5)
The photosynthesis:respiration quotient (P:R) in all 4
Kleb-sormidium isolates decreased with increasing temperatures
(p<0.001)(Fig.6).Whileat5◦CthehighestP:Rvaluewasonly
observedinAfricanStrainA,allothersamplesshowedanincrease
from 5 to 10◦C (maximum value) followed by a continuous
decrease(Fig.6).TheP:Rratiosdroppedinallinvestigated
Kleb-sormidiumisolatestonegativevalues,i.e.inAfricanStrainsBandC
onlyat45◦C,inAfricanStrainAat40and45◦C,andintheArctic
Strainalreadyat30◦Candallhighertemperatures(Fig.6)
3.4 Dehydrationandrehydration
Thestandardizedmethodologicalapproachwiththesilicagel
filledpolystyrolboxesandPAMmeasurementsfromtheoutside
allowedcomparativeeffective quantumyield determinationsin
allKlebsormidiumsamplesduringthedehydrationand
rehydra-tionintervals,indicatingdifferentresponsepatterns(Figs.7,8)
WhileAfricanStrainBshowedacontinuousdecreaseofF/Fm
frombeginningonoveraperiodof350mindowntozerosignal,all
otherisolatesexhibitedanunchangedmaximumeffective
quan-tumyieldforsometimebeforeathresholdwasreachedafterwhich
thefluorescencesignalsstronglydroppedtovaluesbetween0and
20%(Fig.7).TheintervalofunaffectedF/Fmwas230–250min
intheAfricanStrainsAandCand,andonly100minintheArctic Strain.Aftertheseperiodstheeffectivequantumyielddecreased within100to130mintozeroinbothAfricanStrains,whileittook
>200mintoreach20%ofthecontrolintheArcticStrain,whichwas theminimumsignal(Fig.7)
After500mindehydrationintervalallKlebsormidiumsamples wererehydrated.WhilebothAfricanStrainsBandCtogetherwith theArcticStrainfullyrecoveredwithin1000–1500min,inAfrican Strain Aonly 20%of thecontrol F/Fm values wererecorded, evenaftera2000minrehydrationinterval(Fig.8).AfricanStrain
Cexhibitedthefastedrecoverykinetics
4 Discussion
4.1 Habitatandphylogeny
Inthepresentstudy,weexaminedforthefirsttimethe mor-phology and ecophysiologicaltraits ofthree differentstrainsof Klebsormidium isolated fromBSCcommunities of the succulent Karoo,SouthAfricawhichisknownassemi-aridhotdesert(Büdel
etal.,2009).Thisregionischaracterizedbyhightemperaturesand extremelylowprecipitationrangingfrom0to34.2mmpermonth resultinginanannualrainfallofonly56mm(Table1).The investi-gatedBIOTAstrainsbelongphylogeneticallytotheKlebsormidium supercladeG(Rindietal.,2011),whichis describedonlyas so-called‘Africanclade’withoutanyfurtherinformationontaxonomy
orphysiology.ForcomparisonweselectedKlebsormidium subtilissi-mumfromacold-deserthabitat(Alaska,USA,supercladeE),which
ischaracterizedbymuchlowertemperatures,butalsorelatively lowprecipitationrangingfrom2.3to26.7mmpermonthsumming
uptoanannualrain-/snowfallof114mm(Table1).Incontrastto thethreeAfricanstrains,K.subtilissimum(ArcticStrain)isawell describedspecies (Fig.1C)(Silvaetal.,1972).ThethreeAfrican StrainsA,BandCexhibitedsignificantlydifferentmorphologies particularlyreflectedinthecellwidthwhichrangedfrom4.1to
timeunderidenticalcontrolledconditionsandhenceanypotential environmentaleffectonthemorphologycanbeexcluded Conse-quently,weassumethatthethreeAfricanKlebsormidiumstrains representnewspecies,whichhavestilltobedescribed
4.2 Lightrequirementsofphotosynthesis ThePI-curveparameters␣,IcandIkonlyrevealedsmall differ-encesamongtheinvestigatedfourKlebsormidiumisolates(Fig.2,
thoseofIc andIkasverylow.Theinvestigatedsamplesthusall exhibitveryminorlightrequirementsforsaturated photosynthe-sis,whichhasbeenreportedbeforeforotherKlebsormidiumand closelyrelatedInterfilumspecies(Karstenetal.,2010,2014;Karsten
