Inhibitory effect of metformin on age-related centrosome amplification in midgut ISCs.. Fourteen-day-old wild type flies without d–d” or with h–h” 5 mM metformin feeding for 6 days were tr
Trang 1ARTICLE IN PRESS
G Model
MAD 10767 1–11
j o ur na l h o me pa g e :w w w e l s e v i e r c o m / l o c a t e / m e c h a g e d e v
Metformin inhibits age-related centrosome amplification in
Drosophila midgut stem cells through AKT/TOR pathway
Hyun-Jin Naa,1
Robert Arkingb, Mi-Ae Yooa,∗
a Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
Q3
b Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
a r t i c l e i n f o
Article history:
Received 14 January 2015
Received in revised form 23 April 2015
Accepted 6 May 2015
Available online xxx
Keywords:
Drosophila intestinal stem cells (ISCs)
Metformin
Centrosome amplification
AKT/TOR pathway
DNA damage
a b s t r a c t
Wedelineatedthemechanismregulatingtheinhibitionofcentrosomeamplificationbymetforminin Drosophilaintestinalstemcells(ISCs).Age-relatedchangesintissue-residentstemcellsmaybeclosely associatedwithtissueagingandage-relateddiseases,suchascancer.Centrosomeamplificationisa hallmarkofcancers.OurrecentworkshowedthatDrosophilaISCsareanexcellentmodelforstemcell studiesevaluatingage-relatedincreaseincentrosomeamplification.Here,weshowedthatmetformin,a recognizedanti-cancerdrug,inhibitsage-andoxidativestress-inducedcentrosomeamplificationinISCs Furthermore,werevealedthatthiseffectismediatedviadown-regulationofAKT/targetofrapamycin (TOR)activity,suggestingthatmetforminpreventscentrosomeamplification byinhibitingtheTOR signallingpathway.Additionally,AKT/TORsignallinghyperactivationandmetformintreatment indi-catedastrongcorrelationbetweenDNAdamageaccumulationandcentrosomeamplificationinISCs, suggestingthatDNAdamagemightmediatecentrosomeamplification.Ourstudyrevealsthebeneficial andprotectiveeffectsofmetforminoncentrosomeamplificationviaAKT/TORsignallingmodulation.We identifiedanewtargetfortheinhibitionofage-andoxidativestress-inducedcentrosomeamplification
WeproposethattheDrosophilaISCsmaybeanexcellentmodelsystemforinvivostudiesevaluatingthe effectsofanti-cancerdrugsontissue-residentstemcellaging
©2015Z.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
Metformin,abiguanidedrug,isclinicallyapproved-and
well-toleratedforthetreatmentoftype2diabetes,andisofinterest
forcancerpreventionandtherapy(AljadaandMousa,2011;Baur
etal.,2010;Landmanetal.,2009).Thedirectmoleculartargetof
Abbreviations: 4E-BP, eukaryotic translation initiation factor 4E-binding
pro-tein; 8-oxo-dG, 8-oxo-2-deoxyguanosine; AMPK, 5AMP-activated protein kinase;
EBs, enteroblasts; ECs, enterocytes; EEs, enteroendocrine cells; EGFR, epidermal
growth factor receptor; IGF1R, insulin-like growth factor-1 receptor; InR, insulin
receptor; ISCs, intestinal stem cells; PBST, phosphate-buffered saline with 0.1%
Triton X-100; PH3, phospho-histone H3; PQ, paraquat; PTEN, phosphatase and
tensin homolog; Raptor, regulatory-associated protein of mTOR; Rheb, Ras homolog
enriched in brain; ROS, reactive oxygen species; S6K, ribosomal protein S6 kinase;
JAK/STAT, Janus kinase/signal transducers and activators of transcription; JNK, c-Jun
N-terminal kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin.
∗ Corresponding author at: Department of Molecular Biology, College of
Q4
Natural Science, Pusan National University, Busan 609-735, South Korea.
Tel.: +82 51 510 2278; fax: +82 51 513 9258.
E-mail address: mayoo@pusan.ac.kr (M.-A Yoo).
1 These authors contributed equally to this article.
metforminismitochondrialrespiratory complex1(Owenetal., 2000).InhibitionofthisproteincomplexdecreasesATP produc-tion,whichincreasestheAMP/ATPratioandleadstosubsequent activationofAMP-activatedproteinkinase(AMPK),aninhibitorof mammaliantargetofrapamycin(mTOR)(Owenetal.,2000).Many studies supportfor theanti-tumor effects ofmetformin (Algire
et al., 2010; Berstein, 2012; Kato et al., 2012; Landman et al., 2009; Saito etal., 2013).Metforminhasbeenshown toinhibit humancancercellsproliferation, andit canbeusedtoprevent and treat a varietyof cancers (Alimova et al., 2009;Ashinuma
etal.,2012;Cantrelletal.,2010).Metforminblocksarethe produc-tionofendogenousreactiveoxygenspecies(ROS)(Halickaetal., 2011), and it inhibits pro-inflammatory responses and nuclear factorkappaBin humanvascularwallcells(Isodaetal.,2006) However,themolecularmechanismsunderlyingtheanti-tumor effectsofmetforminremainunclear
The centrosome is the major microtubule-organizing center and playsanimportant inkey cellularprocesses,includingcell division, cell migration, and cell polarity(Bettencourt-Dias and Glover,2007).Centrosomeaberrations,suchascentrosome ampli-fication,leadtogenomicinstability(Raoetal.,2009).Centrosome
http://dx.doi.org/10.1016/j.mad.2015.05.004
0047-6374/© 2015 Z Published by Elsevier Ireland Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Trang 2Fig 1. Inhibitory effect of metformin on age-related centrosome amplification in midgut ISCs (For interpretation of the references to color in this figure legend, the reader
Q7
is referred to the web version of this article.)
(A) Guts from 14-day-old wild type flies (a–a” and e–e”), 45-day-old wild type flies (b–b” and f-f”), and 14-day-old Cat n1 mutant flies (c–c” and g–g”) without (a–c”) or with (e–g”) 5 mM metformin feeding for 7 days were stained with anti-␥-tubulin (red), anti-PH3 (green), and DAPI (blue) Fourteen-day-old wild type flies without (d–d”) or with (h–h”) 5 mM metformin feeding for 6 days were treated with 10 mM PQ in standard media for 20 h, after which their guts were stained with anti-␥-tubulin (red), anti-PH3 (green), and DAPI (blue) a’, b’, c’, d’, e’, f’, g’, and h’ indicates enlarged PH3 staining images a”, b”, c”, d”, e”, f”, g”, and h” indicates enlarged images of ␥-tubulin staining images Original magnification is 400× (B) The number of PH3-positive cells was counted in whole guts from 14-day-old wild type, 45-day-old wild type, 14-day-old Cat n1 mutant, and 14-day-old PQ-treated wild type flies, with (black bars) or without (gray bars) metformin feeding for 7 days N is the number of observed guts and n is the number of observed PH3-positive cells (C) The frequency of supernumerary centrosome (>2) per mitotic ISC in 14-day-old wild type, 45-day-old wild type, 14-day-old Cat n1 mutant, and 14-day-old PQ-treated wild type flies with (black bars) or without (gray bars) metformin feeding for 7 days guts The centrosome numbers were counted in mitotic ISCs (PH3-positive cell) in the midgut N is the number of observed guts and n is the number of observed ␥-tubulin-positive cells (D) The frequency of mitotic ISCs with supernumerary centrosome per gut in 14-day-old wild type, 45-day-old wild type, 14-day-old Cat n1 mutant, and 14-day-old PQ-treated wild type flies with (black bars)
or without (gray bars) metformin feeding for 7 days guts N is the number of observed guts The error bar represents standard error p-values were calculated using Student’s t-test.
