Table 1Flow diagram of all major methodological steps required to characterize sagebrush components, quantify change across years, relate change to changing precipitation and forecast fu
Trang 1jou rn al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / e c o l i n d
a U.S Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, United States
b InuTeq, Contractor to the USGS EROS Center, United States
c Natural Resource Ecology Laboratory and Department of Ecosystem Sciences, Colorado State University in Cooperation with U.S Geological Survey, Fort
Collins, CO, United States
d SGT, Contractor to the USGS EROS Center, United States
e U.S Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, United States
f U.S Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, United States
a r t i c l e i n f o
Article history:
Received 18 November 2013
Received in revised form
19 December 2014
Accepted 2 March 2015
Keywords:
Sagebrush ecosystem
Sage grouse
Remote sensing
Climate forecasting
Trend analysis
a b s t r a c t
Sagebrush(Artemisiaspp.)ecosystemsconstitutethelargestsingleNorthAmericanshrubecosystem andprovidevitalecological,hydrological,biological,agricultural,andrecreationalecosystemservices Disturbanceshavealteredandreducedthisecosystemhistorically,butclimatechangemayultimately representthegreatestfuturerisk.Improvedwaystoquantify,monitor,andpredictclimate-driven grad-ualchangeinthisecosystemisvitaltoitsfuturemanagement.WeexaminedtheannualchangeofDaymet precipitation(dailygriddedclimatedata)andfiveremotesensingecosystemsagebrushvegetationand soilcomponents(bareground,herbaceous,litter,sagebrush,andshrub)from1984to2011in south-westernWyoming.Baregrounddisplayedanincreasingtrendinabundanceovertime,andherbaceous, litter,shrub,andsagebrushshowedadecreasingtrend.Totalprecipitationamountsshowadownward trendduringthesameperiod.Weestablishedstatisticallysignificantcorrelationsbetweeneach sage-brushcomponentandhistoricalprecipitationrecordsusingasimpleleastsquareslinearregression Usingthehistoricalrelationshipbetweensagebrushcomponentabundanceandprecipitationina lin-earmodel,weforecastedtheabundanceofthesagebrushcomponentsin2050usingIntergovernmental PanelonClimateChange(IPCC)precipitationscenariosA1BandA2.Baregroundwastheonly compo-nentthatincreasedunderbothfuturescenarios,withanetincreaseof48.98km2(1.1%)acrossthestudy areaundertheA1Bscenarioand41.15km2(0.9%)undertheA2scenario.Theremainingcomponents decreasedunderbothfuturescenarios:litterhadthehighestnetreductionswith49.82km2(4.1%)under A1Band50.8km2(4.2%)underA2,andherbaceoushadthesmallestnetreductionswith39.95km2(3.8%) underA1Band40.59km2(3.3%)underA2.Weappliedthe2050forecastsagebrushcomponentvalues
tocontemporary(circa2006)greatersage-grouse(Centrocercusurophasianus)habitatmodelsto eval-uatetheeffectsofpotentialclimate-inducedhabitatchange.Underthe2050IPCCA1Bscenario,11.6%
ofcurrentlyidentifiednestinghabitatwaslost,and0.002%ofnewpotentialhabitatwasgained,with 4%ofsummerhabitatlostand0.039%gained.Ourresultsdemonstratethesuccessfulabilityofremote sensingbasedsagebrushcomponents,whencoupledwithprecipitation,toforecastfuturecomponent responseusingIPCCprecipitationscenarios.Ourapproachalsoenablesfuturequantificationofgreater sage-grousehabitatunderdifferentprecipitationscenarios,andprovidesadditionalcapabilitytoidentify regionalprecipitationinfluenceonsagebrushcomponentresponse
PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗ Corresponding author Tel.: +1 605 594 2714.
E-mail address: homer@usgs.gov (C.G Homer).
