1. Trang chủ
  2. » Giáo án - Bài giảng

classical dynamics of the abelian higgs model from the critical point and beyond

8 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 1,64 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Composite objects, such as non- Abelian gauge fields localized on domain walls [11] and monopolesconfinedbyvortices [12]amongothers,ariseingauge theorieswithspontaneous symmetry breaking.I

Trang 1

Contents lists available atScienceDirect

www.elsevier.com/locate/physletb

Department of Physics, University of Athens, GR-15784 Athens, Greece

Article history:

Received 3 April 2015

Accepted 26 June 2015

Available online 2 July 2015

Editor: A Ringwald

WepresenttwodifferentfamiliesofsolutionsoftheU(1)-Higgsmodelina(1+1)dimensionalsetting leadingtoalocalizationofthegaugefield.Firstweconsiderauniformbackground(theusualvacuum), whichcorrespondstothefullyhiggsed-superconductingphase.Thenwestudythecaseofanon-uniform background intheform ofadomainwall whichcould berelevantly closetothe criticalpoint ofthe associated spontaneoussymmetrybreaking.Forbothcasesweobtainapproximateanalyticalnodeless and nodalsolutionsforthegaugefieldresultingasboundstatesofaneffectivePöschl–Tellerpotential createdby the scalarfield.The twoscenaria differonlyin thescale of thecharacteristic localization length.Numericalsimulationsconfirmthevalidityoftheobtainedanalyticalsolutions.Additionallywe demonstratehowakinkmaybeused asamediatordriving thedynamicsfromthe criticalpointand beyond

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3

1 Introduction

Solitons come in two “flavors” namely non-topological and

topologicalones Theirphysical meaning aswell as their

mathe-maticalpropertieshavebeenvastlystudiedintheliterature,both

in the context of field theories and cosmology but also in

con-densed matter physics Non-topological solitons are found as

lo-calized“lumps” [1], Q-balls [2]or oscillons [3]while topological

solitons may have the form of instantons [4], monopoles [5–7],

vortices [8,9] or domain walls [10] Composite objects, such as

(non-) Abelian gauge fields localized on domain walls [11] and

monopolesconfinedbyvortices [12]amongothers,ariseingauge

theorieswithspontaneous symmetry breaking.In manycases an

explicitanalytical solitonsolution of therespective theory is not

possible,andthepropertiesofsolitonsareobtainedbyperforming

numericalsimulations[13].Thelatterareusuallyaccompaniedby

someanalyticalapproximation[14]e.g.byconsideringthe

asymp-toticbehaviorofthefields

Thesimplesttopologicaldefectwithananalyticalexpressionis

adomainwall(aliaskink)in (1+1)dimensionsforasinglescalar

field,which isstudiedthoroughly inthesine-Gordon andthe φ4

model,andstillattractsinterest,seee.g.theveryrecentworksof

kink-kink interactions ofRefs [15,16] orof Ref [17] forkinksin

E-mail address:liakatsim@gmail.com (G.C Katsimiga).

a φ6 model.Domainwallsandtheir interactions are also consid-eredinsupersymmetrictheorieswheremorethanonescalarsare involved, andfamilies of such walls link various supersymmetric vacua[18,19].Kinksolutionsmayalsobeusedformodeling flux-ons [20] or describing phase-slipsin superconductors,where the phaseoftheorderparameterperiodicallydropsby2π inasingle point(seee.g.[21]orthemorerecentresultsof[22–24])

Animportantfeatureregardingtopologicaldefectsisthatthey may be used as a mechanism inducing localization Such exam-ples includethe localizationoffermions onakink [25,26],which constitutesa trapping mechanism forfermionic zero modes, and alsotheformationoflocalizedgaugebosonsonadomainwall[11]

withimplicationsintheprocessofdynamiccompactification.More recently the localizationof a spin-0 field [27] was induced by a kink-lumpsolutionoftwoscalarsleadingtoresonantbehavior rel-evanttogravityinwarpedspace–times[28]

Althoughlocalizedstructuresonanon-vanishingvacuumshare commonpropertieswith oscillonstrapped bytopological defects, thereisnolinkbetweenthesetwo differentsolutionsuptonow

In thepresentwork we will attempttoestablish such a connec-tion inthe framework of (1+1) dimensionalAbelian–Higgs [29, 30]model.Suchatheory,althoughsimple,candescribeboth non-topological (oscillon [31]) and topological (domain wall [10]) so-lutions As we will show below, both solutions (oscillons, kinks) generatean effectivePöschl–Teller[32,33]potential leadingtothe localizationofthe respectivegauge field.Additionally we provide

http://dx.doi.org/10.1016/j.physletb.2015.06.065

0370-2693/©2015 The Authors Published by Elsevier B.V This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) Funded by 3

Trang 2

awhole“family”ofgaugefield configurationsexhibitingnodesin

theirprofilesemergingasboundstatesoftheaforementioned

po-tential Thesenodal solutions are long livedandrobust andmay

beinterpretedasoscillonexcitations.Furthermoreweshowhowa

“moving”kinkmaydynamicallylocalizea gaugefield inthebulk

dependingonitsinitialenergy.Wearguethatthisprocesscanbe

interpretedintermsofthedynamicsnearthecriticalpointandwe

demonstratehowthetravelingkinkcandrivethepathwayfroma

globallysymmetric vacuumstate tothephase ofanon-vanishing

vacuumwithgloballyspontaneouslybrokensymmetry

The paper is organized as follows: inSection 2 we write the

equationsofmotionandtheirexactvacuumsolutions,

correspond-ing totheuniform[the scalarfield profileattains a globally

con-stantvacuumexpectationvalue(vev)]andthenon-uniform

back-grounds (thescalarfield isadomainwall) InSection 3weshow

how the oscillons on top of the vev lead to localized solutions

forthe respectivegauge field, usingan approximateperturbation

method.AstandardperturbationschemeisemployedinSection4,

andanalytical solutions ofa smallamplitude gauge field, around

the domain wall of the non-uniform background, are presented

These families of solutions are shown to have different

charac-teristic length scale than that of the solutions in the uniform

background.Inbothsectionsnumericalsimulations verifyour

an-alyticalresultsandimplytherobustness ofthesolutions.Amore

detailedcomparison/connectionbetweenthetwodifferentregimes

andthe respective solutions is presented inSection 5where we

also show numericalresults demonstrating that a localized

solu-tionaroundthedomainwallmaybeobtainedbyamovingsoliton

inthebulk.OurconclusionsarepresentedinSection6

2 Lagrangian and equations of motion

WeconsiderclassicalelectrodynamicsinflatMinkowskispace–

timedescribedbythegaugeinvariantLagrangian L:

4F μν F

μν+ (D μ)(D μ)V(), (1)

where isachargedscalarfieldinteractingwiththegaugefield

Aμ and V( ||) is the double well potential V( ||) = λ||4+

μ2||2.Thecovariantderivativeisdefinedas= ∂μ +ie Aμ, e is

thecouplingconstant and Fμν istheelectromagnetictensor.The

Hamiltonian(energydensity)oftheabovesystemisgivenby:

∂ (∂0) ∂0 + ∂ L

∂ (∂0) ∂0∗+ ∂ L

∂ (∂0A ν) ∂0A νL

=1

2



|B|2+ |E|2

+ | π |2+ |D |2+V, (2)

whereinthelast expressionwe haveexplicitlyusedthephysical

fieldsE= −∂t A− ∇A0 (electric), B= ∇ ×A (magnetic)and π

D0.Althoughouranalysiswillbegivenwithrespectto andA,

theconnectionwiththeelectromagneticfieldisnecessaryforthe

interpretationofourresults

For a (1+1) dimensional setting, we consider the following

ansatzforthegaugefield Aμ: A0=A1=A3=0, A2=A(x, t),i.e

a linearlypolarized (in the z axis) magnetic field propagating in

thex direction.For μ2<0 thesymmetryisspontaneouslybroken

andthescalarfield acquiresanon-vanishing vacuumexpectation

value (vev).Choosing the unitary gauge in which the  field is

real,its vev is  = ± υ, where υ2= − μ2.Given the previous

assumptions, the electromagnetic tensor hasnon-vanishing

com-ponents F0νF02= ∂t A2, F i νF12= ∂x A2 andthe equationsof

motionstemmingfromtheaboveLagrangianare:

The potential in terms of the fields  and A is V(, A) =

(λ/4) 

2− υ22

+ (e2/2)2A2,wherewe haveaddeda constant

λ υ2/2 in order to complete the square in the first term The symmetricphase,withrespecttoreflectionsymmetry,corresponds

toasingleminimum:

andbreathersolutions arenot supportedby thesystem, whilein the brokenphase thesystemofEqs.(3)–(4) admitsthefollowing exactsolutions:

 = ±υtanh√

2λ υx/



whereEq.(6)isthezeroenergysolutionE min=0 correspondingto

a homogeneousscalarfield(uniform vacuum).Ontheother hand

Eq (7) is an inhomogeneous solution (non-uniform background) withafiniteenergyper unitarea E kink=2√

2 υ3/3.Thelatteris the well known kink solution of the φ4 model, which has been studied in a variety of physicalcontexts (see e.g Refs [4,10] for

a field theory approach, Ref [34] for kinks in condensed mat-terphysics andRef.[9]forkinksandother topologicaldefectsin cosmology) Since theenergy differenceof theabove solutions is analogousto υ3,their energies are comparablefor υ →0+ near thecriticalpointi.e.justaftersymmetrybreaking

Belowwewillsearchforlocalizedlowenergysolutionsforboth the scalar and the gauge field in the following two cases: (i) in theuniformvacuumcaseand(ii)inthenon-uniformbackground aroundthekink’score

In what follows, we express Eqs (3)–(4) in a dimensionless form by rescaling space–time coordinates andfields asxeυx,

teυt,  → υ φand AυA.Howeverfortheinterpretationof ourfindingswewillalwaysrefertothephysicalunits.After rescal-ingweobtainthefollowingsetofequations:

2φ +q2

2φ

3−q2

2φ + φA2=0, (8)

whereq≡ 2λ/e2 isthesingle parameterofthesystemandthe energydensitybecomes:

E=1

2(∂tφ)

2+1

2(∂xφ)

2+1

2(∂t A)

2+1

2(∂x A)

with

V=q2

8

2−1)2+1

2φ

3 Solutions around the uniform vacuum

3.1 Analytical considerations – multiscale expansion

In this section we search for small amplitude localized solu-tionsinthebulkoftheclassicalvacuumEq.(6)andfarbeyondthe criticalpoint,i.e.when υ 1 andindimensionlessform φ = ±1 Althoughweshowresultsonlyfor φ =1 analogousresultsholdfor

φ = −1 duetothereflectionsymmetryofthepotential.This sce-nariocorresponds tothe fullyhiggsed–“superconducting” phase –[11]

Inorder tofindalocalizedsolution ofthenon-integrable sys-tem of Eqs (8)–(9), we will use a multiscale perturbation ex-pansion [35] While the details of thismethod are given in Ap-pendix A, herewe briefly commenton its basic ingredients The

Trang 3

multiscale expansion introduces different space–time scales (fast

andslow)andacarrierwavesolutioninthefastscaleisobtained

inthelinearlimit.Thentheenvelopeofthiswave,whichis

con-sideredto evolve in the slowscales, is found to travel with the

groupvelocityoftheplanewaveandsatisfiesasolvablenonlinear

equationatsomehigherorder

Inourcasewewillusethefollowingasymptoticexpansion

φ =1+ φ(1)+ , A=0+ 2A (2)+ , (12)

where φ( i ) (i=1, 2, 3, )describetheperturbationsofthescalar

fieldontopofthevev, A ( i ) isthesmallamplitudegaugefieldand

1 isaformal smallparameter.Inthefirstorderofthe

expan-sion O( )for φandinthesecondorderforA, O( 2),thesolutions

correspondtothefollowingplanewaves:

φ(1)=u(x1,t1,x2,t2, )e i ( k1xω1t )+c.c, (13)

A (2)=v(x1,t1,x2,t2, )e i ( k2xω2t )+c.c, (14)

where“c.c” stands forthe complex conjugate.The wavenumbers

k1,2 and frequencies ω1,2 are connected through the dispersion

relations ω1= k2+q2, ω2= k2+1 The envelope functions

u and v are yet arbitraryin thisorder In the next orderof the

expansion(O( 2) forφand O( 3)for A),the compatibility

con-ditionsdictatethattheenvelopesmovewiththerespectivegroup

velocitiesv ( g1,2)=dω1,2/dk1,2.Inwhatfollowsandwithoutlossof

generalitywerestrictouranalysisinthecaseofzerogroup

veloc-ity(k1=k2=0) andthus theenvelopes arefunctionsof (x1, t2)

Howeverwenotethatforfinitegroupvelocitieswe obtainresults

thatarequantitativelythesamedescribingtravelingsolutions

Atthe orders O( 3) fortheenvelope u(x1, t2),and O( 4) for

theenvelopev(x1, t2)wefind:

iqt2u= −1

2

2

it2v= −1

2

2

x1v+V(x1)v, V(x1) = − α |u|2, (16)

whereinEq.(16)α (q) =2(6−q2)/(4−q2) whileEq.(15)isthe

well knownfocusing (i.e withpositive relative signbetweenthe

dispersion andthe nonlinearity) NLS equation The latteradmits

brightsolitonsolutions[36]intheform:

whereu0 isa freeparameter characterizingtheamplitude ofthe

soliton, w= √3qu0 is its inversewidth This waywe have

con-structedalocalizedsolutionforthe φ(1)field[cf Eq.(13)]

For the above solutions of u(x1, t2), Eq (16) becomes a

lin-ear Schrödinger equation for the envelope v(x1, t2), in the

pres-enceoftheeffectivePöschl–Tellerpotential V(x1) ∼sech2(x1).The

strength α and in particular its sign, depend only on the

pa-rameterq. Inparticular for q∈ (0, 2) andq > √

6 the parameter

α is positive and V(x1) hasthe formof a sech-shaped well As

such,inthisparameterregime one canobtain localizedsolutions

forv(x1, t2) corresponding to a localized gauge field A. Bounded

solutions of Eq (16) can be found using the ansatz: v(x1, t2) =

ˆ

v(x1)exp[−i(E 2)t2] where E 2 is the energy eigenvalue

Substi-tutingtheaboveinEq.(16)weobtainaSturm–Liouvilleequation

ofthefollowingform:

x21vˆ (x1) + E+2αsech2(wx1)

 ˆ

v(x1) =0. (18)

Equation (18) can be transformed into the associated Legendre

equation by making the substitution T =tanh(wx ) which can

Fig 1 (Coloronline.) Top panel: Total number of bound statesN ( q )for the uniform vacuum are shown with the solid line and for the non-uniform background with the dashed line Gray box indicates the region 2< q <

6 where no bound states exist

in the uniform case Bottom panel: Profiles of a nodeless(n=0) state depicted with solid black line and the nodal ones, where the first excited state(n=1) is plotted with a dashed black line and the second excited(n=2) with the dotted black line For all casesq=1/2.

then be solved analytically In fact, for each value of the pa-rameter q thereexist a total numberof N boundsolutions with

E n (n=0, 1 , N−1) discreteenergy eigenvalues,both givenin termsofthefunctions:

f N(z) =  (z+1 4)1/2−1 2



f E(z) = −1

z



(z+1 4)1/2− (n−1 2)

2

wherein Eq.(19),“[ ]” denotes theinteger part.Fromthe afore-mentionedsubstitutionsitfollowsthatinthecaseoftheuniform backgroundboth N and E n aregivenbytheexpressions:

w2

, E n= −2αf E 2α

w2

Furthermore the localized solutions of the envelope v(x1, t2) are givenbytheso-called associated Legendre functions[37]asfollows:

ˆ

vn(x1) =P σ(tanh(wx1)) , (22)

where σ and ρ arerelatedtotheenergyandpotentialcoefficients throughtherelations: σ2= −E n,and ρ2+ ρ =2α /w2.Inthetop panel of Fig 1, we show the total numberof bound states N as

a function ofq. In the region q <2, as q decreases the number

of bound statesincreases, for q > √

6 onlyone such state exists, whilefor2 <q < √

6 onlyscatteringstatesarefound(indicatedby thegraybox)[30]

Wecannowwritetheapproximatesolutionsforfields φandA

as:

φ (x,t) ≈1+ u0sech(w x)



ei ( ω1− 2 w2/ 2q ) t+c.c



A(x,t) 2vˆn( x)



ei ( ω2+ 2E n /2) t+c.c



and vˆn is given by Eq (22) We have thus shown that, in this regime ofa smallgauge field A,thelocalized perturbations of φ

(duetoselfinteractions)uponthevev,actasaneffectivepotential within which the gauge field can be localized More importantly

we notethefollowing: ourresultofEq.(24)inthe caseofn=0 corresponds toan “oscillon”solutionforthe gaugefield withthe usual sech-shaped(nodeless) envelope Such oscillons have been shown to exist in various settings [38,39] and their properties (stabilityandrobustness)havebeenextensivelystudied.However