(D’Assoro et al., 2002; Nigg, 2002; Pihan et al., 2003)
Centro-someamplificationisinvolvedintheinitialstagesoftumorigenesis
(Leonard et al., 2013;Nakajima et al.,2004; Nam etal., 2010) CentrosomeamplificationiscausedbyDNAdamage(Nigg,2002;
Xuet al.,1999).Interestingly,DNAdamage incurredduringG2 phase leadstogreatercentrosome amplificationthanG1 phase
49
50
51
52
53 54 55 56
Trang 3ARTICLE IN PRESS
G Model
MAD 10767 1–11
H.-J Na et al / Mechanisms of Ageing and Development xxx (2015) xxx–xxx 3
Fig 2.Inhibitory effect of metformin on centrosome amplification in ISCs of midgut with ISC/EB-specific activation of AKT/TOR signaling pathway (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(A) Guts from 9-day-old esg ts > GFP (a and i), esg ts > GFP + InR (b and j), esg ts > GFP + PTEN RNAi (c and k), esg ts > GFP+AKT (d and l), esg ts > GFP + Rheb (e and m), esg ts > GFP + Raptor (f and n), esg ts > GFP + d4EBP RNAi (g and o), and esg ts > GFP + S6K STDE (h and p) flies without (a–h) or with (i–p) 5 mM metformin feeding for 7 days were stained with anti-␥-tubulin (red), anti-PH3 (green), and DAPI (blue) Original magnification is 400× (B) The number of PH3-positive cells was counted in whole guts of 9-day-old esg ts > GFP,
Trang 4amplifica-tioncanswitchasymmetricdivision ofstemcells tosymmetric
division,leadingtopolyploidcellsandhyperplasiainDrosophila
(Bastoetal.,2008).Therefore,centrosomeamplificationinadult
stemcells,particularlythoseinhighturnovertissues,couldaffect
tissuehomeostasisandregeneration
TheAKT/TORpathwayisacentralsignalingpathway
regulat-inglifespan(HaigisandYankner,2010).TheTORpathwaycontrols
cellproliferation,survival,andmetabolism(Kapuriaetal.,2012;
LaplanteandSabatini,2012).HyperactivationofAKT/TORsignaling
isobservedinmanyhumancancers(Alliouacheneetal.,2008)
Fur-thermore,TORsignaling-relatedfactors,includinginsulinreceptor
(InR),rashomologenrichedinbrain(Rheb),phosphataseandtensin
homolog(PTEN),regulatory-associatedproteinofmTOR(Raptor),
ribosomalproteinS6kinase(S6K),andtheeukaryotictranslation
initiationfactor4E-bindingprotein(4E-BP),arealsoimplicatedin
tumorigenesis(Alliouacheneetal.,2008).Inparticular,thelossof
PTENisassociatedwithcentrosomeabnormalities(Leonardetal.,
2013;Levineetal.,1998;Nametal.,2010).Constitutiveactivation
ofAKThasalsobeenshowntocausecentrosomeabnormalitiesand
amplification(Leonardet al.,2013;Nametal.,2010).However,
theeffectofmetforminoncentrosome abnormalities
amplifica-tionand themodulationof molecularpathwayshavenot been
reported
Adultstemcellsmaintaintissuehomeostasisandrepairduring
adulthoodthroughtheirabilitytoself-renewandproduce
differen-tiatedcells(Amcheslavskyetal.,2011).Age-relatedchangesinstem
cellsareassociatedwithtissueagingandage-relateddisease(Liu
andRando,2011).Therefore,understandingage-relatedchanges
instemcellsmayprovidemechanisticinsightsintotissue
homeo-stasisandstem cell-deriveddiseases,includingcancer.Directed
modulationof stemcellaging couldresultin thepreventionof
age-relateddiseasesandthuspromotehealthyaging
TheDrosophilamidgutisanexcellentmodelsystemtostudy
adult stem cells (Andriatsilavo et al., 2013; Jiang and Edgar,
2011).Theintestineisasensitiveorganandisexposedto
vari-ousenvironmentalstressorsanddamageduringreplication.The
Drosophilaintestinal stemcells (ISCs)undergoself-renewaland
producetwomajortypesofcells,enterocytes(ECs)and
enteroen-docrinecells(EEs),fromenteroblasts(EBs)(MicchelliandPerrimon,
2006;OhlsteinandSpradling,2006,2007).ISCsareonlymitotic
cells(MicchelliandPerrimon,2006;OhlsteinandSpradling,2006,
2007),andseveralconservedsignalingpathwaysregulate
prolifer-ationofISCs,suchastheepidermalgrowthfactorreceptor(EGFR),
WntJanuskinase(JAK)/signaltransducerandactivatorof
transcrip-tion(STAT),c-JunN-terminalkinase(JNK),Hippo,PVR/PVF2and
InR/TORpathways(Beebeetal.,2009;Biteauetal.,2008;Biteau
etal.,2010;Choietal.,2008;JiangandEdgar,2009;Jiangetal.,
2011;Jiangetal.,2009;O’Brienetal.,2011;Renetal.,2010;Xu
etal.,2011)
Previous studies have reported age-associated increases in ISChyperproliferationandmis-differentiation,leadingto intesti-nal hyperplasia (Biteau et al., 2008; Choi et al., 2008; Park
et al., 2009) Recently, we reported that foci of the DNA dou-blestrandbreakmarkerDrosophilaorthologof␥H2AX(␥H2AvD) and theoxidative DNA damage marker8-oxo-dG, accumulated with age and in response to oxidative stress in ISCs (Park
et al., 2012) We also reported that centrosome amplification
is increased in ISCs that were aged or exposed to oxidative stress(Park etal.,2014).Basedonthesedata,Drosophila midgut ISCs may be a suitable model to evaluate the effects of anti-cancer drugs on tissue-resident stem cell aging in vivo We recentlyreportedthatmetformininhibitsage-related accumula-tionofDNAdamageinDrosophilaISCsandhyperplasia(Naetal., 2013)
Inthepresentstudy,weinvestigatedtheeffectsofmetformin
oncentrosomeamplificationinDrosophilaISCsandthemechanism
ofitsanti-cancereffect.Ourresultsshowedthatmetformin pre-ventsage-andoxidativestress-inducedcentrosomeamplification
inDrosophilamidgutISCs,whichiscorrelatedwiththeinhibition
ofDNAdamageaccumulationviadown-regulationoftheAKT/TOR signalingpathway
2.1 Flystock Fly stocks were maintained at 25◦C on standard food under a ∼12h/12h light/dark cycle Food consisted of 79.2% water, 1% agar, 7% cornmeal, 2% yeast, 10% sucrose, 0.3% bokinin, and 0.5% propionic acid To avoid larval over-population, 50–60 adult flies per vial were transferred to new food vials every 2–3 days Oregon-R (OR) was used
as wild type Catn1/TM3 (#4014), UAS-InR (#8248), UAS-AKT (#8191), UAS-Rheb (#9688), UAS-Raptor (#53726) and UAS-S6KSTDE (#6913) were acquired from Bloomington Drosophila Stock Center (Indiana University, Blooming-ton, IN, USA) UAS-PTENRNAi (#101475) and UAS-d4E-BPRNAi