algae(indicated byhigh␣andlow Ic/Ik values) isusually cou-pledtomoreorlessstrongphotoinhibitionunderenhancedphoton fluence rates (Bischof et al., 1998 and references therein), and althoughouroxygenoptodemeasurementswererecordedonly
upto500molphotonsm−2s−1,theadditionallymeasuredrapid light curves(rETR) withaPAM2500up to1432mol photons
m−2s−1 didalsonotindicateanyphotoinhibition.The conspicu-ouslylowlight requirementissurprisingfortheAfricanstrains
asSouthAfricaisknownforhighinsolation.Averynice explana-tionforlowlightadaptationunderhighsolarradiationconditions
isprovidedbyGrayetal.(2007).TheseauthorsinvestigatedBSCs
ofNorthAmericandesertswheretheabundantgreenmicroalgae verticallyoccupiedmicroenvironmentswithinthesoilcrust,which contributestomassiveself-shadingandhenceprotectionfromthe
Trang 8Fig 6.Photosynthesis:respiration (P:R) quotient as function of increasing temperatures in the four Klebsormidium isolates BIOTA 14,614.7 (African Strain A), BIOTA 14613.5e (African Strain B), BIOTA 14614.18.24 (African Strain C) and SAG 384-1 (Arctic Strain) (n = 3, mean value ± SD) Significances among the treatments were calculated by one-way ANOVA (p < 0.001) Different capital letters represent significant differences among the temperatures as revealed by Tukey’s post hoc test.
Fig 7. The effect of controlled desiccation on the effective quantum yield (F/Fm ) of photosystem 2 as regularly measured with a PAM 2500 during the experiment (400–500 min) in the four Klebsormidium isolates BIOTA 14614.7 (African Strain A), BIOTA 14,613.5e (African Strain B), BIOTA 14614.18.24 (African Strain C) and SAG 384-1 (Arctic Strain) (n = 4, mean value±SD) Effective quantum yield values of control algae under 40 mol photons m −2 s −1 PAR was determined as 0.54–0.59 and standardized
to 100% for better comparison All measurements were done at 22 ± 1 ◦ C.
damagingin-situlightfield.Theresultingdifferential
susceptibil-itytoenhancedphotonfluenceratesexpressedbyindividualtaxa
indicatesacomplexspatialarrangementofthealgalspeciesinsuch
amicrohabitat,whichseemstobestructuredinresponsetothe
verticalattenuationofirradiance(Grayetal.,2007).Under
nat-uralconditions, Klebsormidiumspeciesoftenformmulti-layered
structuresinterwoven withtheuppermillimetres of soil
parti-clesandothermicroorganisms,whichmostprobablycontribute
toahighdegreeofself-shadingandhencephotoprotectionof indi-vidualfilamentsinsidesuchanassemblage(Karstenetal.,2010)
IncontrasttothethreeAfricanisolatesfromBSCs,precise habi-tatinformation ontheArcticStrainismissing.Thisspecies was isolatedfromsnowinNorthernAlaska,whichischaracterizedas cold-desertregion.Butwhetheritoccurredascrust-like assem-blageorbiofilminorontopofsnowisnotreported.PortBarrow (Alaska) is located at 71◦N and hence the annual surface
Trang 9inci-Fig 8.The effect of controlled rehydration on the effective quantum yield (F/Fm ) of photosystem 2 in the desiccated algal samples (see Fig 6 ) as measured with a PAM 2500 during the experiment (1000–2000 min depending on the response) in the four Klebsormidium isolates BIOTA 14614.7 (African Strain A), BIOTA 14613.5e (African Strain B), BIOTA 14614.18.24 (African Strain C) and SAG 384-1 (Arctic Strain) (n = 4, mean value ± SD) Effective quantum yield values of control algae under 40 mol photons m −2 s −1
PAR was determined as 0.54–0.59 and standardized to 100% for better comparison All measurements were done at 22 ± 1 ◦ C.