1 Work performed under USGS contract G13PC00028.
2 Work performed under USGS contract G10PC00044.
http://dx.doi.org/10.1016/j.ecolind.2015.03.002
1470-160X/Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
Trang 21 Introduction
Sagebrush (Artemisia spp.) ecosystems constitute the single
largestNorthAmericansemiaridshrubecosystem(Andersonand
Inouye, 2001) and provide vital ecological, hydrological,
bio-logical,agricultural,andrecreationalecosystemservices(Davies
etal.,2007;Connellyetal.,2004;Perforsetal.,2003).However,
disturbances suchas livestock grazing, exoticspecies invasion,
conversiontoagriculture,urbanexpansion,energydevelopment,
and other development have historically altered and reduced
these ecosystems (Leonard et al., 2000; Crawford et al., 2004;
Daviesetal.,2006,2007),causingalossintotalspatialextentof
about50%(Connellyet al.,2004;Schroederet al.,2004;Hagen
et al., 2007) Constant perturbations tothese systems are
dis-ruptingvital biological services, such as providing habitats for
numerous sagebrush-obligate species For example, ecosystem
decline has severely affected greater sage-grouse
(Centrocer-cusurophasianus; hereaftersage-grouse) populationsacrossthe
speciesrange(Connellyetal.,2004;Gartonetal.,2011),leaving
populationsthreatenedwithextirpationinsomehabitatswhere
theyhistoricallypersisted(Connellyetal.,2004;Aldridgeetal.,
2008)
Inadditiontotheimpactsofpastdisturbances,climatechange
mayultimatelyrepresentthegreatestfuturerisktothis
ecosys-tem(Neilsonetal.,2005;Bradley,2010;Schlaepferetal.,2012a,b)
Bothwarmingtemperaturesandchangingprecipitationpatterns
(suchasincreasedwinterprecipitationfallingasrain)willlikely
favorspeciesotherthansagebrush(WestandYorks,2006;Bradley,
2010) and increase sagebrush vulnerability tofire, insects,
dis-eases,andinvasivespecies(Neilsonetal.,2005;McKenzieetal.,
2004).For each 1◦C increasein temperature, 12%of sagebrush
habitatis predictedtobereplacedbywoodyvegetation(Miller
et al.,2011).Semiarid lands suchas sagebrushecosystems are
especiallyvulnerabletoprecipitationchangesbecauseoflowsoil
moisturecontent (Reynolds et al., 1999; Weltzin et al., 2003)
Variations in precipitation and temperature strongly influence
aridandsemiaridplantcomposition,dynamics,anddistribution
because water is often the most limiting resource to
vegeta-tion abundance (Branson et al., 1976; Cook and Irwin, 1992;
Pelaezetal.,1994;Ehleringeretal.,1999;Reynoldsetal.,2000)
Anysubstantial changes in global or regional climate patterns
that influence precipitation regimes can put these ecosystems
atsubstantialrisk (Weltzinet al.,2003; Bradley, 2010)by
fun-damentally altering biome properties and ecosystem structure
(Brownetal.,1997).Developingabetterunderstandingof
poten-tial ecosystem component distribution and temporal variation
under future precipitation scenarios can provide critical
infor-mation to manage these lands Specifically, information about
long-term variations of sagebrush ecosystem components can
determinethepotentialrelationshipbetweenmagnitudesof
com-ponentchangeandtheregionalclimatebyusinginformationabout
long-termspatiotemporalvariationsinsagebrushecosystem
com-ponents
Remotesensingimagesinterpretedintofractionalvegetation
andsoilecosystemcomponentsofferawaytoquantifyand
region-alizesubtle climateprocess impacts onvegetationchange in a
sagebrushecosystemacrosstime(Xianetal.,2012a,b;Homeretal.,
2013).ThisprocesscandrawontheLandsat(LS)archive,which
offersanespeciallyrichsourceofremotesensinginformation
capa-bleofexploringhistorical patternsbackto1972,usingaglobal
recordofmillionsofimagesoftheEarth(Lovelandand Dwyer,
2012).The multispectral capabilitiesand 30-m resolution ofLS
arewellsuitedfordetectingandquantifyingarangeofvegetation
attributes,aswellasfordetectinggradualchangeandthe
under-lyingecologicalprocesses(Vogelmannetal.,2012;Homeretal.,
2013)
Whenexaminingclimatechangeimpactsonecosystem compo-nentsextrapolatedfromrelativelyhighresolutionremotelysensed information,acommonchallengeisthedifferenceinspatial reso-lutionofremotelysensedproductscomparedtoclimatedata.In ordertomakeaneffectivecomparison,rescalingofclimatedata
tobettermatchthehigherresolutionremotesensingproductsis necessary.Thisrescaling(calleddownscaling)ofclimate informa-tionsuchasprecipitationdatacanprovideforfinerscaleanalysis
ofsmallerregions(Hijmansetal.,2005;Wangetal.,2012).For his-toricalprecipitation,havingthelongertemporalrecordsavailable
infiner spatialscaleproductsprovidesadditionalopportunities fordefining therelationshipbetweenclimatechangeand sage-brushecosystemchange.Specifically,thereleaseofDaymetdaily griddedsurfaceclimatedata(ThorntonandRunning,1999) pro-videshistoricaldailyprecipitationdataat1-kmspatialresolution withopportunitytoexploreregionalscalelinksofclimatechange
toobservedecosystemchange.Linearregressionanalysisisone approachthathasbeenwidelyusedtolinkclimatedatatoremote sensingderivedvegetationconditionforlargeareabiomassand cropyieldpredictions(Quarmbyetal.,1993;Prasadetal.,2007) Forfutureprecipitationprojections,advancesinclimate fore-castingalsocontinuetoevolve,withtheuseofatmosphericgeneral circulation models (GCMs).GCMs are commonly used for sim-ulating atmospheric conditions and subsequent future climate response.TheIntergovernmentalPanelonClimateChange(IPCC) Fourth Assessment Report providesclimate change projections contributedfromdifferentGCMs(IPCC,2007).However,GCMsused
inclimatechangeexperimentsorseasonalforecastshaveatypical spatialresolutionofafewhundredkilometersforeachcelland thuscanpoorlyrepresentregionalclimateanalysis(Hannahetal.,
2002).GlobalGCMoutputscanbetoocoarsetoassessregional impactsonbiodiversity,ecosystemservices,speciesdistributions, andotherlandscaperelatedmatters(TaborandWilliams,2010; Salathéetal.,2007).Hence,differentdownscalingtechniqueshave beendeveloped toobtainregionalpredictionsoftheseclimatic changes(TaborandWilliams,2010;Fowleretal.,2007),but tech-niquescanvaryinaccuracyandoutputresolution.Becauseshifts
inprecipitationmayhaveagreaterimpactonecosystemdynamics thanrisingCO2ortemperature(Weltzinetal.,2003),downscaled GCMsthataccommodateregionalprocesses(e.g.,land-water inter-actionsandtopography)arekeywhenpredictingfuturesemiarid systemssuchassagebrush
Sagebrush ecosystems contain many wildlife species highly dependentuponthehabitattheyprovide.Wildlifemanagement
in thefuturewill requiretheability tounderstandandpredict future changesin habitatand associatedeffects onspecies and populations.Sage-grouse,asagebrushhabitatobligateunder con-sideration for listing as threatened or endangered, is an ideal candidate toevaluatetheeffects of future conditions based on futurehabitatscenarios.Quantitativemonitoringofhabitattrends has been identified as a key requirement to understand and reduceuncertaintyaboutclimatechangeimpactsonhabitatand associatedwildlifespecies(U.S.FishandWildlifeService,2013) Development of future habitat scenarios for sage-grouse could allowforapplicationtootherspeciesofconservationconcern Sea-sonalhabitatmodelshavebeendevelopedforsage-grouseacross thestateofWyoming(Fedyetal.,2014)usingsagebrush compo-nentsasbasehabitatlayers(seeHomeretal.,2012).Thisprovides
anidealopportunitytoevaluatehowclimate-inducedchangesin projectedfuturehabitatconditionswillaffectsage-grouse popula-tions
Wetheorizedthatdevelopmentsincapturinggradualchange acrosstimeusingremotesensingsagebrushcomponentsandthe downscalingofprecipitationcouldbecombinedtocorrelate pre-cipitationtrendswithcomponentabundanceacross28years.We furthertheorizedthattheseprecipitationtrendswouldinfluence
Trang 3couldbequantifiedintopotentialfuturecomponentscenariosand
thesubsequenteffectonsage-grousehabitat.Wefirstexamined
thelong-termresponse ofsagebrush ecosystemcomponentsto
trendsinhistorical precipitationvariation anddeveloped linear
modelsexplainingthishistoricalrelationship.Second,weapplied
thesemodelsto2050IPCC precipitationprojections toforecast
changesincomponentsthoughto2050,basedonthe28-yearslope
relationships Third,we usedpredicted2050sagebrush
compo-nentstoreapply sage-grousehabitatmodelstounderstandhow
sage-grousehabitatqualityandquantitymightchangeasaresult
ofprecipitationinducedchangesinsagebrushcomponents
2 Data and methods
2.1 Overview
Weexaminedtheannualchangeoffivesagebrushecosystem
components(hereafter called components) from 1984to2011
Wecharacterizedbareground,herbaceous(herbaceousness),
lit-ter,sagebrush,andshrubcoverascontinuousfieldsinonepercent
intervals.Weused2006and2007QuickBird(QB)satellitedatawith
coincidentfieldmeasurementstotrain2006LSsatellitedatato
createa2006baseanalysisyear.We thennormalizedhistorical
LSimageryeveryyearbackto1984,withcomparisontothe2006
basetofindareasthathadchangedspectrally(Table1)
Compo-nentpredictionswereupdatedinthesespectrallychangedareas
usingunchanged2006baseareasastraining sourcesin
regres-siontreealgorithms.Daymetprecipitationdataforthesameperiod
wasdownscaledtoa30mgrid,andregressionanalysisconducted
todeveloplinearmodelsbetweencomponentestimatesand
pre-cipitationmeasurements.WethenappliedtwoIPCCprecipitation
projectionstothelinearmodelstoproduce2050predictionsfor
eachcomponent.Sagebrushandherbaceousnesscomponentsfor
2050wereusedtodevelopsage-grousehabitatpredictionsfor2050
(Table1).Weexplaineachmethodologicalstepbysectionbelow
2.2 Studyarea
Our studyareaislocatedin southwesternWyoming,United
States(Fig.1 andoccupies8330km2.Itcontainsarangeof
topog-raphywithelevationsfrom1865to2651m,andslopesupto48◦
IthaspredominantlysandysoilsandcontainstheKillpeckersand
dunes.Vegetationisdominatedbysagebrushshrubland,especially
intheuplandareas,withsaltdesertshrubspeciesdominatingin
thelowlandandsandyareas.Herbaceousareasrangefrom
typ-ical grasses and forbs interspersed among shrubs to meadows
whereahighsub-surfacewatertableinthesandyareascreates
higherbiomassproductivityfortheseselectedareas.Shruband
herbaceousvegetationoccurinarelativelywiderangeofcanopy
amounts,withsparservegetationinthelowerelevationsofthe
southwesternportionofthestudyarea,anddenservegetationin
thehigherelevationnorthernportionsofthestudyarea.Thissite
ispredominantlypubliclandadministeredbytheBureauofLand
Management,withmostareashistoricallygrazedbycattleforthe
durationofthesummer.Wealsoselectedthisstudyareabecause
itcontainedoneoftheoriginaleightQBsitesusedforthe2006
Wyomingsagebrushcharacterization(calledsite1;Homeretal.,
2012;seeFig.1).Site1isthelocationwherecomprehensivetrend
analysisresearchhasbeenon-goingformanyyears(Homeretal.,
2013)
2.3 Baselinedatacollection
Severalkeystepswererequiredtocalculatecomponent
mea-surementsforthebaseyear(2006)andadditionalyearsbetween
1984and2011including:(1)collectandpre-processLSdataforall years;(2)calculatevegetationcontinuousfieldcomponentsforthe baseyear(2006);(3)normalizespectralreflectanceofallscenesto thebaseyear(2006);(4)compareyearlyLSimageswiththebase yeartoidentifypixelsthathavespectrallychanged;and(5) calcu-latenewcomponentvaluesforspectrallychangedpixelsfromeach year.Eachofthesestepsisdescribedindetailbelow
2.3.1 Imagecollectionandpre-processing
WeacquiredeightQBimages(64km2each)distributedacross
LSpath37/row31duringthesummerof2006and2007(Homer
etal.,2012).Foreachimage,fourbandsofmultispectral informa-tion(visibleblue,green,red,andnear-infrared)werecollectedat 2.4-mresolution.ImagerywasprojectedtoUniversalTransverse Mercator(UTM)usinga2×2bilinearre-samplingkernel Coin-cidentwithimagecollection,Homeretal.(2012,2013)collected fieldmeasurementsatthissiteforeachcomponent.Weestimated percentcoverforallcomponentsfromanoverheadperspective (satellite),whilestipulatingthatthetotalcoverofallvegetation andsoilcomponentssumto100%
Weacquiredleaf-on(June,July,orAugust)LSThematicMapper (TM)imageryfrom1984to2011forpath37/row31andprocessed usingtheautomatedLandsatProductGenerationSystem(LPGS)
WeselectedLSproductsbecausetheywerehistoricallyavailable forthelongestspan(1984–2011).LSimageswereconverted to at-sensor-reflectance,projectedtoAlbersEqualArea,andterrain corrected(Chanderetal.,2009;Xianetal.,2009;XianandHomer,
2010)
2.3.2 Componentbaseyearpredictions
Weproducedthespatialdistributionsoffivesagebrush com-ponents (bareground, herbaceous,litter, shrub,and sagebrush)
atonepercentintervalsforbothQBandLSusingregressiontree models.FortheeightQBscenes,groundsamplingdatawereused
inregressiontreemodels(crossvalidationcorrelationsacrossall componentsaverageda correlationof 0.86)toproduce compo-nentestimates(trainingprotocolsandaccuraciesaredescribedin Homer etal.(2012, 2013)).Inorder toensurea rigorous train-ingsample atthe LSscale,QB predictionsfromboth 2006and
2007werecombinedtocreatethe2006LSbase.Addingthesesites providedfullvariation incomponentrangesacrossanentireLS path/rowandensuredcomponentresultswererepresentativeof
alargerecosystemscaleclassificationapplication.LSbase predic-tionsweremodeledusingthreeseasonsofimagery,coupledwith
aDigitalElevationModel(DEM)andancillarydata(Homeretal.,
2012);modelcrossvalidationcorrelationsacrossallcomponents averagedacorrelationof0.92
2.3.3 Imagenormalization,changeidentification,andprediction Normalizing the spectral reflectance of the LS image dates ensures consistentcomparison,which is importantfor success-fultrendanalysis.We usedthefollowingprocedurestoidentify potentialchangeareasandthemagnitudeandtypeofchange.First, allcloud,cloudshadow,and snowand iceareaswereexcluded fromanalysis.Second,anormalizationprocedureusingalinear regressionalgorithmtorelateeachpixelofthesubjectimageto thereferenceimage(2006leaf-on)bandbybandwasconducted (Xian et al., 2012b) Third,potential change area identification wasaccomplishedusingachangevectorprocessthatcompared normalized imagesto thebase imageusing vegetationspecific thresholds to identify change (Xian et al., 2012b) Fourth, we assignedanewcomponentvaluetoLSchangeareasusinga regres-siontree(RT)modelingapproachsimilartothecreationofthe2006 baseline.WeidentifiedthecandidatetrainingdatawithintheLS basefortheRTestimatesbyexcludingpotentialchangepixelsvia thechangemaskandbinningtrainingpixelsusingnaturalbreaks
Trang 4Table 1
Flow diagram of all major methodological steps required to characterize sagebrush components, quantify change across years, relate change to changing precipitation and forecast future component and Sage grouse habitat predictions.
Forstudyareawidechangeanalysis,wecompiledpredictionsby
totalareaofchange(thearealproportionofthecomponentofeach
cellintoatotalareasummaryvalue)foreachcomponentforeach
yearacrossthestudyareaonareasthatwerenotmaskedinany year(pixelsthatwerepureacrossall28years).Wealsocalculated themeanyear-to-yearpercentchangeandlineartrend.The cor-relationofannualcomponentproportionsandannualwateryear meanvalueswerecalculatedusingaPearson’scorrelation 2.4 Climatedataprocessing,historicalclimatedata TheDaymetmodelisacollectionofalgorithmsandcomputer softwaredesignedtointerpolateandextrapolatedaily meteoro-logicalobservationstoproducegriddedestimatesofdailyweather parameters over the conterminous United States, Mexico, and southern Canada (Thornton et al., 1997) The required model inputsincludeadigitalelevationmodelandobservationsof maxi-mumtemperature,minimumtemperature,andprecipitationfrom ground-basedmeteorologicalstations TheDaymetmethodwas developedattheOakRidgeNationalLaboratoryandisbasedon
Trang 5Fig 1. Study area extent, located north of Rock Spring, WY, U.S.A The small magenta rectangle in the center of the study area is the location of site 1, where intensive monitoring work has been ongoing since 2006 (see Homer et al., 2013 ).
thespatialconvolution ofa truncatedGaussian-weightingfilter
runwiththesetofstationlocations.Sensitivitytothe
heteroge-neousdistributionofstationsincomplexterrainisaddressedwith
aniterativestationdensityalgorithm.Forouranalyses,we
consid-eredDaymetproductsofminimumand maximumtemperature,
precipitation,humidity,andincidentsolarradiationproducedon
a1km×1kmgriddedsurface.Wesummarizedthedailygridded
surfacesintomonthlytotals(precipitation)oraverages
(temper-ature),andthencompiledmonthlyprecipitationdataintowater
yeartotals(October–September)foreachyearbetween1984and
2011withinourstudyarea.Were-projectedalldatatomatchthe
mapprojectionusedforthesagebrushproductsandre-sampled
the1kmgridsto30-mspatialresolutionusingthebilinear
inter-polationmethod
2.5 Climatedataprocessing,futurepredictions
We obtainedfuture precipitationdata fromthe IPCCFourth
AssessmentReport(IPCC,2007).Weevaluated2050precipitation
datafromthreeglobalclimatemodelsincludingtheGeophysical
Fluid Dynamics Laboratory Coupled Climate Model 2.1
(GFDL-CM2.1;Delworthetal.,2004),theNationalCenterforAtmospheric
ResearchCommunityClimateSystemModel3.0(NCAR-CCSM3.0;
Collinsetal.,2005)and theUnitedKingdomMetOfficeHadley
CenterCoupledModel3.0(UKMO-HADCM3;Gordonetal.,2002)
Weevaluatedtwoofthefourfamilyscenarioswiththese
mod-els:A1B(economicgrowthwithbalanced energydevelopment)
andA2(highpopulationgrowth).Futureclimatechangesunder
theA1Band A2scenarios willresultin substantialincreasesin
surfacetemperature:1.7–4.4◦CforA1Band2.0–5.4◦CforA2.We
excludedtheothertwofamilyscenariosfromouranalysisbecause
downscaledprecipitationdatawerenotavailablefortheB2family andwejudgedtheB1familyrepresentedanunlikelyscenariofor thisarea.Weuseddownscaled30GCMmodelpredictionsforthe threemodelsmentionedaboveforbothfutureclimatechange sce-narios.ThesedownscaleddatawerecreatedusingtheDeltamethod (Hijmansetal.,2005;Ramirez-VillegasandJarvis,2010),whichwe downloadedfromtheCGIARResearchProgramonClimateChange, Agricultureand FoodSecurity(CCAFS; www.ccafts-climate.org)
Were-projectedthedatatothesameprojectionasthesagebrush componentsandresampledto30musingtheBilinearInterpolation method.Weorganizedtheoriginaldataintomonthlyprecipitation, whichwasthenrecompiledintoannualprecipitationandclipped
tofitourstudyarea
2.6 Futurecomponentchangepredictions
Wedevelopedfuturepredictionsforfivesagebrushcomponents
byfirstexploringhistoricaldatacorrelationsbetweenseveral cli-mateindicesandsagebrushcomponentstounderstandcorrelation potentialatthestudyareascale.Wethendevelopedtheclimate predictorthatbestpredictedsagebrushcovercomponentchange (annualprecipitation)asalinearmodelatthesinglepixelleveland subsequentlyappliedtheserelationshipstofutureclimate precip-itationscenarios.Thesestepsareoutlinedbelow
2.6.1 Linearregression Previous field experiments conducted in thenorthern Great Basin using rain shelters for different precipitation treatments suggested that the fractional cover of most sagebrush compo-nentshave a significantlinearresponse toannualprecipitation (Bateset al., 2006).In ourresearch, we conducted exploratory
Trang 6Table 2
Nesting and summer habitat logistic regression model coefficients and standard errors (in parentheses) used to predict effects of changes in sagebrush habitat components due to climate change in 2050 Many variables were included in the original models (see Fedy et al., 2014 ) These were also applied to future scenarios analyses developed here; however, only the sagebrush habitat components within those models were changed and are shown here.
a Mean cover of all sagebrush species estimated over a 564 m radius moving window.
b Mean cover of all sagebrush species estimated over a 45 m radius moving window.
c Standard deviation of mean sagebrush cover (all species) estimated over a 45 m radius moving window.
d Mean cover of all sagebrush species estimated over a 1500 m radius moving window.
e Mean cover of all sagebrush species estimated over a 3200 m radius moving window.
f Standard deviation of mean cover of all sagebrush species estimated over a 3200 m radius moving window.
g Mean cover of herbaceous vegetation estimated over a 564 m radius moving window.
h Standard deviation of mean cover of herbaceous vegetation estimated over a 564 m radius moving window.
correlationanalysisbetweenthestudyareameanfractionalcover
ofsagebrushcomponents(dependentvariable)andseveralclimate
indices(independentvariables),includingtotalannual
precipita-tion,annualmeantemperature,totalseasonalprecipitation,total
snowwaterequivalent,andmeanincidentsolarradiation.Because
thefractionalcoverofsagebrushcomponentsandannual(water
year)precipitationhadthehighestcorrelation,thiscomponentwas
selectedforfurtherdevelopment.Therefore,linearregression
mod-elsrelyingontheleastsquaresestimatorweredevelopedusingthe
fractionalcoverofthefivesagebrushcomponentsandannual
pre-cipitationatthepixellevel.Forallannualrecordsinapixellocation,
thelinearregressionapproachfitsastraightlinethroughthesetof
npointsthatminimizesthesumofsquaredresiduals(deviationof
observedandtheoreticalvalues):
whereXisanindependentvariable(e.g.,annualprecipitation),Y
isadependentvariable(sagebrushcomponent),bistheslopeof
thefittedline(equaltothecorrelationbetweenYandXcorrected
bytheratioofstandarddeviationsbetweenYandX),andaisthe
y-interceptterm
Fivelinearregressionanalyseswereconductedindependently
usingdatabetween1984and2011includingbaregroundcover
andannualprecipitation,herbaceouscoverandannual
precipita-tion,litter cover andannual precipitation,sagebrush cover and
annualprecipitation, andshrub cover andannual precipitation
Ournullhypothesisisthatthereisnosignificantlinear
relation-shipbetweenthe sagebrushcomponentsand precipitation.We
testedournullhypothesisusingatwo-sidedt-testforeach
com-ponent,whichcanrevealbothpositiveandnegativecorrelations
betweenXandYin Eq.(1).We evaluatedthep-valuefor three
significancelevels:0.05<p≤0.1,0.01<p≤0.05,andp≤0.01and
selected0.05<p≤0.1asthesignificancethreshold.Onlypixelsthat
hadsignificantpositiveornegativecorrelationswereretainedfor
calculating thefuture changeprediction at theindividual pixel
level.Forpixelswithnon-significantcorrelations,wedevelopeda
modifiedlinearregressionmodelbasedontheaverageslopevalue
ofallnon-significantpixels.Thisensuredthat extremechanges
infutureprecipitationvaluesoccurringovernon-significantpixel
areaswould still berepresentedin thefuturecomponent
fore-casts.Althoughthelinearmodelissimple,easilydeveloped,and
presentedareasonablestartingpoint,therearelimitationswith
usingthisapproach.Alinearmodelmaynotadequatelyrepresent
physicalprocessesofsagebrushcomponentsrespondingtoclimate variations
2.6.2 Futurechangeprediction Futurechangepredictionsforeachsagebrushcomponentwere performedusingcomponentspecificlinearregressionequations:
Yi,j(k,2050)=Yi,j(k,2006)+bi,j(k)(Xi,j(2050)−Xi,j(2006)) (2) whereiandjrepresentpixellocations,Yi,j(k,2050)representsthe fractionalcoverofthesagebrushcomponentkforapixellocated
atiandj,bi,j(k)isaslopeforthecomponentk,Xi,j(2050)isthe annualprecipitationfor2050,andXi,j(2006)istheannual precipi-tationfor2006.The2050annualprecipitationpredictionservesas theindependentvariableinEq.(2)toprojectthefractionalcoverof thefivesagebrushcomponentsto2050.Forpixelsthathave non-significantcorrelations(negativeforbaregroundandpositivefor othercomponents),ameanslopefortheentirestudyarea(all pix-els)isusedtoreplacebi,j(k)inEq.(2),forthatspecificcomponent Sincefutureprecipitationchangemaynotfollowtheexactsame patternsinareasthatexperiencesignificantcorrelations,theuse
ofmeanslopefornon-significantpixelsallowsimpactsofmore extremefutureprecipitationvaluesovernon-significantareasto
becapturedinthefuturecomponentprojections.Wedeveloped predictionsusingannualprecipitationamountsfromeachofthe twoclimatechangescenarios
2.7 Sage-grousehabitatmodelsand2050habitatpredictions Contemporarymodelsevaluatingsage-grousehabitat require-mentswererecentlydevelopedfor thestateofWyoming (Fedy
etal.,2014).Sage-grouseresponsetoanthropogenic,abiotic, ter-rain,andvegetationcharacteristicswasassessedusingGeneralized LinearModel (GLM)ResourceSelection Functions(RSFs; Manly
etal.,2002)appliedtotelemetrydatafrommultiplestudiesacross thestate.These modelspredict probabilityof selection forany givenpixel(30m)onthelandscape,andthiscontinuoussurface wassubsequentlythresholdedintoabinarysurfacedepicting habi-tatand non-habitatfor sage-grouse; seeFedy et al (2014) for details.Vegetationlayersevaluatedforsage-grousehabitat selec-tionwerethesamebaseyear(2006)sagebrushcomponentsused forclimateanalysespresentedhere,makingforrelativelysimple evaluationoffuturechanges insagebrushcomponentson sage-grouse habitatchange.Fedyetal (2014)developed modelsfor nesting,late-summer, andwinter, usingdifferentspatialextent
Trang 7Table 3
Total annual percent proportional cover change compiled as a total study area value, by component This metric was calculated using only valid pixel values cloud free in all
28 years If cloud cover precluded the inclusion of valid pixels from any year, that area was excluded from all years The resulting area represented here consisted of 39% of the study area (3288 km 2 ).
etal.,2014)
Intheoriginalstatewidesagebrushcomponentproducts,edge
matchinginLSoverlapzonesandstandardizationwasrequiredto
stitchtogethermodelsdevelopedforindividualLSscenes(Homer
etal.,2012).Ourtargetstudyareawaspartiallywithintheoverlap
zoneofLSPath37/Row31andPath37/Row32,soforthisstudywe
chosetodevelophistoricalclimateprojectionsbasedondatafrom
asinglescene(Path37/Row31).Thisallowedforconsistencywith
theclimateanalysesusingspectralinformationfromoneLSscene
overtime.Asaresult,wereappliedtheoriginalGLMsage-grouse
RSFhabitatmodelequationsusingbaselayercomponentvalues
foreachpixeldevelopedfromthesingleLSscenepresentedhere
Thisresultedinaconsistentsage-grousebaseyear(2006)
habi-tatmodeltobuilduponforprojections.Wefirstregeneratedthe
appropriatemodelcovariatesrequiredforthesage-grousemodel
usingthesamespatialextent(movingwindow)foundtobe
impor-tantintheoriginalsage-grousemodels.Forinstance,ifmeancover
ofbigsagebrush(Artemisiatridentatassp.)overa6.4kmradius
win-dowwasintheoriginalmodel(Fedyetal.,2014),wetookthenew
pixelestimatesforthe2006baseyeargeneratedfromthesingle
LSPath/Rowsagebrushcomponentmodelsandre-calculatedthe
meanvaluesoverthesamespatialextent.Thisallowedfor
reappli-cationofthemodelusingmodifiedinputs,generatingconsistent
andcompatiblemodelsthatidentifiedsage-grousehabitat
require-mentsfornestingandlatesummerintheoriginalbaseyou(2006)
Weappliedthethresholdingvalues usedintheoriginalmodels
todevelopabinaryhabitat/non-habitatbasemap.Original
habi-tatmodelsweredeveloped attwoscales(patchand landscape;
seeFedyetal., 2014), and coefficients forallsagebrush habitat
componentscontainedwithintheoriginalGLMlogisticregression RSFmodelresponsesareshowninTable2.Wefollowedthesame stepstodevelopthepredicted2050sage-grousehabitatmodels, simplysubstituting in2050habitatcomponent predictionsand generatingtheappropriatemovingwindowcovariateswhere nec-essary,allowingustogeneratehabitatpredictionmapsfor2050
3 Results
3.1 Historicalcomponentandprecipitationchangeand correlation
We measuredannual change in five sagebrush components (bareground, herbaceous, litter, sagebrush,and shrub) over 28 years (1984–2011)fromthebaseyearof 2006.Measuredareas neededtobeavailableinall28years(ifcloudcoveredinanyone year,thisareawasexcludedfromallyears)with40%ofthestudy area(3288km2)cloudfreeinallyears.Baregroundisbyfarthe mostdominantcomponentofthelandscapewithmeanproportion coverage of 59.1%, followed by litter at 16.16%, herbaceous at 13.56%,shrubat11.21%,andsagebrushat9.4%(Table3).When analyzedforvariationbetweenindividualyears,bareground dis-playedthehighestannualvariationwithameanannualchangeof 0.54%,andsagebrushthelowestat0.17%(Table3).Whenanalyzed acrossall28years,baregroundshowedanoverallincreasingtrend
inabundance, withherbaceousness,litter,shrub,andsagebrush showing a decreasing trend Litter displayed the most obvious decreasingtrend
We calculatedmeanannualwater yearprecipitationineach yearovertheentirestudyareafromDaymetobservations Pre-cipitation varied from a low of 125mm in 2001 to a high of
404mmin1986(Fig.2a).Overall,thereisadownwardtrendinthe
Trang 8Fig 2.Mean annual precipitation from 1984 to 2011 over the study area calculated from Daymet data by water year with the linear trend line (a), the average annual precipitation between 1984 and 2011 (b), and mean annual precipitation predicted from NCAR-CCSM3.0 under the A2 scenario for the year 2050 (c) The linear regression equation of mean annual precipitation displayed in (a) is expressed as y = -0.8761x + 275.71 in which x is the time and y is annual precipitation, with r 2 = 0.01 The white in (b) and (c) represent the areas without sagebrush cover.
historicalamountofprecipitationreceived(Fig.2a).Fig.2 shows
the1984–2011meanannualDaymetprecipitationforthestudy
areaandFig.2cshowsmeanannualprecipitationfortheyear2050
Theprecipitationissomewhatgreaterinthenortheastpartofthe
areathaninthesouthwest.Pearson’scorrelationsbetween
compo-nentstudyareameansandannualprecipitationstudyareameans
rangedfrom0.56 forherbaceous,to0.48forsagebrush,0.43for
shrub,0.42 forlitter,and0.38 forbareground Herbaceousand
sagebrushcorrelationvaluesweresignificantatthe0.01level,and
allotherssignificantatthe0.05level
3.2 2050componentforecasting
We excluded non-sagebrush component landscapes within
thestudyareafromfuturecomponentforecasting(areas
perma-nentlyconvertedtoagricultureandurbanlanduse),leaving91%
(7580km2)ofthestudyareafor analysis.We calculated future
change predictions for each sagebrush component 30-m pixel displayingasignificantlinearregression(p<0.1)resultbetween historicalcomponentandprecipitationchange.Mostpixelsdidnot haveasignificantlinearregressionandremainedunchangedinthe
2050predictions(Table4).Forbareground–precipitation regres-sion,thenumberofpixelsthathadnegativecorrelationswasabout threetimeslargerthanthenumberofpixelsthathadpositive cor-relations.Forothercomponents,twotothreetimesmorepixels hadpositivecorrelationsthanthosethathadnegativecorrelations Herbaceouscoverhadthelowestproportionofindividualpixels qualifyingfor futureupdatingat 22.3%,andlitterhad the high-estproportionofindividualpixelsqualifyingforfutureupdatingat 24.6%(Table4)
We evaluated2050 precipitationdata fromthree global cli-matemodels(GFDL-CM2.1,NCAR-CCSM3.0,andUKMO-HADCM3) acrosstwooffourfamilyscenarios(A1BandA2seeTable5).The NCAR-CCSM3.0modelpresentedthemostdivergentprecipitation
Table 4
The percentage of the total pixels that presented significant correlations (p < 0.1) to annual precipitation, listed by component These amounts include both positive and negative correlations Pixels with significant correlations had individual linear models developed to forecast each component, while pixels with non-significant correlations required a mean slope value from the entire study area.
Component % pixels with significant
positive correlation
% pixels with significant negative correlation
% pixels with both positive and negative correlations
% pixels with no significant correlations
Trang 9Table 5
The comparison of 2050 mean study area precipitation projections calculated for
two families of three IPCC models For comparison, the total mean study area
pre-cipitation historically from 1984 to 2011 was 263 mm.
Fig 3.Spatial distrubution of bare ground and shrub component prediction change
between 2006 and 2050 for the A1B scenario across the entire study area
Com-ponent reductions are represented in red and orange tones and increases in green
tones.
lin-earmodelingimplementation Theannualprecipitationin2050
predictedbyNCAR-CCSM3.0undertheA2scenarioisrepresented
inFig.2c.Thispredictioncaptures asimilarspatialdistribution
Fig 4.Spatial distrubtion of bare ground and shrub component prediction change between 2006 and 2050 for the A2 scenario across the entire study area Component reductions are represented in red and orange tones and increases in green tones.
patterntothehistoricalpatternalthoughthemagnitudeissmaller
in manyareas Whenforecastprecipitation amountsfrom IPCC scenarioswereinputintoequationsandcomponentsurfaces calcu-latedin2050,baregroundwastheonlycomponentthatincreased underboth future scenarios Bareground had anet increaseof 48.98km2 (1.1%) acrossthestudy areaunder theA1B scenario and a net increase of 41.15km2 (0.9%) under the A2 scenario (Table 6, Figs 3 and 4) The remaining components decreased under both future scenarios, with litter havingthe highest net reductionsunderbothscenarios(A1Bscenarioat49.82km2(4.1%), and the A2 scenario at 50.8km2 (4.2%)), and herbaceous the smallest net reductions under both scenarios (A1Bscenario at 39.95km2(3.8%),andtheA2scenarioat40.59km2(3.3%))(Table6, Figs.3and4)
Table 6
Positive and negative total component change amounts in km 2 for 2050 IPCC A1B and A2 scenario forecast change results compared to the 2006 component base predictions.
− change (km 2 ) + change (km 2 ) Net change (km 2 ) − change (km 2 ) + change (km 2 ) Net change (km 2 )
Trang 10Table 7
Total amount of study area that contained sage-grouse nesting and summer habitat in the 2006 base year and in 2050 using sagebrush components from two different climate scenarios (A1B and A2) Habitat losses are based on 2050 landscapes relative to identified habitat in the 2006 base year Habitat gains represent novel areas (pixels) in the
2050 landscape predicted to be suitable for sage-grouse, whereas habitat losses represent areas that were identified as habitat in 2006 but in 2050 are no longer habitat.
cov-eredroughly21%ofthesage-grousestudyarea(∼1669km2;see
Table7).Fornestinghabitat,the2050modelforIPCCA1Bhabitat
estimatesapplied tothesage-grousemodel predicteda loss of
Fig 5. Predicted changes in sage-grouse nesting habitat from 2006 to 2050 from climate scenerio A1B Changes are based on the original sage-grouse habitat models from
Fedy et al (2014) for the 2006 base year, which were then predicted to 2050 based on changes in sagebrush vegetation characteristics linked to the A1B climate projection scenario A small number of pixels changed to habitat in 2050 habitat (blue), which are difficult to see at the mapped scale The no habitat class represents areas where one
or more sage-grouse model data inputs were not available, preventing model prediction (For interpretation of the references to color in this figure legend, the reader is
355km2 ofadequate sage-grousehabitat,resulting inan 11.6% lossfromhabitatidentifiedin2006,andtheIPCCA2hadaloss
of∼361km2ofsage-grousehabitat,or11.8%(Table7,Fig.5).For summerhabitat,the2050modelforIPCCA1Bscenariospredicteda lossof∼67.5km2ofhabitatidentifiedin2006(∼4.0%loss),andthe IPCCA2hadalossof∼68.1km2ofhabitatidentifiedin2006(∼4.1% loss;Table7,Fig.6).InbothIPCCscenariosforeachlifestage,a smallnumberofpixelsacrossthestudyareaimprovedinhabitat quality,butthegaininidentifiedhabitatwaslessthan0.08km2