(#100739) were obtained from the Vienna Drosophila RNAi Center (Vienna, Austria) Temperature-inducible Su(H)GBE-lacZ; esg-Gal4:tub-Gal80ts,UAS-GFP/CyO (esgts>GFP) was kindly provided by Benjamin Ohlstein (Ohlstein and Spradling, 2007) Catn1/+ flies were obtained from a cross of OR males and Catn1/TM3 females The esgts>GFP/+, esgts>GFP+InR, esgts>GFP+PTENRNAi, esgts>GFP+AKT, esgts>GFP+Rheb, esgts>GFP+Raptor,esgts>GFP+d4E-BPRNAi,andesgts>GFP+S6KSTDE
flieswere obtainedfrom a cross of esgts>GFP females and OR, UAS-InR,PTENRNAi,UAS-AKT,UAS-Rheb,UAS-Raptor,d4E-BPRNAi,and UAS-S6KSTDEmales
esg ts > GFP + InR, esg ts > GFP + PTEN RNAi , esg ts > GFP+AKT, esg ts > GFP + Rheb, esg ts > GFP + Raptor, esg ts > GFP + d4EBP RNAi , and esg ts > GFP + S6K STDE flies with (black bars) or without (gray bars) metformin feeding for 7 days Metformin treatment flies reduced mitotic ISCs in esg ts > GFP + InR (21–9.7), esg ts > GFP + PTEN RNAi (38–20), esg ts > GFP + AKT (35–15), esg ts > GFP + Rheb (23–6), esg ts > GFP + Raptor (16–8), esg ts > GFP + d4E-BP RNAi (18–7), and esg ts > GFP + S6K STDE flies (16–5) The number in parentheses indicate PH3 + cell per gut.
N is the number of observed guts and n is the number of observed PH3-positive cells (C) The frequency of supernumerary centrosome (>2) per mitotic ISC in guts The centrosome numbers were counted in mitotic ISCs from 9-day-old esg ts > GFP, esg ts > GFP + InR, esg ts > GFP + PTEN RNAi , esg ts > GFP + AKT, esg ts > GFP + Rheb, esg ts > GFP + Raptor, esg ts > GFP + d4EBP RNAi , and esg ts > GFP + S6K STDE flies with (black bars) or without (gray bars) metformin feeding for 7 days Metformin treatment flies reduced the number of mitotic ISCs with supernumerary centrosomes in esg ts > GFP + InR (19–3%), esg ts > GFP + PTEN RNAi (17–8%), esg ts > GFP + AKT (17–5%), esg ts > GFP + Rheb (16–7%), esg ts > GFP + Raptor (24–8%), esg ts > GFP + d4E-BP RNAi (16–4%), and esg ts > GFP + S6K STDE flies (22–2%) The number in parentheses indicate abnormal ␥-tubulin + cell (>2) per PH3 + cell (%) N is the number of observed guts and n is the number of observed ␥-tubulin-positive cells (D) The frequency of mitotic ISCs with supernumerary centrosomes per gut in 9-day-old esg ts > GFP, esg ts > GFP + InR, esg ts > GFP + PTEN RNAi , esg ts > GFP + AKT, esg ts > GFP + Rheb, esg ts > GFP + Raptor, esg ts > GFP + d4EBP RNAi , and esg ts > GFP + S6K STDE fly with (black bars) or without (gray bars) metformin feeding for 7 days Metformin treatment also reduced the number of mitotic ISCs with supernumerary centrosomes per gut in esg ts > GFP + InR (3.7–0.5), esg ts > GFP + PTEN RNAi (7–1.6), esg ts > GFP + AKT (6–0.9), esg ts > GFP + Rheb (3.5–0.7), esg ts > GFP + Raptor (4.5–0.9), esg ts > GFP + d4E-BP RNAi (3–0.6), and esg ts > GFP + S6K STDE
flies (3–0.3) The number in parentheses indicate abnormal ␥-tubulin + cell (>2) per gut N is the number of observed guts The error bar represents standard error p-values were calculated using Student’s t-test (E) Cryosectioned guts from 9-day-old esg ts > GFP + InR (b and j), esg ts > GFP + PTEN RNAi (c and k), esg ts > GFP + AKT (d and l), esg ts > GFP + Rheb (e and m), esg ts > GFP + Raptor (f and n), esg ts > GFP + d4EBP RNAi (g and o), and esg ts > GFP + S6K STDE (h and p) flies with or without 5 mM metformin feeding for 7 days were stained with rhodamine-phalloidin (red, actin, indicating visceral muscle), anti-GFP (green), and DAPI (blue) (a–h, without metformin; i–p, with 5 mM metformin) Original magnification is 400×.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129
130
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
Trang 5ARTICLE IN PRESS
G Model
MAD 10767 1–11
H.-J Na et al / Mechanisms of Ageing and Development xxx (2015) xxx–xxx 5
Fig 3. Inhibitory effect of metformin on DNA damage accumulation by activation of TOR signal pathway in midgut ISCs/EBs (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(A) Guts from 9-day-old esg ts > GFP (a–a’ and i–i’), esg ts > GFP + InR (b–b’ and j–j’), esg ts > GFP + PTEN RNAi (c–c’ and k–k’), esg ts > GFP + AKT (d–d’ and l–l’), esg ts > GFP + Rheb (e–e’ and m–m’), esg ts > GFP + Raptor (f–f’ and n–n’), esg ts > GFP + d4EBP RNAi (g–g’ and o–o’), and esg ts > GFP + S6K STDE (h–h’ and p–p’) flies without (a–h’) or with (i–p’) 5 mM metformin feeding for 7 days were stained with anti-␥-H2AvD (red), anti-GFP (green), and DAPI (blue) a’, b’, c’, d’, e’, f’, g’, h’, i’, j’, k’, l’, m’, n’, o’ and p’ indicates enlarged ␥H2AvD staining images Arrowheads indicate ␥H2AvD-positive and GFP-positive cells Original magnification is 400× (B) Guts from 9-day-old esg ts > GFP (a–a’ and i–i’), esg ts > GFP + InR (b–b’ and j–j’), esg ts > GFP + PTEN RNAi (c–c’ and k–k’), esg ts > GFP + AKT (d–d’ and l–l’), esg ts > GFP + Rheb (e–e’ and m–m’), esg ts > GFP + Raptor (f–f’ and n–n’), esg ts > GFP + d4EBP RNAi (g–g’ and o–o’), and esg ts > GFP + S6K STDE (h–h’ and p–p’) flies 5 mM metformin feeding for 7 days were stained with anti-8-oxo-dG (red), anti-Arm (green), and DAPI (blue) a’, b’, c’,
Trang 62.2 Flygenotypes
Fig.1A–D:+;+;+/+.+;+;Catn1/+
Fig.2A–E,Fig.3A–D,andSupplementaryFig.S1:
Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/+;+/+
Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/UAS-InR;+/+
Su(H)GBE-lacZ; esg-Gal4:tub-Gal80ts,UAS-GFP/UAS-PTENRNAi;
+/+
Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/UAS-Akt1;+/+
Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/+;UAS-Rheb/+
Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/UAS-Raptor;+/+
Su(H)GBE-lacZ; esg-Gal4:tub-Gal80ts,UAS-GFP/ UAS-d4E-BPRNAi;
+/+
Su(H)GBE-lacZ; esg-Gal4:tub-Gal80ts,UAS-GFP/+;
UAS-S6k.STDE/+
Fig.4AandB:+;+;+/+.+;+;Catn1/+
Fig.4 andD:Su(H)GBE-lacZ;esg-Gal4:tub-Gal80ts,UAS-GFP/+;
+/+
2.3 Temperature-controlledexpression
Fortransgeneexpressionatspecificdevelopmentalstages,the
Gal80tstechniquewasused(McGuireetal.,2004).Theflieswere
setupand maintainedat22◦Cuntiladulthood.After
maintain-ingthefliesat29◦Cfor7days,themidgutsweredissectedand
analyzed.Genotype-by-environment(GxE)interactionshavebeen
known(Lachanceetal.,2013;Lewontin,2000).AlthoughtheG×E
interactionscouldnottobecontrolled,toaddressapossibilityof
phenotypiceffectsduetodifferencesingeneticbackground,flies
wereassayedwithoutthechangeintemperature(at22◦C)asa
par-tialcontrol.Intheexperimentsat22◦C,weobservednophenotypic
effectduetodifferencesingeneticbackground(SupplementaryFig
S1)
2.4 Metforminfeedingassay
Seven-day-old wild type flies, 38-day-old wild type flies,
and 7-day-old Catn1 mutant flies were fed 5mM metformin
(Sigma–Aldrich,St.Louis,MO,USA;workingconcentration)mixed
instandardfoodfor7daysat25◦C.Two-day-oldesgts>GFPflies
werefed5mMmetforminmixedinstandard foodfor7daysat
29◦C Fliesweretransferredtonewmetformin-containingfood
vialsevery2–3days
2.5 Paraquatfeedingassay
Seven-day-old wild type flies pre-treated with 5mM
met-forminfor6dayswerefed10mMparaquat(methylviologen,PQ,
Sigma–Aldrich)instandardmediafor18–20hat25◦C.Themidgut
gutsoftheflieswereanalyzedbyimmunostaining
2.6 Cryosection
Themidguts were dissected, fixedin 4% para-formaldehyde
for 1h at room temperature and infiltrated with 20% sucrose
overnightat4◦C.Afterflash-freezinginTissue-Tekoptimal
cut-tingtemperature(OCT)medium(SAKURA,Tokyo,Japan),sections
(10M)werecutonaCryostat(LeicaCM1850,LeicaMicrosystems,
GmbH,Wetzlar,Germany)at−20◦C.Sectionswerethenblocked
in5%BSAfor1handincubatedovernightwithprimaryantibody Aftertreatmentwithsecondaryantibodyconjugatedtofluorescent dye,samplesweremountedwithVectashield(VectorLaboratories, Burlingame,CA,USA)onmicroscopeslide(ThermoFisherScientific Inc.,Waltham,MA,USA)andanalyzedusingaZeissAxioskop2plus microscope(CarlZeissInc.,Gottingen,Germany)
2.7 Immunochemistry Intactadult guts weredissected, fixedat roomtemperature for 1h in 4%para-formaldehyde (Sigma–Aldrich), washed with PBST[0.1%TritonX-100inphosphate-bufferedsaline(PBS)],and incubatedovernightwithprimaryantibodyat4◦Cafter1hof incu-bationat 25◦C The sampleswere then incubated for 2h with secondaryantibodiesat25◦C,washedinPBST,mountedwith Vec-tashieldand analyzedusing aZeiss Axioskop 2plusmicroscope (CarlZeissInc.)
2.8 Antisera Antibodiesweredilutedasfollows:rabbitanti-phospho-histone H3(PH3,mitoticISCmarker),1:1000(MillporeCorporation, Bil-lerica, MA, USA); mouse anti-GFP, 1:1000 (Molecular Probes, Eugene, OR, USA); rat anti-GFP, 1:1000 (Nacalai Tesque Inc., Kyoto,Japan); rabbit anti-␥H2AvD, 1:1000 (Rockland Immuno-chemicals Inc., Gilbertsville, PA, USA); mouse anti-␥-tubulin, 1:500 (Sigma–Aldrich); mouse anti-8-oxo-dG, 1:100, (Trevigen, Gaithersburg,MD,USA);mouseanti-Delta,1:100,mouseanti- -gal, 1:100 (DevelopmentalStudies Hybridoma Bank, Iowa City,
IA,USA); and rabbit anti-phospho-4E-BP1 (T37/46),1:100 (Cell SignalingTechnologies, Beverly,MA,USA) For thedetection of visceralmuscle,weusedrhodamine-phalloidin1:300,(Molecular Probes).SecondaryantibodiesincludedCy3-conjugatedgoat anti-mouse, FITC-conjugated goat anti-rabbit, FITC-conjugated goat anti-mouse, FITC-conjugated goat anti-rat,Cy3-conjugated goat anti-rabbitandgoatanti-rabbitAlexaFluor®647(JacksonImmuno Research,WestGrove,PA,USA);usedata1:500dilution
2.9 Quantitativeanalysis
ToquantitativelyanalyzePH3-positivecells,thenumberof PH3-positive cells in thewhole gut was counted To quantitatively analyzecentrosomeamplification,thenumberof␥-tubulinstained spotsperPH3-positivecellinthewholemidgutswasdetermined
ToquantitativelyanalyzeDelta-positivecells,Su(H)-positivecells andp4E-BP-positivecells,thenumbersofcellswerecountedin themicroscopicfieldsatamagnificationof400×oftheposterior midgut.Quantifieddataareexpressedasthemean±SE.Significant differenceswereidentifiedusingtheStudent’sttest.SigmaPlot 10.0(SystatSoftwareInc.,SanJose,CA,USA)wasusedforanalysis
ofstandarderror
2.10 QuantificationofH2AvDand8-oxo-dGfluorescence The␥H2AvDand8-oxo-dGimageswerecapturedatthesame exposuretimeineachexperimentusingamicroscopewiththeAxio VisionRel4.8program(CarlZeissInc.).WeusedAdobePhotoshop
d’, e’, f’, g’, h’, i’, j’, k’, l’, m’, n’, o’ and p’ indicates enlarged 8-oxo-dG staining images Original magnification is 400× (C) Graph showing the average fluorescence intensity of
␥H2AvD in GFP-positive cells in 9-day-old esg ts > GFP, esg ts > GFP + InR, esg ts > GFP + PTEN RNAi , esg ts > GFP + AKT, esg ts > GFP + Rheb, esg ts > GFP + Raptor, esg ts > GFP + d4EBP RNAi , and esg ts > GFP + S6K STDE flies without or with 5 mM metformin feeding for 7 days N is the number of observed guts and n is the number of observed cells The number of observed cells were 8–20 per gut (D) Graph showing average fluorescence intensity of 8-oxo-dG staining in small cells from 9-day-old esg ts > GFP, esg ts > GFP + InR, esg ts > GFP + PTEN RNAi , esg ts > GFP + AKT, esg ts > GFP + Rheb, esg ts > GFP + Raptor, esg ts > GFP + d4EBP RNAi , and esg ts > GFP + S6K STDE flies without or with 5 mM metformin feeding for 7 days N is the number
of observed guts and n is the number of observed cells The number of observed cells were 7–21 per gut The error bar represents standard error p-values were calculated using Student’s t-test.