Trang 4

Fig 2 (Coloronline.) Top row: 3d plots showingt=2T oscillationperiods for A ( x , t )forn=0,q=1 (left),n=1,q=3/4 (middle) andn=2,q=1/2 (right) Bottom row: 3d plots depicting the fieldφ( x , t )for each of the aboveA’s.For the uniform vacuum.

for larger values of n=1, 2, 3, the solutions in Eq (24)

cor-respond to localized oscillating structures with a finite number

of nodes-nodal oscillons-which asfar aswe know have not been

yet recognized as such in the literature The analytical resultof

Eq.(24)fort=0 is plottedinthe bottompanel ofFig 1 forthe

nodeless case n=0, and for the first and second excited states

(n=1 and n=2 respectively) Belowwe willemploy direct

nu-mericalsimulationsinordertostudytherobustnessandlongevity

of these structures It is worthwhile at this point to stress out

thattheoscillonsolutionspresentedabove,owetheirexistenceto

thespontaneousbreakingoftheglobalreflectionsymmetry

lead-ing to =0, incontrast tothe symmetric phase ofEq.(5) for

which =0 andnobreathersolutionsexist.Furthermore,since

thescalarfieldattaineditsnon-vanishingvev,thisscenario

corre-spondstothefully-higgsedsuperconductingphasefarbeyondthe

associatedcriticalpoint.Thelocalizedexcitationsofthescalarfield

inducelocalizationtotherespectivegaugefieldleadinginturnto

avanishingmagneticfieldinthisregion

3.2 Numerical results: uniform vacuum

Inthissectionnumericalresultsarepresented,concerningthe

evolutionoftheapproximatesolutionsobtainedinEqs.(23)–(24)

InparticularweperformdirectintegrationofEqs.(8)–(9)usingas

initial conditions Eqs.(23)–(24) att=0 In all numerical results

presented belowwe use lattice spacingdx=0.2, time step dt=

0.01 and the total time of integration is oforder t∼104 which

correspondsto∼104oscillationsforthefields

InFig 2weshowtheevolutionduringtwofullperiodsintime

t=2T i, where T1,2=2π / ω1,2 forthe scalarand thegauge field

respectively.Theleftcolumncorrespondstothecaseofthe

node-lessoscillon (n=0) for q=1 Both fields have similar structure

butdifferentfrequencies;alsonotethatinorderforthemultiscale

expansiontobevalid,thewidthofbothfieldsisrestrictedtobeof

theorder O(101).Themiddlecolumnofthisfigureshowsa new

mode for the gauge field A with one node (n=1) for q=3/4,

whiletherightcolumnshowsthesecond excitedstate (n=2) of

Eq.(18)inbothcasesthescalarfieldisstillsech-shaped

Wehaveconfirmedtherobustevolutionofsuchstatesfortimes

uptot∼104.InFig 3contourplotsoftheenergydensityEq.(10)

fordifferentvaluesofq andforboththenodelessandnodal

oscil-lonsaregiven.Althoughthemoreusualcaseofanodelesssoliton

issomehowexpectedtoberobustintheone-dimensionalsetting,

the robustness ofthe higher excited statesis not necessarily

ex-pected

Fig 3 (Coloronline.) 3d plots showing the normalized, with respect to its maximum value, energy density E ( x , t )for different values of the parameterq andfor total time of integration in each case oft=10 4 in the uniform vacuum.

4 Solutions around the non-uniform background

4.1 Analytical considerations-perturbation around kink’s core

Main subjectofthissection is toobtain localizedsolutions to the system of Eqs (8)–(9) around the core of the domain wall Since thewidthofthedomainwall isoforderO(1),andweare interested infindinglocalizedsolutionsforthegauge fielddueto thepresenceofthedomainwall,insteadofusingaslow-scale ap-proximationweconsiderthefollowingperturbationexpansion:

In the above expression A (1) is the unknown, small amplitude gaugefield, φkistheexactkinksolutionofEq.(7),and ˜φdescribes higher orderperturbations upon thekink dueto thepresence of

A (1)[cf Eqs.(8)–(9)].NotethatinEq.(25),correctionstothescalar fieldoforder arenotincluded,sincesuchtermsdescribe pertur-bations around the kink, decoupled from the gauge field, which were studiedinRef.[40].Ontheother handouranalysis, aswell

asourexpansion,concernstheeffectsofasmallamplitudegauge field A (1)

Substituting the expansion of Eq (25) into the system of Eqs (8)–(9),at leading order(i.e to the order ) we obtain the followingequationforthesmallamplitudegaugefield:

2A (1)+ φ2

Notice thatthestationarykinksolution φk actsasaneffective potential forthe field A (1) Furthermore,welookforsolutions of

Trang 5

theform: A (1)(x, t) =exp[−iωt] ˆA (1)(x),where ωisthefrequency

while Aˆ(1)(x) isafunctiondependingon thespatialcoordinatex.

SubstitutingtheaforementionedansatzintoEq.(26)weobtainthe

eigenvalueproblem:

x2Aˆ(1)+ E+sech2(qx/ )

 ˆ

where E= ω2−1 is the corresponding eigenvalue It is readily

seenthat Eq.(27)is identicaltoequation (18) andthuslocalized

solutions of Aˆ(1) can be found as the bound statesof the above

equationgivenby:

ˆ

Thetotalnumberofbound states(cf dashedblacklineinFig 1)

andtheenergyspectrumarenowgivenby

q2

, E n=f E 4

q2

whilethecorrespondingapproximatesolutionsforA canbe

writ-tenas:

A(x,t) Aˆ(1)

n (x)



ei E n t+c.c



Theabove solutions correspondto a familyoflocalized gauge

fieldscenteredatthedomainwallhavingtheformofnodelessand

nodal oscillon-like structures supported by an effective potential

dueto thepresenceofthekink Theseoscillonsareofsmall

am-plitudeandhaveaspatialwidthoftheorderofthecorresponding

domain wall (which dependents on q). Although these solutions

bare many similarities with the solutions obtained in Section 3,

theyarecharacterized byinadifferentlengthscale,andtheir

lo-calizationmechanismisfundamentally different Inparticularthe

effectivepotential inEq.(27),isduetothepresenceofthe

time-independent, exact solution of the original system of equations,

whiletheeffectivepotential inEq.(18)is dueto anapproximate

oscillon.Inparticularthecaseofthenon-uniformbackground

dis-cussed in this section corresponds to a scenario just after the

symmetrybreaking,andthusclosetothecriticalpoint φ =0.The

kink interpolatesbetween the justformed wells of the potential

connectingthem,andsinceq isrelativelysmall,thesolutions

ob-tained above are not energeticallydisfavored Furthermore, since

thevacuaaredegenerateandclosetothevacuumoftheunbroken

phase,the orderparameter,having theform ofthekink, induces

localization of the respective gauge field leading to a vanishing

magnetic field around kink’s core Below we will attemptto

es-tablishaconnectionbetweenthesetwoscenaria

4.2 Numerical results: non-uniform background

Intheprecedingsection weobtainedfamilies ofnodelessand

nodaloscillon-likestructures.Inwhatfollows,wewillelaborateon

howthe aforementionedsolutions evolve intime, so asto verify

thevalidityaswellastherobustnessofouranalyticalfindings.In

particularwewillperformnumericalintegrationofthesystemof

equations(8)–(9) using asinitial conditions,(at t=0), the exact

domainwallsolutionofEq.(7)andEq.(30)

IntheleftcolumnofFig 4a3dplotshowsthefirsttwo

oscil-lationsfora sech-shaped gaugefield (top),i.e.anodeless (n=0)

oscillon, for q=1 and its profile at t =0 is indicated with a

solid black line The scalar field corresponding to the above

os-cillon is also depicted inthe bottom panel of the same column

Since φ (x, t) is non-oscillating, the main contribution forsuch a

statecomes fromtheleading orderkinksolution φk.Accordingly,

inthe middle and rightcolumns of Fig 4 top panels depict the

field A(x, t) corresponding to the first excited state, (n=1 solu-tion), for q=3/4 and second excited state (n=2) for q=1/2 respectively.Thecorrespondingscalarfieldsarealsoplottedinthe bottom panel of each column In both cases the kink solutionis slightlyaffected bythe smallamplitude perturbations considered here.Both nodelessandnodaloscillonsremainrobustforatleast

t∼104 total time of integration and for different values of the parameter q. In order to highlight the longevity as well as the robustness of the oscillons obtained in this limit, in Fig 5 a 3d plotconsistingfromthreeenergydensitycontoursisdepictedfor

t=104

Wehavethusverifiedthatinthenon-uniformcaseasmall am-plitude gauge field alters theexact kink solutionat order 2, as per ouranalyticalfindings ofEq.(30).Assuch, thekinksupports not onlythe standardnodeless oscillonsbutalsothe nodalones, whichinturnremainlocalizedthroughoutalloursimulations Ad-ditionally, thesenovel structures seem to expelsmaller amounts

ofradiationwhencomparedtothenodaloscillonsoftheuniform vacuumcase

5 Dynamical localization of the gauge field

Ourpreviousanalysiswasguidedbytwo configurationsofthe scalarfield: theuniformnon-zero vacuumandthekink state.As already mentioned, these two states describe different physical scenaria andseemtobe dynamicallydisconnected.However, just afteraspontaneoussymmetrybreaking,when υisverysmall,the uniformnon-zerovacuumisenergeticallyalmostdegeneratewith thekinkconfigurationandthedynamicsmaysupportmixed con-figurationscombiningcharacteristicsofbothscenaria

Inordertodevelopaphysicalpictureforthisparticularcase,let

usfocusonthescalarfield anditsgroundstate.Whenthe reflec-tionsymmetry φ → −φisrestoredthegroundstateistheuniform configuration φ =0.Tomakeaclearerconnectionwiththephase transitioninduced by thespontaneous symmetry breakingofthe reflectionsymmetry inthisself-interactingscalar fieldtheory,let

usdefine asanorder parameterofthe transitionthespace aver-aged valueof thescalar field: V = 1

V

V dxφ (x),where φ (x) is

astaticfieldconfigurationminimizingtheenergyfunctionalofthe field φ.Forthesymmetricphase( =0)anylocalizedexcitation

ofthisconfigurationintheformofanoscillonisunstableanddies outastimeevolves

Consider nowthecasewhenthereflectionsymmetryis spon-taneouslyjustbroken.Thenthegroundstateofthefieldbecomes doublydegenerate(± υ)with υ closeto zero.Theuniformstates

φ (x) = υ or φ (x) = − υ are energeticallyalmost degenerate with thekink configuration φ (x) = υtanh√

2 υx 2 Due tothis ap-proximate degeneracywe extend the definition ofthe order pa-rameter allowing in the averaging also the use ofthe kink con-figuration.Ofcoursealsotheorderparametervaluesforall these configurations are almost degenerate However, an important is-sueconcerning symmetry breaking isthat the kink configuration

is characterized by vanishing order parameter =0 while the two degenerate vacua have =0 Thus the kink isa topologi-calstructureallowingthecommunicationbetweenthetwovacua, breakingthe symmetrylocallybutnotglobally i.e.atthe levelof the order parameter In thissense one can interpret the kink as

a fluctuation ofthe reflectionsymmetric vacuum φ (x) =0 lead-ing toa localsymmetry breaking beforea globalbreakingof the reflectionsymmetryestablishes

states (± υ) and the kink is very small, then the latter may be entropically favored constituting the representative of the field fluctuations driving the transitionfrom the globally unbroken to

Trang 6

Fig 4 (Coloronline.) Top row: 3d plots showingt=2T oscillationperiods for A ( x , t )forn=0,q=1 (left),n=1,q=3/4 (middle) andn=2,q=1/2 (right) Bottom row: 3d plots depicting the fieldφ( x , t )for each of the aboveA’s.For the non-uniform background.