dentsolarradiation is about40%less compared totheequator
incombinationwithdiurnalweatheraswellasseasonalchanges
betweenpolardayandnight(Thomasetal.,2008).Consequently,
theArcticStrainlikelyreceivesmuchlowerinsolationcompared
totheAfricanstrains.ThefourinvestigatedKlebsormidiumisolates
exhibitedallahighphotophysiologicalplasticitywhichisin
agree-mentwithotherinvestigatedKlebsormidiumspecies(Karstenetal.,
traits but also correspondingto findings in streptophyte green
algaeobtainedfromhydro-terrestrialhabitats(Kaplanetal.,2013;
Streptophytaisconsideredascloselyrelatedtolandplants,asetof
potentialprotectivemechanismscanbeconsideredthathavebeen
developedbyalgaeandembryophytestocounteract
photoinhibi-tion.Thesemechanismslimittheextentofphotodamage(Raven,
2011),andinclude,forexample,partialavoidancebyrestricting
thenumberofphotonsincidentonthephotosyntheticapparatus
bychloroplastmovement.Otheravoidingprocessestypicallyaim
todissipateexcitationofphotosyntheticpigments,forexample,by
non-photochemicalquenching(e.g.xanthophyllcycle)or
photo-chemicalquenching(e.g.alternativeelectrontransportpathways)
E)genomeclearlyindicatesthepresenceofabasicsysteminvolved
inhigh-lightprotection,whichisconsideredasfundamental
mech-anismforalgaladaptationtoterrestrialhabitats(Horietal.,2014)
Thissystemincludescyclicelectronflowactivityatphotosystem
I,whichisactivatedunderradiationstressanddesiccation(Hori
etal.,2014).Thecyclicelectronflowisassumedtoincreasethe
protongradientacrossthethylakoid membrane,which induces
non-photochemicalquenchingandATPbiosynthesis,followedby
thedissipationofexcessradiationenergy(Horietal.,2014)
4.3 Temperaturerequirementsofphotosynthesis
Increasingtemperatureshadastrongeffectonrespiratory
oxy-genconsumption and photosyntheticoxygenproduction inthe
fourKlebsormidiumstrainsandrevealedisolate-specificdifferences (Fig.4).Whilethecold-desertArcticStrainshowedoptimal pho-tosynthesisalreadyat15◦C(followedbyabroadtolerancerange), thethreehot-desertAfricanStrainsexhibitedmaximum photosyn-theticratesbetween30and35◦C.At40◦ConlyAfricanStrainBhad positiveoxygenproductionrates,whileinallotherisolates pho-tosynthesiswascompletelyinhibited.Thesedataindicateforthe firsttime,thatthetemperatureconditionsofthenaturalhabitatare reflectedintheecophysiologicalresponsepatternsofthestudied Klebsormidiumstrains,pointingtospecificadaptations(genotypes)
asdiscussedforacidophilicpopulationsofKlebsormidium(ˇSkaloud
etal.,2014).Anotheraspectistheconspicuouslydifferent tem-perature requirement of photosynthesis and respiration While respiratoryrateswerenotdetectableorverylowat5and10◦C
inallstudiedstrains,highestratesoccurredbetween30and45◦C, i.e.respirationunderhighertemperaturesismoreefficiently func-tioningthanphotosynthesis,whiletheoppositeistrueforlower temperatures,wherephotosynthesistypicallyexhibitsenhanced activity rates compared to respiration This is also reflected in theP:Rratios(Fig.5 whichconfirmapositivenetcarbongain andhencebiomassformationoverabroadrangebetween tem-perate(5◦C)andhotconditions(35–40◦C)intheAfricanStrains, whilethecold-desertArcticStrainexhibitedpositiveP:Rvalues onlyundertemperateconditionsbetween5and25◦C.These dif-ferent tolerance widthsreflect thenatural hot and cold desert habitats,respectively.Thedisproportionateeffectoftemperature
onphotosynthesisand respirationinterrestrialgreen algaehas alsobeen documentedin theclosely related K.crenulatum and
K.dissectum,bothfromalpineBSCs(Karstenetal.,2010;Karsten
habitats(Karstenetal.,2014),aswellasinPrasiolacrispafrom Antarctica(Davey,1989).Prasiolacrispaisamacroalgalmember
oftheTrebouxiophyceae(Chlorophyta),andhencefroman evolu-tionaryviewfardistantfromKlebsormidium.Nevertheless,similar physiologicalresponsepatternswithrisingtemperaturesstrongly supporttheassumptionthatterrestrialgreenalgaeingeneral,and