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202 203 204 205 206 207 208
209
210 211 212 213 214 215 216 217
218
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
236
237 238 239 240 241 242 243 244 245 246 247
248
249 250 251
Trang 7ARTICLE IN PRESS
G Model
MAD 10767 1–11
H.-J Na et al / Mechanisms of Ageing and Development xxx (2015) xxx–xxx 7
Fig 4.Inhibitory effect of metformin on age-related TOR activity in age- and oxidative stress-related midguts (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(A) Guts from 14-day-old wild type flies (a–a” and d–d”), 45-day-old wild type (b–b” and e–e”) and 14-day-old Cat n1 mutant flies (c–c” and f–f”) with-out (a–c”) or with (d–f”) 5 mM metformin feeding for 7 days were stained with anti-p4E-BP (green), anti-Delta (red) and DAPI (blue) a’, b’, c’, d’, e’ and f’ indicates enlarged Delta staining images a”, b”, c”, d”, e” and f” indicates enlarged p4E-BP staining images Arrowheads indicate p4E-BP-positive
Trang 8USA)tomeasurethefluorescencelevelof␥H2AvDand8-oxo-dG
foci.Thefluorescencelevelwasmeasuredwithinthenucleusbased
ontheboundariesdefinedusingquickselectiontoolofPhotoshop
CS5.1fromtheDAPIchannel.Themeanfluorescencewasanalyzed
afterexclusionofthemeanofthebackgroundregion(fromtwospot
excludingthenucleusportionintheposteriormidgut).The
fluo-rescencemeanofbackgroundregionwasnotsignificantlydifferent
withsecondaryonlycontrol.Significantdifferenceswereidentified
usingtheStudent’sttest.SigmaPlot10.0wasusedforanalysisof
standarderror
3 Results
3.1 Inhibitoryeffectofmetforminonage-relatedcentrosome
amplificationinmidgutISCs
Weinvestigatedtheeffectofmetforminonage-andoxidative
stress-relatedcentrosomeamplificationinISCs.Age-and
oxida-tivestress-relatedcentrosomeamplificationwithsupernumerary
centrosomes(>2)hasbeenreportedinISCs(Parketal.,2014).In
thepresentstudy, weconfirmedthat centrosome amplification
increasedinmidgutISCsafteragingandoxidativestressexposure
Westainedcellswithanti-␥-tubulin,acentrosomemarker,and
anti-PH3,amarkerofmitoticcells(ISCs),andcountedthenumber
ofcellsdisplayingcentrosomeamplification.Supernumerary
cen-trosomeswereobservedin7%ofmitoticISCsin45-day-oldwild
typefliesandin9.4%ofmitoticISCsin14-day-oldCatn1mutant
flies,amodelofintrinsicoxidativestress(Choietal.,2008;Griswold
etal.,1993;Parketal.,2012),ascomparedto1.2%in14-day-old
wildtypeflies(Fig.1A(a–c”)andC).ThenumberofmitoticISCs
withsupernumerarycentrosomepergutwas1.63in45-day-old
wildtypefliesand3.1in14-day-oldCatn1mutantflies,as
com-paredto0.16in14-day-oldwildtypeflies(Fig.1D).Interestingly,
metformintreatmentreducedPH3-positivecellsandthenumberof
ISCswithsupernumerarycentrosomesby3.6%in45-day-oldwild
typeand3.4%in14-day-oldCatn1mutantflies(Fig.1A(e–g”),Band
C).ThenumberofmitoticISCswithsupernumerarycentrosomes
pergutwasreducedby0.56in45-day-oldwildtypefliesandby
0.83in14-day-oldCatn1mutantflies,whereastherewasnochange
in14-day-oldwildtypeflies(Fig.1D)
Toconfirm that metformin inhibitsoxidative stress-induced
centrosome amplification in the midgut, we applied extrinsic
oxidative stress.Seven-day-old wildtype flieswithor without
5mMmetformintreatmentfor6daysweretreatedwith10mM
PQfor20h.BothmitoticISCsandmitoticISCswithsupernumerary
centrosomesincreasedinthePQ-treatedwildtypeflies,as
com-paredtocontrolflies(1.2–12%;Fig.1A(d–d”),BandC).Furthermore,
thenumberofmitoticISCswithsupernumerarycentrosomesper
gutincreasedinPQ-treatedflies(0.16–2.6;Fig.1D).However,in
metforminpre-treatedwildtypeflies,thenumberofPH3-positive
cellandmitoticISCswithsupernumerarycentrosomesdecreased
afterPQtreatment(1–4%;Fig.1A(h–h”),BandC).Furthermore,the
numberofmitoticISCswithsupernumerarycentrosomespergut
wasreducedafterPQtreatment,ascomparedtoPQ-treatedflies
withoutmetforminpretreatment(2.6–0.5;Fig.1D)
These results indicated that metformin partially suppresses age- and oxidative stress-induced centrosome amplification in DrosophilamidgutISCs
3.2 Inhibitoryeffectofmetforminoncentrosomeamplificationin ISCsofmidgutwithISC/EB-specificactivationofAKT/TOR signalingpathway
To determine if the inhibitory effect of metformin on age-relatedcentrosomeamplificationisassociatedwiththeAKT/TOR pathway, we overexpressed componentsof the AKT/TOR path-way in ISCs and EBs usingheat-inducible esg-Gal4;tub-Gal80ts system (McGuire et al., 2004; Ohlstein and Spradling, 2006, 2007).ForISC-andEB-specificexpression,2-day-oldesgts>GFP, esgts>GFP+InR, esgts>GFP+PTENRNAi, esgts>GFP+AKT, esgts>GFP+Rheb, esgts>GFP+Raptor, esgts>GFP+d4E-BPRNAi, andesgts>GFP+S6KSTDEflieswerecultured at29◦Cfor 7days
In all cases, GFP-positivecells increased in thegut of the flies
in which theAKT/TOR pathwaywasactivated underesgts>GFP
as compared tothe control flies(Fig.2A(a–h)) The number of PH3-positivecellsincreasedin thegutofthefliesinwhichthe AKT/TOR pathway wasactivatedunder esgts>GFP as compared
to thecontrol flies(Fig 2B) The number of mitotic ISCs with supernumerarycentrosomesincreasedin thegutofthefliesin which theAKT/TOR pathwaywasactivatedunder esgts>GFPas comparedtothecontrol(Fig.2C).ThenumberofmitoticISCswith abnormalcentrosomes pergut increasedinthe gutof theflies
in which theAKT/TOR pathwaywasactivated underesgts>GFP
ascomparedtothecontrol(Fig.2D).Wealsoobservedintestinal hyperplasia with a multilayered epithelium in cross-sectioned guts of the fliesin which the AKT/TORpathway was activated underesgts>GFP(Fig.2Ea-h)
Compared to the non-treated group, metformin treatment reducedmitoticISCsandthenumberofmitoticISCswith super-numerarycentrosomesinthegutofthefliesinwhichtheAKT/TOR pathway was activated under esg>GFP (Fig 2A(i–p) and B–C) Metformin treatment alsoreduced the number of mitotic ISCs withsupernumerarycentrosomespergutin thegutoftheflies