Fig 5 (Color online.) Same asFig 3 but for the non-uniform background.

the globally broken phase of the reflection symmetry Adopting

thispoint ofview,onecan nownaturallyaskhowlocalized,time

dependent fluctuations(breathers) of the kink,which may cause

thedynamical establishment ofthenon-vanishing order

parame-tervalue,evolveintime

Thisistheissuewewillconsiderinthissectiontakinginto

ac-count also the presence ofthe gauge field Furthermore we will

consider also the case when the kink is traveling with a

veloc-ityv k.Thisisadynamicalprocessconnectingsnapshotsconsisting

of different static kink configurations with equal energy These

differentconfigurations could be interpreted asthe origin ofthe

entropicdominance ofthe kinksolitonclosetothecriticalpoint

Stability oflocalized fluctuationsis such a time dependent

back-groundwouldsignalthevalidityoftheattemptedcriticaldynamics

description.Note that the solitonsolutions of the preceding

sec-tionsmayhavetheformoftravelingwavesbyapplyingaLorentz

boost Inour numericalsimulations a moving kink is realized as

follows: φk=tanh [γq(xv k t)/2],where v kisthevelocityofthe

kink and γ =1/

1−v2 is the Lorentz factor [10].The relevant nodelesssolitons inthebulk are givenby Eqs.(23)–(24) andare

nottraveling

We haveperformedvarious realizations ofthe above

configu-rationsinanumericalexperimentfordifferentvaluesofq andfor

differentvelocities.Theresultsaresummarizedasfollows.Adirect

relationbetweenthepossibleoutcomeofthecollisionandthe

ve-locityofthedomainwall (thusitskinetic energy)isobserved.In

factwefoundthatforanyq,thereisalowercriticalvelocity,above

which thegauge field is localized onthe domain wall

Addition-ally,dependingonthevalueofq andthepossiblenodal(excited)

states[cf toppanelofFig 1],asthevelocityofthekinkincreases the higherexcited stateis realized.Theabove resultcan,atleast qualitatively,beexplainedfromenergeticconsiderations.Forsmall velocities,thekinetic energyofthekinkisnot sufficientinorder

togeneratethelowerpossibleboundstateoftheeigenvalue prob-lem (27),andthus a lowercriticalvelocity exists.Alsothe larger thevelocityofthemovingdomainwall,themoreenergyis trans-ferredtothegaugefieldandthehigherexcitedstatescanthenbe formed.Importantlyafterthecollisiontheoriginallocalized oscil-lon inthebulk remains intact, andundergoes a phase-shift [41] Thisshiftisfoundtobevelocitydependentinasimilarmannerto theoutcomeofsolitoncollisions(seeRefs.[15,42])

The above resultsare illustrated inthe snapshots ofthe field profilesshowninFig 6.Inparticularweshowthreedoublets,each depictingtheprofileofthegaugefield(upperpanel)andthescalar field (lowerpanel).Top,middleandbottomdoubletsshowresults forkinkvelocities v k=0.2,v k=0.3 and v k=0.4 respectively,for

q=0.4.Theinitialcondition (grayline)att=t0 correspondstoa kink located at x= −220 and a bulk oscillonat x= −150.At t1

a localized gaugefield is shownto travelalong withthe domain wall,whilethebulkoscillonisphase-shifted(thinblackline).We also show an additional profile at t2 (thick black line) in order

to illustratetheoscillations ofbothnodeless andnodal solutions Fromtoptobottomweobservethegenerationofalocalizedgauge fieldwithnonodes,onenodeandtwonodesrespectively

6 Concluding remarks

Inthe presentwork weanalyticallyobtainedfamilies ofnodal and nodelesslocalized structuresof the classical electromagnetic

Trang 7

Fig 6 (Coloronline.) Profiles of the fieldsA and φforq=0.4, for a collision of

a moving kink with the bulk oscillons are depicted Gray (solid) lines indicate the

initial condition att=t0 , before the collision takes place, while black (solid) lines

att=t1 show the profiles after the dynamical localization of the gauge field at

kink’s core To illustrate the oscillations that these structures undergo, profiles of

both fields are also plotted att=t2 From top to bottom each field doublet refers

to zero, one, and two nodes respectively while the relevant velocities of the kink

are also depicted in the yellow box (bottom right of each).

sectorina (1+1)dimensionalsetting.Theinteractionbetweenthe

gaugeandthescalarfieldwasshowntobereducedtoaneffective

Pöschl–Tellerpotential, responsiblefor thelocalizationof asmall

amplitudegaugefield

In particular two different cases were studied: (i) a uniform

vacuumφ = υ and (ii)a non-uniform background(domain wall)

φ = υtanh√

2 υx 2

 In the uniform, fully higgsed-“supercon-ducting”phase,families ofsmallamplitudelocalizedsolutionsfor