Trang 10photosynthesisisprimarilycontrolledbylight-relatedprocesses
suchas,forexample,lightabsorptionandenergytransfer,
respi-rationistypicallyinfluencedbytemperature(AtkinandTjoelker,
2003).Respirationofplantsandalgaeisacomplexprocess
con-sistingofvarious enzymes,which exhibitdifferenttemperature
optimaandthatarelocalizedindifferentcellularcompartments
Themostsensitiverespiratoryenzymewouldalwaysactasa
bot-tleneckaffectingthewholeprocess(AtkinandTjoelker,2003).The
latterauthorsdiscussedtheunderlyingacclimationmechanisms
whichinclude, for example,temperature-dependentchanges in
substrateavailability, themaintenance of homeostaticlevels of
ATPsynthesisacrosstemperaturegradientsand/orreduction in
theproductionofreactiveoxygenspecieswhichareharmfulfor
allmetabolicfunctions
4.4 Dehydrationandrehydration
Thedesiccationexperimentswereundertakenbyusingafully
standardizedapproach(Karstenetal.,2014)toguarantee direct
comparisonbetweenthe4strainsstudied.While AfricanStrain
Bexhibitedacontinuousdecreaseintheeffectivequantumyield
fromthebeginningonoveraperiodof350mindowntozerosignal,
theother3samplesshowedanunchangedmaximumF/Fmfor
sometimebeforeathresholdwasreachedafterwhichthe
fluores-cencesignalsstronglydecreased(Fig.7).Theintervalofunaffected
F/FmwasmuchlongerinAfricanStrainsAandC,comparedto
theArcticStrain.ThesedifferencesintheF/Fmkineticsduring
desiccationcanbeexplainedbytheisolate-specificmorphologies
AfricanStrainsAandCarecharacterizedbylonguniserate
fila-mentsandmuchthicker,mechanicallymorestablecellscompared
tothesinglesmallcellsorshortcellfilamentsofAfricanStrainB
andtheArcticStrain,respectively(Fig.1).Similarresponsepatterns
hadbeenrecentlyreportedforvariousisolatesofthecloselyrelated
Interfilum(Karstenetal.,2014),whichexhibitedalsostriking
dif-ferencesinmorphology.Single-cellstrainsofInterfilumweremuch
moresensitivetodesiccationthanalgalcellsinhabitingan
aggre-gate,colonyorbiofilm,allrepresentingmorphologicalstructures
whichhamperoratleastretardwaterloss
Recovery kinetics of F/Fm after rehydration of the dried
Klebsormidiumsamplesalsoexhibitedconspicuousstrain-specific
differences.ExceptAfricanStrainA,allotherisolatesfully
recov-ereduponrehydrationwithfluidwater.AfricanStrainAshowed
only20%ofthecontroleffectivequantumyield,whichpointsto
somedamageinthephotosyntheticapparatus.Therecovery
kinet-icsoftheAfricanStrainsBandCandtheArcticStrainweresimilarto
thoseofInterfilum(Karstenetal.,2014)andanaeroterrestrialgreen
algalbiofilmoccurringontopofabuildingfac¸ade(Häubneretal.,
2006).ThisbiofilmalsoshowedaquickrecoveryofF/Fmafter
artificialmoistening(Häubneretal.,2006).Suchhighdehydration
toleranceinconjunctionwithhighrecoveryratesseemstobea
typicalfeatureofmanyterrestrialgreenalgaefromalpine,dune
anddrylandBSCs(DeWinderetal.,1990;Grayetal.,2007;Karsten
2013).The underlyingmechanisms havebeenrecentlytouched
forthefirsttimeinKlebsormidiumcrenulatumusinga
transcrip-tomicapproach(Holzingeretal.,2014).Theseauthorsreported
alsoastronginhibitionofF/Fmduringdesiccation,but,for
exam-ple,inparalleltheup-regulationoftranscriptsforphotosynthesis,
energyproduction,reactiveoxygenspeciesmetabolism,aswellas
ofplantproteinsinvolvedinearlyresponsetodesiccation(ERD)or
enzymesforoligosaccharidebiosynthesis.Themostimportant
con-clusionwasthefirstexperimentalproofthatstreptophytegreen
algaeexhibitsimilarmoleculareventsduringdesiccationstress
thanland plantspointing toancestralmechanismsfor the
suc-cessfulcolonizationofterrestrialhabitats(Holzingeretal.,2014)
Futurestudiesshouldtakethestrainandcladespecificdifferences shownhereintoaccount,andourbiologicalunderstandingofthe underlyingmechanismswilllargelybenefitwhennotonly investi-gatingoneselectedmodelorganism
Acknowledgements
The present study was undertaken during thefirst author’s sabbatical attheUniversity of Innsbruck,and itwas supported
by a grant from the Deutsche Forschungsgemeinschaft (DFG) (KA899/16-1/2/3/4)(U.K.),aswellasaFWFgrantP24242-B16and FWFgrant I 1951-B16(A.H.) Our sincere thanks are extended
toProf.BurkhardBüdel(UniversityofKaiserslautern)for provid-ingtheBIOTAstrains,aswellastoDr.TatianaMikhailyuk(M.H Kholodny Instituteof Botany, National Academy of Sciences of Ukraine)forinformationconcerningthephylogeneticpositionsof theisolatesused
References
Atkin, O.K., Tjoelker, M.G., 2003 Thermal acclimation and the dynamic response of plant respiration to temperature Trends Plant Sci 8, 343–351.
Belnap, J., Lange, O.L., 2001 Biological Soil Crusts: Structure, Function and Management Springer, Berlin.
Bischof, K., Hanelt, D., Tüg, H., Karsten, U., Brouwer, P.E.M., Wiencke, C., 1998 Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway) Polar Biol 20, 388–395.
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., et al., 2009 Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency Microb Ecol 57, 229–247 Castillo-Monroy, A.P., Maestre, F.T., Delgado-Baquerizo, M., Gallardo, A., 2010 Biological soil crust modulate nitrogen availability in semi-arid ecosystem: insights from a Mediterranean grassland Plant Soil 333, 21–34.
Davey, M.C., 1989 The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria Pol Biol 10, 29–36.
De Winder, B., Matthijs, H.C.P., Mur, L.R., 1990 The effect of dehydration and ion stress on carbon dioxide fixation in drought-tolerant phototrophic micro-organisms FEMS Microbiol Ecol 74, 33–38.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M.O., Pöschl, U.,
2012 Contribution of crytogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5, 459–462.
Genty, B., Briantais, J.M., Baker, N.R., 1989 The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence Biochim Biophys Acta 990, 87–92.
Gray, D.W., Lewis, L.A., Cardon, Z.G., 2007 Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives Plant Cell Environ 30, 1240–1255.
Häubner, N., Schumann, R., Karsten, U., 2006 Aeroterrestrial algae growing on facades—response to temperature and water stress Microb Ecol 51, 285–293 Herburger, K., Lewis, L.A., Holzinger, A., 2015 Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp (Zygnematophyceae, Streptophyta): role of pre-akinete formation Protoplasma 252, 571–589.
Holzinger, A., Lütz, C., Karsten, U., 2011 Desiccation stress causes structural and ultra-structural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust J Phycol 47, 591–602.
Holzinger, A., Karsten, U., 2013 Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms Front Plant Sci., 4, article 327.
Holzinger, A., Kaplan, F., Blaas, K., Zechmann, B., Komsic-Buchmann, K., Becker, B.,
2014 Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction PLoS One 9, e110630 Hori, K., Maruyama, F., Fujisawa, T., Togashi, T., Yamamoto, N., Seo, M., et al., 2014 Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation Nat Commun 5, http://dx.doi.org/10.1038/ncomms4978 Kaplan, F., Lewis, L.A., Wastian, J., Holzinger, A., 2012 Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta) Protoplasma 249, 789–804.
Kaplan, F., Lewis, L.A., Herburger, K., Holzinger, A., 2013 Osmotic stress in the Arctic and Antarctic green alga Zygnema sp (Zygnemtales, Streptophyta): effects on photosynthesis and ultrastructure Micron 44, 317–330.
Karsten, U., Lütz, C., Holzinger, A., 2010 Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress J Phycol 46, 1187–1197.
Karsten, U., Holzinger, A., 2012 Light, temperature and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium disectum (Streptophyta) from a high alpine soil crust Microb Ecol 63, 51–63.