in which the AKT/TOR pathway was activated under esg>GFP (Fig.2D).Furthermore,metformintreatmentreduced the multi-layeredepithelium in theflies in which theAKT/TOR pathway was activated under esgts>GFP as compared to untreated flies (Fig.2E(i–p)).Incontrast,metformintreatmentdidnotaffectthe intestinalmorphologyof9-day-oldesgts>GFPflies(Fig.2E(a)and (i))
Theseresultsindicatethatcentrosome amplificationandISC hyperproliferationincreased in ISCs byAKT/TOR pathway acti-vation Furthermore, metforminreduced TORpathway-induced increasesinISCproliferation,mitoticISCswithsupernumerary cen-trosomes,andmultilayeredepithelium
3.3 InhibitoryeffectofmetforminonDNAdamageaccumulation
byactivationofTORsignalpathwayinmidgutISCs/EBs Centrosomeamplificationisassociatedwithcellcyclearrest, particularlyduringG2-Mphase,duetoDNAdamage(Nigg,2002;
and Delta-positive cells (B) Graph showing the ratio of p4E-BP-positive cells to Delta-positive cells in 14-day-old wild type flies, 45-day-old wild type and 14-day-old Cat n1
mutant flies without (gray bars) or with (black bars) metformin (met) feeding The error bar is standard error p-values were calculated using Student’s t-test N is the number
of observed guts n is the number of observed Delta-positive cells The number of observed cells were 10–45 per gut (C) Guts of 10-day-old Su(H)GBE-lacZ; esg ts flies (a–a” and c–c”) and 40-day-old Su(H)GBE-lacZ; esg ts flies (b–b” and d–d”) without (a–b”) or with (c–d”) 5 mM metformin feeding were stained with anti-p4E-BP (green), anti--gal (red) and DAPI (blue) a’, b’, c’ and d’ indicates enlarged -gal staining images a”, b”, c” and d” indicates enlarged p4E-BP staining images Arrowhead indicate p4E-BP-positive and Su(H)-positive cells Original magnification is 400× (D) Graph showing the ratio of p4E-BP-positive cells to Su(H)-positive cells The numbers of p4E-BP-positive cells to Su(H)-positive cells were counted in 10-day-old Su(H)GBE-lacZ; esg ts flies and 40-day-old Su(H)GBE-lacZ; esg ts flies without (gray bars) or with (black bars) metformin (met) feeding N is the number of observed guts n is the number of observed Su(H)-positive cells The number of observed cells were 7–111 per gut The error bar is standard error p-values were calculated using Student’s t-test.
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305 306 307
308 309 310
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
353 354
355 356
Trang 9ARTICLE IN PRESS
G Model
MAD 10767 1–11
H.-J Na et al / Mechanisms of Ageing and Development xxx (2015) xxx–xxx 9
Xuetal.,1999).ThecorrelationbetweenDNAdamageand
centro-someamplificationwasassessed,consideringtheinhibitoryeffects
ofmetformin.Metforminreducedtheaccumulationof␥H2AvD,as
amarkerofDNAdamage,inthemidgutsofaging,oxidative
stress-induced,andAKToverexpressingflies(Naetal.,2013).Basedonthe
aboveobservation,weassessedwhetheractivationoftheAKT/TOR
signalpathwayinducedDNAdamage,andascertainedtheeffect
ofmetforminontheenhancementofDNAdamagecausedbyTOR
signalingpathwayactivationinmidgutISCs/EBs.The␥H2AvD
flu-orescencelevelofesg-positivecellsincreasedinthegutoftheflies
inwhichtheAKT/TORpathwaywasactivatedunderesgts>GFPas
comparedtothecontrolflies(Fig.3A(a–h’)andgraybarsin3C).The
8-oxo-dGfluorescencelevelalsoincreasedupto2–4.5foldinthe
gutofthefliesinwhichtheAKT/TORpathwaywasactivatedunder
esgts>GFPascomparedtocontrolflies(Fig.3B(a–h’)andgraybars
in3D)
However, metformin reduced ␥H2AvD fluorescence in
esg-positive cells by 20–60% in the gut of the flies in which the
AKT/TORpathwaywasactivatedunderesgts>GFPascomparedto
non-treatedflies(Fig.3A(i–p’)andblackbarsin3C).Inaddition,
comparedtotheuntreatedflies,metforminalsoreduced8-oxo-dG
fluorescenceby15–37%inthegutofthefliesinwhichtheAKT/TOR
pathwaywasactivatedunderesgts>GFP(Fig.3B(i–p’)andblack
barsin3D)
TheseresultsshowthatmetformincanreducetheDNA
dam-ageaccumulationthatresultsfromenhancedTORsignalinginthe
midgut
3.4 Inhibitoryeffectofmetforminonage-relatedTORactivityin
age-andoxidativestress-relatedmidguts
Werecentlyreportedthatmetformininhibitsage-andoxidative
stress-inducedincreaseofAKTactivityintheDrosophilamidgut
ISCs/EBs(Naetal.,2013).Toconfirmtheeffectofmetforminon
TORsignalinginmidgutISCs/EBs,p4E-BP,aTORactivitymarker
inadultmidgut,wasevaluatedbyimmunostaining.Thep4E-BP
expressionincreasedin89%ofDelta-positivecells(ISCs)in
45-old-daywildtypeand85%ofDelta-positivecellsin14-day-oldCatn1
mutantflies, andin 84%of Su(H)-positivecells (EBs)in
40-old-daySu(H)GBE-lacZflies,ascomparedtocontrolflies(Fig.4A(a–c”),
B, C(a–b”) and D) Metformin reduced the age-related increase
ofp4E-BPby16%ofDelta-positivecellsin45-old-daywildtype
and23%ofDelta-positivecellsin14-day-oldCatn1 mutantflies,
aswellasin37%ofSu(H)-positivecells(progenitorcells)in
40-old-daySu(H)GBE-lacZflies, ascompared tonon-treatedgroups
(Fig.4A(d–f”),B,C(c–d”)andD)
Thisresultindicatesthat theage-or oxidativestress-related
activationoftheTORpathwayinISCs/EBscanbeinhibitedby
met-formin
4 Discussion
Werecentlyreportedthatcentrosomeamplificationincreases
inDrosophilaISCswithage(Parketal.,2014).Inthepresentstudy,
wereportthattheinhibitoryeffectofmetforminoncentrosome
amplificationinDrosophilaISCsastheunderlyingmechanismofits
anti-cancereffect
The major findings of the current study are: (1) metformin
inhibits age-related centrosome amplification in midgut ISCs,
which is a common feature of many cancer cells (2)
Met-formininhibitsAKT/TORsignal-inducedcentrosomeamplification
inmidgutISCs,and(3)metformininhibitsAKT/TORsignal-induced
DNAdamageaccumulationinmidgutISCs
Weshowedthatmetforminreducedcentrosomeamplification
inmidgutISCs fromfliesundergoingagingand intrinsic(Catn1
mutant)andextrinsic(PQ)oxidativestresses.TheCatn1 heterozy-gousmutantfliesasamodelofintrinsicoxidativestressisbased
onpreviousreportsshowingagenedosage-dependenteffecton catalase activity(Griswold et al.,1993), higher ROS generation (Choiet al., 2008) and increased 8-oxo-dGand ␥H2AvD levels
inthemidguts (Park etal.,2012).Metforminhasemerged asa promisinganti-cancerdrug(Algireetal.,2012;EmamiRiedmaier
et al., 2013) However, the molecular mechanisms underlying itsanti-cancereffectsremainunclear.Centrosomeamplification leads to genomic instability, a hallmark of cancer cells and is involved in the initial stages of tumorigenesis (Leonard et al., 2013;Nakajimaetal.,2004;Nametal.,2010).Metforminactivates AMPKinadultDrosophila(Slacketal.,2012).Metforminhasbeen reportedtosuppressthephosphorylationofinsulin-likegrowth factorreceptor1(IGF1R)/InR,AKT,mTORandribosomalprotein (rpS6)(AljadaandMousa,2011;Owenetal.,2000).Upregulation
ofAKT/TORsignalingisassociatedwithage-relateddiseases,such
ascancer(Fengetal.,2005;Foster,2009;YangandMing,2012)
Werecentlyreportedthatmetformininhibitsage-andoxidative stress-associatedincreaseofAKTactivityintheDrosophilamidgut ISCsand progenitorcells(Naetal.,2013).In thepresent study,
weshowedthat p4E-BPexpression,a TORactivitymarker,was increasedinthemidgutofagedandoxidativestress-treatedflies, andthatmetforminreducedthiseffect
Wefurthershowedthatcentrosomeamplificationisincreased
by hyperactivation of the TOR signal-pathway in midgut ISCs, andthatmetforminreducesAKT/TORsignal-inducedcentrosome amplification.Inmammals,constitutiveactivationofAKThasbeen showntocausecentrosomeabnormalitiesandamplification(Nam
etal.,2010), andlossofPTEN,aninhibitoroftheAKTpathway,
isassociatedwithcentrosomeabnormalities(Leonardetal.,2013; Levineetal.,1998;Nametal.,2010).Therefore,ourdatasuggest thattheinhibitoryeffectofmetforminonage-relatedcentrosome amplificationinmidgutISCsismediatedbydown-regulationofthe AKT/TORpathwayinthemidgut.Basedontheseobservations,we proposethatmetforminexertsitsanti-cancereffectby suppress-ingcentrosome amplificationthrough aninhibition ofAKT/TOR signaling
Metformin has been also reported in mammalian cultured cells to inhibit TORkinase in Rag GTpases-dependent manner whichisTSC1/2-independentTORactivationpathway(Kalender
etal.,2010).RagGTpases-mediatedTORactivationisconservedin DrosophilaandRagproteinsregulatestarvationresponses(Efeyan
etal.,2012).Therefore,weshouldnoteapossibilitythatmetformin inhibitscentrosomeamplificationinRagGTpases-dependent man-ner.Metforminhasabeneficialeffectinpathogenicmoldinfection (Shirazietal.,2014).Metforminmodulatesmetabolismof micro-biotainC.elegans(Cabreiroetal.,2013).Ithasbeenknownthat microbiotaacceleratedysplasiainthegut(Brodericketal.,2014; Buchonetal.,2009).Whethertheinhibitoryeffectisdependent
onalteredmicrobiotacausedbymetforminisnotaddressedinthe presentstudy.Therefore,wecannotexcludeapossibilitythatthe inhibitoryeffectofmetforminoncentrosomeamplificationmaybe associatedwithalteredmicrobiotabyadministrationofmetformin Metforminhasbeenshowntohavephysiologicaleffectssimilarto thoseofdietaryrestriction(Shirazietal.,2014).Weobservedthat
inagreementwiththepreviousreport(Slacketal.,2012), concen-trationof5mMmetforminusedinourexperimentsdidnotdisrupt intestinalphysiologyinanalysesofflyexcreta(SupplementaryFig S2).However,inthepresentstudy,wecannotcompletelyexclude thepossibledietaryrestrictioneffectofmetformin.Whetherornot dietaryrestrictioncaninhibitscentrosomeamplificationwouldbe
animportantquestionthatwarrantsfurtherexploration
HowdoesmetforminactuallysuppresstheAKT/TORpathway? Metforminis knowntoactivate AMPK,whichis aninhibitorof mTOR(Owenetal.,2000).However,inapreviousstudy,weshowed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
Trang 10thatpAMPK islocalizedinenteroendocrinecells butnot inthe
ISCs/EBs(Naetal.,2013).Incontrast,pAKTactivityincreasesin
ISCs/EBswithageandoxidativestress,suggestingthatthe
suppres-siveeffectofmetforminontheAKT/TORpathwayisnotdirectly
associatedwithAMPKactivation.Metforminreducesintracellular
ROSlevels(Halickaetal.,2011).Itwasreportedthatmetformin
reducesthePQ-inducedROSproductioninanAMPK-independent
manner(Algireetal.,2012).TheAKT/TORpathwaypromotes
pro-teinsynthesisandcellgrowth,leadingtoROSproduction,thereby
increasingmitochondrialROSproduction(WellenandThompson,
2011).Therefore,metforminmaysuppresstheAKT/TORpathway
byreducingintracellularROSlevelsintheDrosophilamidgut
Furthermore, we showed that metformin inhibits AKT/TOR
signal-inducedDNA damage accumulationin midgutISCs
Sev-eralrecentstudieshavereportedarelationshipbetweenthelevel
of AKT/TOR signaling and that of DNA damage accumulation
PTEN-deficientcellshavebeenreportedtoshowincreasedDNA
damage(Mingand He,2012).TheAKThyperactivation leadsto
DNAdamageaccumulationinmidgutISCsvia␥H2AvD/8-oxo-dG
accumulation(Naetal.,2013).TherpS6mutantsarereportedto
showincreasedstainingof␥H2AXinmammals(Khalailehetal.,
2013).TheAKT/TORsignalingpathwayisanegativeregulatorof
autophagy.Itwasreportedthatalleliclossofbeclin1,theessential
autophagyregulator,increasesDNAdamageaccumulation(␥H2AX
foci)(Karantza-Wadsworthetal.,2007;Mathewetal.,2007)and
inducessupernumerarycentrosomes(Mathewetal.,2007), and
beclin1isproposedasabiomarkerofgoodhealth,basedonits
highlevelsinhealthycentenarians(Emanueleetal.,2014).Itwas
alsoreportedthatmicewithadeletionofAtg5andAtg7displayed
increased8-oxo-dGand␥H2AXfoci(Takamuraetal.,2011)
There-fore,AKT/TORsignalingcouldincreaseDNAdamageaccumulation
viainhibitingautophagy
Centrosomeamplificationcan beinducedby DNAdamaging
agents, includingionizing radiation(Inanc and Morrison,2011;
LevisandMarin,1963;Saladinoetal.,2009;Yihetal.,2006).We
alsoreportedcentrosomeamplificationinDrosophilaISCsby2Gy
irradiation(Pyoetal.,2014).Centrosomeamplificationis
associ-atedwithcellcyclearrest,especiallyduringG2-Mphase,dueto
DNAdamage(Nigg,2002;Xuetal.,1999).Althoughseveral
stud-ieshavereportedthatAKT/TORsignalingfactorsarelocalizedin
thecentrosome(Goshimaetal.,2007;Rossietal.,2007;Wakefield
etal.,2003),AKT/TORsignaling-inducedDNAdamage
accumula-tionmayalsobeamajorcauseofcentrosomeamplificationdueto
thealteredAKT/TORsignalpresentinsuchcases
In summary, the present data demonstrate that metformin
reducesage-,andoxidativestress-,andTORsignaling-induced
cen-trosome amplificationin Drosophila ISCs Our datasuggest that
metforminmaybeabeneficialanti-cancerdrugviaitsinhibition
ofDNAdamage-inducedcentrosomeamplificationby
hyperactiva-tionofAKT/TORsignaling.OurstudysuggeststhattheDrosophila
midgutisasuitablemodelsystemforinvivoevaluationof
anti-cancerdrugsinagingtissue-residentstemcells
Uncited references
Q5
CabreiroandGems(2013)andCognignietal.(2011)
Acknowledgements
WewouldliketothankBenjaminOhlsteinforhisgenerousgift
oftheflystrains.WewouldalsoliketothanktheDevelopmental
StudiesHybridomaBankfortheantibodiesandtheBloomington
StockCenterandViennaDrosophilaRNAiCenterfortheDrosophila
stocks.WethankProf.ByungP.Yu(UniversityofTexasHealth
Sci-enceCenteratSanAntonio,Texas)for invaluablecommentson
themanuscript This workwassupported bythe BasicScience Q6
References
Algire, C., Amrein, L., Zakikhani, M., Panasci, L., Pollak, M., 2010 Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase Endocr.
Related Cancer 17, 351–360.
Algire, C., Moiseeva, O., Deschenes-Simard, X., Amrein, L., Petruccelli, L., Birman, E., Viollet, B., Ferbeyre, G., Pollak, M.N., 2012 Metformin reduces endogenous reactive oxygen species and associated DNA damage Cancer Prev Res 5, 536–543.
Alimova, I.N., Liu, B., Fan, Z., Edgerton, S.M., Dillon, T., Lind, S.E., Thor, A.D., 2009.
Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro Cell Cycle 8, 909–915.
Aljada, A., Mousa, S.A., 2011 Metformin and neoplasia: implications and indications Pharmacol Ther 133, 108–115.
Alliouachene, S., Tuttle, R.L., Boumard, S., Lapointe, T., Berissi, S., Germain, S., Jaubert, F., Tosh, D., Birnbaum, M.J., Pende, M., 2008 Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation J Clin Invest 118, 3629–3638.
Amcheslavsky, A., Ito, N., Jiang, J., Ip, Y.T., 2011 Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells J.
Cell Biol 193, 695–710.
Andriatsilavo, M., Gervais, L., Fons, C., Bardin, A.J., 2013 [The Drosophila midgut as
a model to study adult stem cells] Int J Med Sci 29, 75–81.
Ashinuma, H., Takiguchi, Y., Kitazono, S., Kitazono-Saitoh, M., Kitamura, A., Chiba, T., Tada, Y., Kurosu, K., Sakaida, E., Sekine, I., Tanabe, N., Iwama, A., Yokosuka, O., Tatsumi, K., 2012 Antiproliferative action of metformin in human lung cancer cell lines Oncol Rep 28, 8–14.
Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., Raff, J.W.,
2008 Centrosome amplification can initiate tumorigenesis in flies Cell 133, 1032–1042.
Baur, D.M., Klotsche, J., Hamnvik, O.P., Sievers, C., Pieper, L., Wittchen, H.U., Stalla, G.K., Schmid, R.M., Kales, S.N., Mantzoros, C.S., 2010 Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a German primary care cohort Metab Clin Exp 60, 1363–1371.
Beebe, K., Lee, W.C., Micchelli, C.A., 2009 JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage Dev Biol 338, 28–37.
Berstein, L.M., 2012 Metformin in obesity, cancer and aging: addressing controversies Aging 4, 320–329.
Bettencourt-Dias, M., Glover, D.M., 2007 Centrosome biogenesis and function:
centrosomics brings new understanding Nat Rev 8, 451–463.
Biteau, B., Hochmuth, C.E., Jasper, H., 2008 JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut Cell Stem Cell 3, 442–455.
Biteau, B., Karpac, J., Supoyo, S., Degennaro, M., Lehmann, R., Jasper, H., 2010.
Lifespan extension by preserving proliferative homeostasis in Drosophila PLoS Genet 6, e1001159.
Broderick, N.A., Buchon, N., Lemaitre, B., 2014 Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology mBio 5, e01117–01114.
Buchon, N., Broderick, N.A., Chakrabarti, S., Lemaitre, B., 2009 Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila Genes Dev 23, 2333–2344.
Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cocheme, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., Gems, D., 2013 Metformin retards aging in C elegans by altering microbial folate and methionine metabolism.
Cell 153, 228–239.
Cabreiro, F., Gems, D., 2013 Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans EMBO Mol Med 5, 1300–1310.
Cantrell, L.A., Zhou, C., Mendivil, A., Malloy, K.M., Gehrig, P.A., Bae-Jump, V.L., 2010 Metformin is a potent inhibitor of endometrial cancer cell proliferation – implications for a novel treatment strategy Gynecol Oncol 116, 92–98.
Choi, N.H., Kim, J.G., Yang, D.J., Kim, Y.S., Yoo, M.A., 2008 Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor Aging Cell 7, 318–334.
Cognigni, P., Bailey, A.P., Miguel-Aliaga, I., 2011 Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis Cell Metab 13, 92–104.
D’Assoro, A.B., Lingle, W.L., Salisbury, J.L., 2002 Centrosome amplification and the development of cancer Oncogene 21, 6146–6153.
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545 546 547 548 549
550
551 552
553
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623