bothfieldswere found, withtheenvelopeof thescalarfield

sat-isfyinga focusing NLS equation leading to sech-shapedoscillons

Accordingly,theenvelopeofthegaugefieldonasufficientlylarge

length scale, was found to satisfy a linear Schrödinger equation

withaneffectivepotentialofthePöschl–Tellerform.Boundstates

ofthelatter,correspondtoalocalizedgaugefield witheitherthe

usual sech-shaped (nodeless) form, or the form of excited nodal

localizedstructures In a non-uniformbackground we also found

localizedgaugefieldsolutions,stemmingfromaneffectivePöschl–

Tellerpotential aroundthekink’score.Inthiscasehoweversince

thekinkisresponsibleforthelocalization, thelength-scale ofthe

respectiveboundstatesisthesameasthedomain wall,whichis

atleastanorderofmagnitudesmallerthanintheuniformcase

Numericalsimulations were presentedshowing the long time

evolutionoftheabove obtainedfamiliesofsolutions, whereboth

theground state andexcited statesof the effectivePöschl–Teller

potential, were found to be robust Furthermore, by inducing a

collision between the core of the domain wall and an oscillon

structureinthebulk,weestablishedadirectconnectionbetween

thetwodifferentstates.Inthisrespect,the mainoutcomeofour

analysiswastwofold:(i)Itwasdemonstratedhowlocalized

fluctu-ationsofthekinkbecomestable.Thisisanimportantresult

sup-portingthepreviouslydescribedpicture,concerningthedynamics

closetothecriticalpoint ofthespontaneousreflectionsymmetry

breaking: the kinkconfiguration acts asmediator of theglobally

brokenphasesincefluctuationsleadingtoanon-vanishingvalueof

theorderparameterbecomestableusingthekinkasabackground

field.(ii)Adynamicalmechanismforthelocalizationofthegauge field was alsodemonstrated Thisprocess mayhave phenomeno-logicalimpactonthedynamicsrelatedtotheMeissnereffectclose

to the criticalpoint Thus theuse oftopological defects as back-ground fields mayserve as a way of driving the dynamics from thecriticalpointandbeyondandviceversa

Appendix A Multiscale expansion

Inthissectionwe presentthe MSPTexpansioninmoredetail

We expand space–time coordinates and their derivatives as fol-lows: x0=x, x1= x, x2= 2x, , t0=t, t1= t, t2= 2t .,

x= ∂x0+ x1+ , t= ∂t0+ t1+ , while the asymptotic expansion for both fields is given by Eq (12) Substituting the above expansionsfor the coordinates and Eq (12) for the fields intoEqs.(8)–(9)weobtainthefollowingequationsforboth φand

A uptoorder O( 4):

O ( ) : ˆL φφ(1)=0, (A.1)

O ( 2) : ˆL φφ(2)= −2μ0μ1φ(1)3q2

2 φ

(1)2, (A.2)

ˆ

L A A (2)=0, (A.3)

O ( 3) : ˆL φφ(3)= −2μ0μ1φ(2)−  21+2μ0μ2

φ(1)

3q2φ(1)φ(2)q2

2φ

(1)3, (A.4)

ˆ

L A A (3)= −2μ0μ1A (2)−2φ(1) A (2), (A.5)

O ( 4) : ˆL A A (4)= −2μ0μ1A (3)−  21+2μ0μ2

A (2)

−2



φ(1) A (3)+ φ(2) A (2)



− φ(1)2A (2), (A.6)

where we introduced the operators Lˆφ≡ (20+q2) and LˆA

( 20+1).The lowestorderequationsforthefields φ(1) and A (2), i.e equations (A.1) and (A.3), admit plane wave solutions given

by Eqs.(13)–(14),whileeach satisfies therelevant dispersion re-lation: ω1= k2+q2, ω2= k2+1 respectively.Inordertosolve

Eq (A.2) we first eliminate the term ∼ ∂μ0μ1 Such a secular

term, resonates with the operator ˆL φ leading to solutions that growlinearlywithtimehaving theform:∼te iCt,withC the fre-quencyof the driver.Thus, we constrain the function u(x i, t i)by demanding that it depends on the variables x1, t1 only through

X1=x1− υ( g1) t1, where υ( g1) is the group velocity Taking into accountthissolvabilitycondition,theformofthesolution φ(2) be-comes:

φ(2)=u2

2 e

2i ω1t+u∗2

2 e

2i ω1t−3|u|2. (A.7)

Continuing our analysis, to order O( 3) the solvabilitycondition leadstothefollowingequationforthescalarfield:



21+2μ0μ2

φ(1)3q2φ(1)φ(2)q2

2φ

(1)3=0. (A.8)

Substitutingintheabove φ(1), φ(2) fromequations(13)and(A.7)

respectively,weobtaintheNLSEq.(15)fortheenvelopeu(x1, t2)

Inthesameorder,byrepeatingtheaforementionedarguments, andgoingtoaframeofreferencemovingwithgroupvelocity υ( g2), thefield A (3)becomes:

2+−1uve

i +t+ 2

2−−1uv

ei t+c.c, (A.9)

withfrequency ±= ωω1 Finally to order O( 4) the solvability condition leads to the SchrödingerEq.(16)fortheunknownfunctionv(x , t )

Trang 8

[1] S Coleman, Aspects of Symmetry, Cambridge University Press, 1985;

T.D Lee, Y Pang, Phys Rep 221 (1992) 251.

[2] S Coleman, Nucl Phys B 262 (1985) 263;

M Axenides, S Komineas, L Perivolaropoulos, M Floratos, Phys Rev D 61

(2000) 085006;

R.A Battye, P.M Sutcliffe, Nucl Phys B 590 (2000) 329;

M.I Tsumagari, E.J Copeland, P.M Saffin, Phys Rev D 78 (2008) 065021;

P Bowcock, D Foster, P Sutcliffe, J Phys A 42 (2009) 085403.

[3] E.J Copeland, M Gleiser, H.-R Muller, Phys Rev D 52 (1995) 1920.

[4] R Rajaraman, Solitons and Instantons, North-Holland, Amsterdam, 1982.

[5] P.A.M Dirac, Quantised singularities in the electromagnetic field, Proc R Soc.

Lond A 133 (1931) 60;

P.A.M Dirac, Phys Rev 74 (1948) 817.

[6] G ’t Hooft, Nucl Phys B 79 (1974) 276;

A.M Polyakov, JETP Lett 20 (1974) 194;

A.M Polyakov, Pis’ma Zh Eksp Teor Fiz 20 (1974) 430.

[7] P.M Sutcliffe, Int J Mod Phys A 12 (1997) 4663.

[8] A.A Abrikosov, Sov Phys JETP 5 (1957) 1174;

A.A Abrikosov, Zh Eksp Teor Fiz 32 (1957) 1442;

H.B Nielsen, P Olesen, Nucl Phys B 61 (1973) 45.

[9] A Vilenkin, E.P.S Shellard, Cosmic Strings and Other Topological Defects,

Cam-bridge University Press, UK, 2000.

[10] N Manton, P Sutcliffe, Topological Solitons, Cambridge University Press, Great

Britain, 2004.

[11] M Shifman, A Yung, Phys Rev D 67 (2003) 125007;

M Shifman, A Yung, Phys Rev D 70 (2004) 025013.

[12] R Auzzi, S Bolognesi, J Evslin, J High Energy Phys JHEP02 (2005) 046.

[13] P.M Sutcliffe, Int J Mod Phys A 12 (1997) 4663;

C.J Houghton, N.S Manton, P.M Sutcliffe, Nucl Phys B 510 (1998) 507;

B Kleihaus, J Kunz, Y Shnir, Phys Rev D 68 (2003) 101701(R).

[14] S Bolognesi, P.M Sutcliffe, J High Energy Phys 078 (2014) 1401.

[15] M.A Amin, E.A Lim, I.-S Yang, Phys Rev Lett 111 (2013) 224101.

[16] T.S Mendonça, H.P de Oliveira, arXiv:1502.03870 [hep-th].

[17] V.A Gani, A.E Kudryavtsev, M.A Lizunova, Phys Rev D 89 (2014) 125009.

[18] A.A Izquierdo, M.A.G Leön, J.M Guilarte, Phys Rev D 65 (2002) 085012.

[19] V.A Gani, A.E Kudryavtsev, Yad Fiz 64 (2001) 2130, Sov J Nucl Phys 64

(2001) 2043, arXiv:hep-th/9904209.

[20] T Fulton, R Dynes, P Anderson, IEEE Proc 61 (1973) 28;

D.W McLaughlin, A.C Scott, Phys Rev A 18 (1978) 1652.

[21] B.I Ivlev, N.B Kopnin, Usp Fiz Nauk 142 (1984) 435;

B.I Ivlev, N.B Kopnin, Sov Phys Usp 27 (1984) 206;

I.M Dmitrenko, Fiz Nizk Temp 22 (1996) 849, J Low Temp Phys 22 (1996) 648.

[22] A Valizadeh, M.R Kolahchi, J.P Straley, Phys Rev B 82 (2010) 144520 [23] S Brazovskii, C Brun, Z.-Z Wang, P Monceau, Phys Rev Lett 108 (2012) 096801.

[24] A Moor, A.F Volkov, K.B Efetov, Phys Rev B 90 (2014) 224512.

[25] R Jackiw, C Rebbi, Phys Rev D 13 (1976) 3398.

[26] V.A Rubakov, M.E Shaposhnikov, Phys Lett B 125 (1983) 136.

[27] R Casana, A.R Gomes, R Menezes, F.C Simas, Phys Lett B 8 (2014) 730 [28] D Bazeia, J Menezes, R Menezes, Phys Rev Lett 91 (2003) 241601.

[29] C Callan, R Dashen, D Gross, Phys Lett B 63 (1976) 334;

S Raby, A Ukawa, Phys Rev D 18 (1978) 1154;

P Forgács, Z Horváth, Phys Lett B 138 (1983) 5.

[30] G.R Farrar, J.W McIntosh Jr., Phys Rev D 51 (1995) 5889.

[31] H Segur, M.D Kruskal, Phys Rev Lett 58 (1987) 747.

[32] S Flügge, Practical Quantum Mechanics, Springer-Verlag, Germany, 1999 [33] Y Alhassid, F Gürsey, F Iachello, Phys Rev Lett 50 (1983) 873.

[34] P.M Chaikin, T.C Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, UK, 2000.

[35] A Jeffrey, T Kawahara, Asymptotic Methods in Nonlinear Wave Theory, Pitman, London, 1982.

[36] Yu.S Kivshar, G.P Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego, 2003.

[37] P.G Drazin, R.S Johnson, Solitons: An Introduction, Cambridge University Press, Great Britain, 1989.

[38] M Gleiser, Int J Mod Phys D 16 (2007) 219;

A Rajantie, E.J Copeland, Phys Rev Lett 85 (2000) 916.

[39] V Achilleos, F.K Diakonos, D.J Frantzeskakis, G.C Katsimiga, X.N Maintas, E Manousakis, C.E Tsagkarakis, A Tsapalis, Phys Rev D 88 (2013) 045015; F.K Diakonos, G.C Katsimiga, X.N Maintas, C.E Tsagkarakis, Phys Rev E 91 (2015) 023202.

[40] J Goldstone, R Jackiw, Phys Rev D 11 (1975) 1486.

[41] M Hindmarsh, P Salmi, Phys Rev D 77 (2008) 105025.

[42] N.S Manton, Nucl Phys B 150 (1979) 397;

J.P Gordon, Opt Lett 8 (1983) 596;

P.G Kevrekidis, A Khare, A Saxena, Phys Rev E 70 (2004) 057603.

... phenomeno-logicalimpactonthedynamicsrelatedtotheMeissnereffectclose

to the criticalpoint Thus theuse oftopological defects as back-ground fields mayserve as a way of driving the dynamics from thecriticalpointandbeyondandviceversa...

sup-portingthepreviouslydescribedpicture,concerningthedynamics

closetothecriticalpoint ofthespontaneousreflectionsymmetry

breaking: the kinkconfiguration acts asmediator of theglobally... velocities,thekinetic energyofthekinkisnot sufficientinorder

togeneratethelowerpossibleboundstateoftheeigenvalue prob-lem (27),andthus a lowercriticalvelocity exists.Alsothe larger thevelocityofthemovingdomainwall,themoreenergyis

Ngày đăng: 01/11/2022, 09:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm