Their reported cash flow forecast model had adjusted R2 of 43%,althoughtheirsamplewassmallercomparedtopre-1989 studieswhenSFASNo.95hadnotbeenpublished.Orpurtand Zang’spaperexaminedwhethe
Trang 1ScienceDirect
Review of Development Finance xxx (2014) xxx–xxx
Yun Lia, Luiz Moutinhob, Kwaku K Opongb, Yang Pangb,∗
aSchool of Engineering, University of Glasgow, University Avenue, G12 8QQ, United Kingdom
bAdam Smith Business School, University of Glasgow, University Avenue, G12 8QQ, United Kingdom
Abstract
ThispaperappliesmodelsintheextantliteraturethathavebeenusedtoforecastoperatingcashflowstopredictthecashflowsofSouthAfrican firmslistedontheJohannesburgStockExchange.Out-of-sampleperformanceisexaminedforeachmodelandcomparedbetweenthem.The reportedresultsshowthatsomeaccrualterms,i.e.depreciationandchangesininventorydonotenhancecashflowpredictionfortheaverage SouthAfricanfirmincontrasttothereportedresultsofstudiesinUSAandAustralia.Inclusionofmoreexplanatoryvariablesdoesnotnecessarily improvethemodels,accordingtotheout-of-sampleresults.Thepaperproposestheapplicationofmovingaveragemodelinpaneldata,andvector regressivemodelformulti-period-aheadpredictionofcashflowsforSouthAfricafirms
©2014AfricagrowthInstitute.ProductionandhostingbyElsevierB.V.Allrightsreserved
JEL classification: G300; M410; M490
Keywords:Cash flow; Moving average; Predictive models; Accruals; Vector autoregressive model; Depreciation
1 Introduction
Given that cashflow is the life-blood of a firm, accurate
determinationof cash flowsenables firmstomake important
financial decisionsthat relatetowhether the firmsurvives or
goesbankrupt.Asameasureofafirm’sprofitabilityand
finan-cial health, cash flows could provide potential clues about
the source company’s ability to pay divided and thus attract
investors’interesttoo.Therearethreecategoriesofcashflows
recordedinstatementofcashflow,i.e.cashflowsfromoperation,
∗Correspondingauthor.
E-mail addresses:Yun.Li@glasgow.ac.uk (Y Li),
Luiz.Moutinho@glasgow.ac.uk (L Moutinho), Kwaku.Opong@Glasgow.ac.uk
(K.K Opong), Y.Pang.1@research.gla.ac.uk (Y Pang).
Peer review under responsibility of Africagrowth Institute.
1879-9337 © 2014 Africagrowth Institute Production and hosting by Elsevier
B.V All rights reserved.
http://dx.doi.org/10.1016/j.rdf.2014.11.001
financingandinvestment,ofwhichoperatingcashflow, reflect-ing theability ofthe firmtoengage inday-to-day operations andits continuityinbusiness, isof the mostimportance.For themanagersoffirms,investorsoranalysts,predictionoffuture cashflowsareofextremeusefulnessandvalue
Thereare two issuestobe consideredwhen attemptingto predict afirm’scashflows.First, thevariablesthoseare use-fulandinformativetocashforecastneedtobe identifiedand incorporated into the forecast model Secondly, the typeand structure of modelstobeemployedinthe forecast shouldbe carefully chosen toprovide a moreaccurate prediction This study shed light onbothissues, intending todemonstrate the procedure of choosing variables and models for more accu-rate prediction There are anumber of difficulties withcash flowprediction.Generallyspeaking,cashflowismorevolatile thanearningsandthusharder topredict Thereisnouniform cashflowgeneratingprocessforthewholebusinessworldand different companies provide distinct patterns of cash flows Besides,duetothepopularityofcredittrade,afirm’srevenue andexpensesarenotequaltocashinflowandoutflowandthis compoundstheproblemofaccuratecashflowprediction Aca-demicstudiesoncashflowpredictionrelyonpublicinformation
as reflectedinafirm’sfinancial statementfor cashflowdata
Trang 2Amongthevariablesthat havebeen foundusefulnessincash
flowpredictionincludeearnings,accrualtermssuchaschanges
inaccountreceivableandpayableanddisaggregatedcash
com-ponents Empirical studies suggest that these variables are
usefulandinformativeinpredictingcashflows.Inthispaper,a
comparisonismadebetweendifferentsetsofvariablesas
pre-dictors.Itisexpectedthatthemorepredictorsthatareincluded,
thebetteramodelwillperformbecausemoreinclusionof
vari-ablesoftenmeansricherexploitationofinformation.Asecond
comparisonis made between modelswhich include
explana-tory variables with different lags It is expected that models
with more lagged explanatory variables could provide more
accuratepredictionwhereas thereported resultsinthispaper
suggestotherwise.Thispaperproposestwotypesofcashflow
modeling,i.e.movingaveragemodelandvectorautoregressive
(VAR)modelforcashflowprediction.Movingaveragemodel
alsomakeseconomicsenseasitmeasureshowanunexpected
cashflowshockcouldinfluencepeoplemakingfuture
predic-tion.Themovingaveragemodelisappliedtoone-period-ahead
prediction and VAR model is proposed for
multi-period-ahead prediction For this purpose VAR is more powerful
and relies less on data availability than linear regression
ThesemodelsareappliedempiricallyondataofSouthAfrica
firms
Thispaperisorganizedas follows:Section1 providesthe
introductiontothispaper.Section2reviewstheliteratureand
discussesfactorsthatinfluencethepredictionofcashflowsand
thepredictionmodelsutilizedinthestudy.Section3describes
thedataforSouthAfricanfirms.Section4reportstheresultsof
theempiricalanalysisandtheconclusionofthestudyisprovided
inSection5
2 Literature review
Cash flow forecast is of interest to investors, creditors,
employeesandratingagenciesamongothers.Investorsare
inter-ested in cash flows as input into their investment models to
enablethemtodecideonpayoffrelatingtodividendsandcapital
appreciationoftheirinvestments.Creditorsareinterestedin
sol-vencydecisionsrelatingtothefirmstheytransactbusinesswith
andemployeesareinterestedinjobsecurityandgoing-concern
issuesrelatingtofirmstheyworkfor.Ratingagenciesarealso
interestedingoing-concernandafirm’sabilitytopayitsdebts
whentheyaredue
Cashflowcanbeconsideredascomplimentaryinformation
toearningssincecombinativeanalysisofbothquantitiesmight
bringbetterresultsthananalyzingearningsonitsown.Earnings,
alsosometimesreferredtoasnetincome,arethesummationof
net cashincome andnetcreditincome,the latterof whichis
basedoncredittradeswithcustomersandisnotyetbutexpected
tobesettledbycashinalaterperiod.Theamountofcreditgiven
tocustomerscouldpotentiallybeoverlookedwithoutcashflow
informationandthismaymisleadinvestorsabouttherisk
relat-ingtoshortageofcashinthefirm.Inaddition,cashflowdirectly
measurestheoperationalabilityofthefirmtomeetits
day-to-dayfinancialcommitments.Inconventionalfinancetheory,the
worthofafirmistheoreticallyequaltothediscountedvalueof
allcashflowsgeneratedduringthefirm’slifeassumingthatall thecashflowsarepaidoutasdividend.Asaresult,newsabout cash flow canpotentially have significant impacton afirm’s marketprice.Alongwithearningsforecast,analystsare increas-inglyincludingcashflowforecastintotheiranalysisandreports
ofcashflowwhichtheyderivedfromsalesandreacheda conclu-sionthatcurrentearningsarethebestforecastoffuturecashflow Earningsequaltocashflowplusaccrualsthatincludechanges
inaccountpayable,changesinaccountreceivable, changesin inventory,depreciationandamortizationandothers.IntheDKW model,accruals,forsimplicity,includeonlychangesinaccount receivable,changesininventoryandchangesinaccountpayable, whichareequivalenttochangesinworkingcapitalwhilelong termaccrualssuchasdepreciationarenotconsidered.TheDKW model makes several strict assumptions about sales process andworkingcapitalcomponentsandtheirderivedmodelrelies heavilyonthoseassumptions.Barth,Cram,andNelson(2001)
disaggregatetheaccrualsintocomponents,anticipatingthemto havedifferentpersistenceinpredictingfuturecashflow.Lorek
BCNmodel,intime-seriesandcross-sectionalanalysis respec-tively,andfoundthattime-seriesmodelgeneratesmoreaccurate result.Thisresultisnotsurprisingsincecross-sectional estima-tion treats all firmsas homogeneous, whichis hardly truein reality.TheDKWandBCNmodelsusetheindirectmethodto measurecashflow,i.e.theycalculatecashflowcomponentfrom netincomeandadjusttheresultswithaccrualterms.IntheUSA, statement of FinancialAccounting Standards (SFAS)No 95 issuedin1988allowedthedisclosureofdirectmethodcashflow statement.Therefore,cashflowsafter1988aredirectlyavailable fromthecashflowstatement.ChengandHollie(2008)partition cashflowcomponentsintocoreandnon-coreones,andanalyzed theirpersistenceforfuturecashflowdetermination.Thestudy defines corecashflowcomponentsas cashflowsfrom:sales, costofgoodssold,andoperatingandadministrativeexpenses Thenon-corecashflowcomponentsareinterest,taxes,and oth-ers.Whentheseregressorsareappliedinapredictionmodel,the adjustedR2isslightlygreaterthantheBCNversion.Similarly,
cashflowstatementenhancescashflowmodelingisexamined Their reported cash flow forecast model had adjusted R2 of 43%,althoughtheirsamplewassmaller(comparedtopre-1989 studieswhenSFASNo.95hadnotbeenpublished).Orpurtand Zang’spaperexaminedwhetheritmakesadifferencein estimat-ingcashcomponentsusingindirectmethodcomparedtousing discloseditemsdirectlyfromthestatementofcashflow.Theydo notdirectlycomparetheaccuracyofforecastmodels.Instead, theyexaminethestatisticalsignificanceofarticulationerrorthat
isdefinedasthedifferencebetweenestimatedcashcomponents and disclosed ones in their regression model Their reported results suggestthatthecoefficientsof articulationerrorterms arestatisticallysignificantandthusthatarticulationerrorshave incrementalinformationforcashflowforecast.Ithenceimplies thatthedirectmethodforcashflowsdisclosureismore informa-tiveinpredictingfuturecashflowthanindirectmethodstatement
Trang 3of cashflow The direct method is not applicable for South
Africanfirms;thereforeinthispapercashdisaggregationwill
bebasedontheindirectmethoddescribedinOrpurtandZang’s
paper
Severalresearchershaveexaminedfactorsthatinfluencethe
accuracyofcashflow prediction.Forexample,Brochet etal
tocash flow shocks and discretionary accruals mightreduce
accrualscontributiontocashflowprediction.They arguethat
positiveaccrualsand/orhighcashflowvolatilityareassociated
withhigherpredictiveabilityofaccruals.Someresearchers
sug-gestafirms’past poor performancetendstobeimprovedby
managers,whichcouldleadtohigherpredictedfuturecashflow
betterprivateinformation, sotheycanprovide moreaccurate
predictionthanothers(PaeandYoon,2012)
Discretionaryaccrualsmaybeincomeincreasingorincome
decreasing,depending on managers motivations Badertscher
man-agement, including discretionary accruals and real operation
managementon cashflowprediction They arguethat
oppor-tunisticbehavioron thepart of managerscanlead totheuse
ofdiscretionary accrualstohidethefirm’s truesituation as a
meansformanagement tomaintain theirequity value
There-fore,manipulatedstatementsusedasinputswouldreducetheir
abilityforcashflowprediction.Ontheotherhand,management
mayusediscretionaryaccrualstosignaltheirtrueviewofthe
firm’sfuture.Insuchasituation,amanagement’sstatementsof
discretionaryaccrualscouldhaveabetterpredictiveabilityof
futurecashflow.Therefore,whetherdiscretionaryaccrualscan
enhanceoradverselyaffectcashflowforecastdependsonthe
motivationbehindthemanipulation,ifany,bymanagers
When managers are motivated to manipulate
non-discretionary information to suit their own selfish ends,
non-discretionary information could be revealing or masked,
makingthe variablesmoreor less informativeinforecasting
Anumberof researchershave suggestedmethods toidentify
discretionaryaccruals[seeJones(1991),Dechowetal.(1995)
dis-cretionaryproblem,accrualwouldresultinvaryingcoefficient
onrelevantvariables.DechowandGe(2006)showthatunder
differentaccruallevel, firmscashflowshavedifferent
persis-tenceandthecorrelationsbetweencashflowsandaccrualsalso
dependsonaccruallevel.AnotheroptionforManagerstodistort
financialstatementsinordertomeetreportinggoalsisthrough
realactivitiessuchasthosediscussedinRoychowdhury(2006)
Suchoperations includeprice discounts, reduction of
discre-tionaryexpendituresandsoon
Thisstudymakesanumberofcontributions.First,thescant
numberofstudiesoncashflowstudiesindevelopingeconomies,
suggest the need for more studies in the area as the results
elsewherearenotdirectlytransferableduetodifferentbusiness
andoperationalenvironments.Secondly,applicationofmodels
basedonstudieselsewheremaynotsuitadevelopingcountry
setting.Thirdly,giventhenatureandimportanceofcashflows
forfirms,investors,creditorsandpolicymakers,amongothers,
thecurrentstudyisamajoradditiontotheextantliterature
basicrelationship:
whereCFdenotescashflowfromoperation,SALEdenotessales,
ARdenoteschangesinaccountreceivable,Pdenotespurchase andAPdenoteschangesinaccountpayable.Termsinthefirst parenthesisrepresentscashinflowwhilethesecondparenthesis representingcashoutflow.Withseveralassumptionsonfirm’s operatingactivities,DKWmodelsuggeststhattheexpectation
offuturecashflowsiscurrentearnings:
useddirectlyasapredictor,shouldbedisaggregatedintocash flowandseveralaccrualtermsasthecomponentsprovide dif-ferentpredictivepowerforfuturecashflowsuggestedbytheir theoreticalmodelbelow:
whereINVdenoteschangesininventoryandothertermsareas definedpreviously.ComparedtoDKWmodel,theparameters
onthecomponentsofearningsareallowedtodiffer.AsBCN modelislessrestrictive,itoutperformstheDKWmodelincash flowprediction(seeBarthetal.,2001)
Beyond theseaccrualterms,Cheng andHollie (2008)and
non-core components in orderto examine the persistence of thesecomponentsincashflowprediction.InChengandHollie
wherethetermsinthefirstparenthesisarecashreceivedfrom sales,cashfromcostof goodssold,cashrelatedtooperating andadministrativeexpenses,cashusedtopaytax,cashfor inter-estpayment,andothercashcomponents,respectively.Thefirst threearedefinedascorecashcomponentsandthelatterthreeare non-core components.The cashflow disaggregationexplores additionalinformationthat could beobtained from cashflow statement under direct method disclosure Cheng andHollie thususedisaggregatedcashcomponentsandalsoaccrualterms definedinBCNmodelaspredictorsforcashflow.Theempirical resultssuggestthatsuchcashflowdisaggregationdoesimprove the accuracy of BCN model,however the effectis minor.In ChengandHollie’spaper,model(4)hasareportedR 2of39.83% andBCNmodel(withcashflowun-disaggregated)hasreported
R2of38.49%.InU.S.,beforethepublicationofSFASNo.95,
Trang 4operationneededtobeestimatedusingbalancesheetandincome
statement.OrpurtandZang(2009)alsosuggestthatdirect
dis-closureofcashcomponentsprovidesincrementaleffectoncash
flowprediction.Theyintroduceaconceptofarticulationerror,
whichis defined as the difference between cashcomponents
estimatedusingbalancesheetandincomestatementandones
thatareactuallydisclosed(directmethod)instatementofcash
flow.Somestudiesreportthatthedirectmethodcashflow
state-mentismoreinformativeinpredictingcashflow(seeArthurand
setting).Forfirmsthatdonotprovide directmethodcash
dis-closure,suchincrementalbenefitcannotbeexploitedbutcash
disaggregationcanstillbedone.Inthispaper,wemodelSouth
AfricancashflowsbydisaggregatingcashflowfollowingOrpurt
CF t=CFIN t−CFOUT t−INT t−TAX t
= (SALE t−AR t) − (COG t+OE t+INV t−AP t)
−INT t−TAX t+AE t ,
(5)
wherenetoperatingcashflowisequaltocashinflow(CFIN)
minus cashoutflow (CFOUT whichis paid to suppliers and
employees)andinterest andtaxcashpayment (INT andTAX
respectively).Thefirstandsecondbracketsinthesecondlineof
Eq.(5)measurestheestimatedcashinflowandoutflow
respec-tively,usinginformationinbalancesheetandincomestatement;
interestandtaxpayment incasharealsoincluded, whichare
directlydisclosedindependentofthereportformat.The
differ-ence between disclosed actual cashflow from operation and
these four components is termed as articulation error (AE),
shownasthefinaltermintheequation
Thispaperstartswithacomparisonof twoempirical cash
flowpredictionmodelsfollowingOrpurtandZang(2009):
ModelI: CF t+1=β0+β1CF t+β2AR t+β3INV t
+β4AP t+β5DDA t
+β6INT t+β7TAX t+ε t+1 , (6)
ModelII: CF t+1=β0+β1CFIN t+β2CFOUT t+β3AE t
+β4DDA t+β5AR t+β6INV t
+β7AP t +β8INT t+β9TAX t+ε t+1 ,
(7) Allthevariablesarethesameaspreviouslydefined.βsare
parameterstobeestimated.ModelIistheempiricalBCNmodel
with the addition of interest and tax payment as predictors
ModelIIfurtherdisaggregatesthecashflow terminmodelI
CashinflowandcashoutflowareestimatedbasedonEq.(5)
ModelIIinprincipleissuperiortomodelIintwoways:
disaggre-gatingcashflowincorporatesinformationof otheraccounting
itemssuchassalesandallowscashcomponentstohavedifferent
persistence
Apartfromabovementionedlinearregressionmodels,this
paperalsointroduceautoregressivemovingaveragemodelwith
exogenous variables(ARMAX)developedby Whittle(1951)
(see Boxetal.,2008for details).Thisisatimeseries model andthispaperattempttoadaptittopaneldataapplication.The generalmodelARMA(1,1)withexogenousvariablesiswritten as:
whereεdenotesthemovingaverage(MA)termsandXdenotes exogenousvariables.Themovingaveragetermsdependsonthe model parameters,thereforetraditionalOLS methoddoesnot apply andwe usemaximumlikelihood estimators (MLE) for parameterestimation
In practicalapplication, amulti-period-aheadpredictionof cashflow maybeof greater importancethanasingleperiod Theabovementionedmodelsaresimpletoadapttosuch require-ment.Theusualwayistoadjustthelaglengthbetweentarget variableanditspredictivevariables.Forone-period-ahead pre-diction,asdiscussedabove,theexplanatoryvariablestakeone lag values.Thus,consideringtwo-period-aheadpredictionfor example,theexplanatoryvariablesshouldtakevaluesof their second lag.Thedisadvantageof suchmethodappearscritical for long term forecast where data covering a long period is demanded but notalways available Moreover,when the his-torical datais too outdated, the informationthey contain for predictionpurposesmaybelimited.Todealwiththisproblem,
weapplyvectorautoregressive(VAR)model(Sims,1980).VAR modelispresentedas(takeoriginalBCNmodelasexample):
⎡
⎢
⎢
⎢
⎣
⎤
⎥
⎥
⎥
⎦
=A+B
⎡
⎢
⎢
⎢
⎣
⎤
⎥
⎥
⎥
⎦ +et , (9)
whereAandeare 4×1 vectorsofconstantsanderrorterms respectively,Bisa4×4parametermatrix.ThereforeVARcould capturetheevolvementofnotonlycashflowbutalsoother pre-dictorsthroughtime.OncetheparametersAandBareestimated,
wecouldapplytheVARmodeloflagonetoforecastasmany periodsaheadasneeded.Theforecastequationiswrittenas:
⎡
⎢
⎢
⎢
⎣
1
⎤
⎥
⎥
⎥
⎦
=
1 0
A B
p
⎡
⎢
⎢
⎢
⎣
1
⎤
⎥
⎥
⎥
⎦
where0isa1×4vectorofzeros;pisthenumberofperiods aheadtobeforecast
In the laterempirical section, we willstart from compari-sonbetweenmodelIandmodelIIexaminingthe incremental powerofcashflowdisaggregationincashflowprediction.Also examined isthe effectof including twolags of predictorson models withinclusionofonlyonelagof predictors.Thenwe introduce ARMAXmodel.Withinclusionof movingaverage (MA)term,wecouldinthefirstplaceseewhetherthismodel providemoreaccurateforecastandsecondlyshowthedirection
Trang 5Finally,we applyVARmodeltopredict two-year-ahead cash
flow,incomparisonwithregressionmodelwithcashflowasthe
onlydependentvariable
3 Data
ThisstudyusesdataforSouthAfricanfirmscollectedfrom
Datastream.Allfirmslisted onJohannesburgStockExchange
areincludedinthestudy.Cashflowdatabefore1994isnot
avail-able,sothesamplespansfrom1994to2012.Thefollowingitems
aregatheredforeachfirm:revenuefromsales(SALE),costof
goodssold(COST),selling,generalandadministrativeexpenses
(SGA),depreciation,depletionandamortization(DDA),account
payable (AP), account receivable (AR), inventory (INV), net
operatingcashflow(CF),interestpaidincash(INT),andtax
paidincash(TAX),11 variablesintotal Changes inaccount
payables,receivablesandinventory, cashinflow,cashoutflow
andarticulationerrorarenotprovideddirectlysotheyare
cal-culatedmanually.Selling,generalandadministrativeexpenses
(SGA)areusedtorepresentotherexpenses(OE)inEq.(5).All
variablesaredeflated byaverage totalassetsfor eachfirm in
ordertosmooththepotentialeffectoffirmsizes.Firmsthatdo
nothaveavailabledataforallthesevariablesareexcluded.The
wholesamplecontains192firmswith1021firm-year
observa-tions.Thepanelisunbalanced,i.e.firmshaveunequalnumber
ofobservations.Forregressionanalysis,alltheexplanatory
vari-ablesarelagged;thereforethefinalsampleisfurtherreduced
Formodels withonelag periodof explanatory variables, the
samplecontains791 firm-yearobservationsintotalandthere
are623firm-yearobservationsformodelestimation withtwo
lagperiodsofexplanatoryvariables
4 Empirical results
Itisworthnotingthataveragesalesis1.857timesaveragetotal
assets.Thestandarddeviationofsalesis1.748,suggestingthat
thesampleishighlydispersed.Netoperatingcashflowdeflated
by averagetotal assetshas a mean of 0.127 Eq (5) is used
toestimatecashinflowandoutflowandarticulationerror.The
estimatednetoperatingcashflowhasarelativelylowcorrelation
withthe disclosedactual value andthus cashflow estimated
indirectlymightcausesomenoiseincashflowforecast
Inthisstudy,allfirmsaretreatedas homogeneousandthe
modelsdescribedinprevioussectionareestimatedusingpooled
methods.Thesampleispartitionedintoestimationperiodfrom
1995to2009,andout-of-sampletestperiodfrom2010to2012
The estimation sample contains 579 firm-year observations
andthetestsample 212.The parametersestimatedin-sample
areappliedout-of-samplefor performancecomparison.R2 of
Table 1 Descriptive statistics.
Note:All variables are deflated by average total assets of each firm.CFINdenotes Cash inflow,CFOUTfor cash outflow, and AE is short for articulation error These three terms are calculated by Eq (6) Note there are three extra‘AE’s.
Due to the fact that not all firms report interest and/or tax paid in cash in their operative cash flow section, Eq (6) is not accurate for some firms I exam-ined three more calculations of net operating cash flow: 1.CFIN–CFOUT;2.
CFIN–CFOUT–INT;3.CFIN–CFOUT–TAX,assuming every firm must lie in one of the four groups Estimated cash flow using method 1 has the highest correlation with actual value (0.69) whereas the one deducting both interest and tax cash payment has the lowest correlation among the four (0.65) However, note that the mean of articulation error is much lower when Eq (6) is adopted Therefore, Eq (6) is still the default formula for articulation error.
differentmodelsarethencomparedtodeterminethebest pre-dictingmodel
ModelIissetasthebenchmarkmodel.ModelII disaggre-gatescashintodifferentcomponents.Theresultsareshownin
signifi-cance.Numbersinparenthesisaret-statisticsforeachparameter With regards to the bench mark model I, lagged cash flow, changesinaccountreceivable,changesinaccountpayable,and taxcashpaymentaswellastheintercepttermsarestatistically significant,whereaslaggeddepreciation,depletionand amorti-zation(DDA),changesininventory,andinterestcashpayment arenot statisticallysignificant.Thisisnotconsistentwiththe reportedresultsofBCNmodelusingU.SdataandFarshadfar
is no direct explanationwhy DDA should be usefulin cash flow forecast Changes ininventory andinterestpayment are itemsthatdirectlyrelatetocashflowbecausetheymeasure pro-portionsofcashoutflow.Forthesethreeitems,SouthAfrican datashowsmuchweakerpredictivepowerthanstudiesforother countries.R2 is0.54 for model I,whichismuchhigher than that reportedin studieson U.S data Forexample, in Cheng
morethan40% Ittherefore impliesthat SouthAfricanfirms have less variable cash flows than U.S firms Model II has higher adjusted R2 as cashdisaggregation incorporates extra information frombalance sheetand incomestatement How-ever,the out-of-sampletestshowsthat modelIIprovidesless accurate predictionthan model I The additionalinformation
Trang 6Table 2
Regression results for one period lag models.
Lagged variables
Estimation period
(18.5)
( −18.37)
(6.33)
( −6.34) ( −5.95) ( −5.99) ( −8.41) ( −5.59)
( −5.51) ( −5.15) ( −5.17) ( −6.58) ( −4.81)
( −12.50) ( −13.85) ( −7.01) ( −10.61) ( −7.23) ( −6.72) ( −10.89)
Test period
Note:Asterisks indicates significance at levels of 5% Numbers in parentheses are corresponding t statistics.
Model I:CF t=β0 +β1CF t−1 +β2ΔAR t−1 +β3ΔINV t−1 +β4ΔAP t−1 +β5DDA t−1 +β6INX t−1 +β7TAX t−1 +ε t.
Model II:CF t=β0 +β1CFIN t−1 +β2CFOUT t−1 +β3AE t−1 +β4DDA t−1 +β5ΔAR t−1 +β6ΔINV t−1 +β7ΔAP t−1 +β8INX t−1 +β9TAX t−1 +ε t.
Model III:CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7INV t−1 +β8AP t−1 +β9INX t−1 +β10TAX t−1 +ε t Model IV:CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7AP t−1 +β8INX t−1 +β9TAX t−1 +ε t.
Model V:CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7AP t−1 +β8INV t−1 +β9TAX t−1 +ε t.
Model VI:CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7AP t−1 +β8INV t−1 +β9INX t−1 +ε t.
Model VII:CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7AP t−1 +β8TAX t−1 +ε t.
doesnotimprovethemodel’spredictivepower.Secondly,itis
noteworthythatchangesininventoryandinterestpaymentare
significantwhiletaxpaymentisinsignificantinmodelII.Model
IIappearstoprovidedifferentinferencesthanmodelI.To
fur-therexaminethisproblem,wedevelopmodelIIIbyreplacing
thecashdisaggregatedcomponentswithrevenuefromsales,cost
ofgoodssoldandselling,generalandadministrativeexpenses
(SGA):
ModelIII: CF t+1=β0+β1CF t+β2SALE t+β3COST t
+β4SGA t+β5DDA t+β6AR t
+β7INV t+β8AP t+β9INT t
+β10TAX t+ε t+1 (11)
ModelsIIIusesthesameinformationasmodel II,so their in-sample fitness and out-of-sample performance are almost the same Models III nonetheless suggests that tax payment
is significant,withchanges ininventory andinterest payment also significant From model I toIII,we seethat parameters
ofchangesininventory,interestpaymentandtaxpaymentare not consistent.This couldbe dueto collinearitybetween the explanatoryvariablesincludedinthemodels.ModelsIVtoVI thatinturnremovechangesininventory,interestpayment,tax paymentfrommodelIIIoneatatimearethenbuilttoexamine theeffectsoftheseexcludedvariables.Whenchangesin inven-toryareremovedasinmodelIV,theothertwovariablesareboth significant.Theout-of-sampleperformanceishighlyenhanced Therefore,changes ininventoryactually deterioratethe mod-elswhenweincludevariablesfromincomestatement.Thecase
Trang 7Table 3
Comparison of sum squared errors of model I and VII with different division of
sample.
a
b
Note:the numbers in the table are sum squared errors of out-of-sample prediction
for model I and VII Bold numbers denotes they are the smaller of the two models
during different test year, suggesting the model is better than the other in that
particular test year.
issimilarforinterestpayment,whichisremovedinmodel V
TheR2intestperiodalsoincrease,thoughnotasremarkably
asmodelIV.Whentaxpaymentisremoved,modelVIreports
declinedout-of-sampleR2,suggestingthattaxpaymentcouldbe
actuallyprovidingincrementalinformation,withoutwhichthe
model’spredictiveperformanceisharmed.Inaddition,changes
ininventoryinmodelVIbecomeinsignificantbeingconsistent
withmodelI.Fromthecomparisonofthese6models,itcanbe
concludedthat changesininventory andinterestpayment are
notveryinformativeincashflowforecasting,andevenworse,
wemaysignificantlyreducethepowerofthemodelsbyadding
extravariablesfrom incomestatement Asaresult, for
mod-elsincludingsales,cost,andotherexpenses,itisbeneficialto
removechangesininventoryandinterestpaymentfromtheset
ofexplanatoryvariables.ThisgivesmodelVII:
ModelVII: CF t+1 =β0+β1CF t+β2SALE t+β3COST t
+β4SGA t+β5DDA t+β6AR t
+β7AP t+β8TAX t+ε t+1 (12) TheestimationresultsarealsoreportedinTable2.Thesigns
ofparametersareconsistentwithexpectationforcost,expenses,
andchangesinaccountpayablesastheyarenegativelyrelated
withnetcashflow.Notethatselling,generalandadministrative
expenses’effecton one-period-aheadcashflow isof slightly
lowermagnitudethancostofgoodssold.ModelVIIhashigher
out-of-sampleR2thanmodelIItoVI,validatingthepointthat
removingchangesininventoryandinterestpaymentwhensales,
cost,andSGAarepresentprovidessuperiormodel.Howeverthe
R2isstilllowerthanthatofmodelI,despitetheadditionofextra
information.Thetestperiodsamplecontainsthreeyearsofdata,
2010,2011and2012.ModelVII,duetoitsinclusionofmore
variables,shouldhavestrongerpredictivepower,atleastduring
theyearthatimmediatelyfollowstheendofestimationsample
Therefore,modelVIIisexpectedtooutperformmodelIatleast
during2010.Toexaminethispoint,sumsquarederrors(SSE)
arecalculatedforeachyearintestperiod,whichareshownin
out-of-sampleprediction LowerSSEmeanshigher accuracy,
andaredisplayedinbold.TheresultsshowthatmodelVII
pro-videsabetterperformanceatthestartofthepredictionperiod
butperformlesswellinlateryears.Thisphenomenoncouldbe duetothechangingenvironmentthroughtime,whichmayresult
inlittlepersistenceoftheestimatedparameters.Ifthiswerethe case,theparameterswouldbebettertobeupdatedyearbyyear
Inattempttoarguethispoint,thesampleisthenfurther parti-tionedwiththeperiod1995–2010asestimationperiodand2011 and2012astestperiod.TheSSEfor2011and2012are recal-culatedandtheresultsareshowninTable3sectionb.Similar
tothereportedresultsinpanela,modelVIIdoesperformbetter
in2011butworsein2012.ThebenchmarkmodelIissimpler andmorepersistentlyeffectivethanmodelVIIwhilemodelVII could provide betterone-period-aheadpredictionifestimated withupdateddata
Priorstudiesfocus mainlyononelagperiodofpredictors, butitisnaturaltoaskwhetherfurtherpastexplanatoryvariables containpotentialinformationthatareincrementaltocashflow prediction.ModelsIandVIIareseparatelyestimatedtwice,the firsttimewithonelagofpredictorsandthesecond timewith twolags,sowecouldcomparethedifferencemadebyinclusion
ofonemorelagperiodofpredictors.Itisexpectedthat mod-elswithtwo lagsofindependentvariablesshouldperformno worsethantheirone-lagcounterparts.Theresultsareshownin
dataarerequired.Table4showssomesignificantdifferencesto thereportedresultsinTable2.Forexample,foronelagversion
ofmodelI,changesininventoryandinterestpaymentbecome significant.ItcanbeseenthatmodelVIIthatexcludesthetwo variableshaslowerin-samplefitbasedonR2fortheonelag ver-sion.AdditionalvariablesaddedtomodelVIIfromtheincome statement becomeinsignificant.The out-of-sampleR2 for the fourmodels areclose ModelVIIunderperformsmodel I,no matterhowmanylagsareincluded.However,itisnoteworthy thatformodelI,out-of-sampleperformanceoftwo-lagmodel
isslightlyworsethanone-lagmodelwhileformodelVII, two-lagmodelismarginallybetterthanone-lagmodel.Sumsquared errorsfordifferentyearsarealsocomparedinTable5.The differ-encebetweenmodelIandVIIhasdeclinedremarkably.Model VIIoutperforms model Ifor 2010,thestart of theprediction period,whichisconsistentwiththeresultsreportedinTable3
butunder-performsforthefollowingtwoyears.Inaddition,for modelI,two-lagmodelisbetterthanone-lagmodelin2010,but
itistheoppositefor2011and2012,whileformodelVII, the two-lagmodelisgenerallybetterthanone-lagmodelexceptin
2012.Itcanbetoldfromthesecomparisonsthatfornearfuture prediction, model VIIisabettermodel, especiallywhen two lagsofexplanatoryvariablesareincluded
In summary, this section examines different combinations
of predictorsin one-period-ahead cashflow forecasting The benchmark model uses least variablesandits performanceis consistentinsampleandoutofsample.DDA,changesin inven-tory andinterest paymentare insignificant,whichis different fromstudiesinothercountries.Modelsincorporatingincome statementinformationseemtomakeworseout-of-sample pre-diction.However,whentwolagsofindependentvariablesare included in prediction models, results differ in several ways whichsuggeststhat variableinclusion incashflowmodeling shouldbetreatedwithcare
Trang 8Table 4
Comparison of model I and VII with different lags of independent variables.
Model I, one lag Model I, two lags Model VII, one lag Model VII, two lags
Lagged variables
Estimation period
Test period
Note:Asterisks indicates significance at levels of 5% Numbers in parentheses are correspondingtstatistics.
L1 and L2 denotes the variable of first lag (timet− 1) and second lag (timet− 2) respectively Model I and model VII are compared when different periods of lagged predictors are applied.
Table 5
Sum squared errors for model I and VII with different lags of independent variables.
Note:the numbers in the table are sum squared errors of out-of-sample prediction for model I and VII Bold numbers denotes they are the smaller of the two models during different test year, suggesting the model is better than the other in that particular test year.
ARMAXmodel explores thepersistence of boththe main
variableandtheerrorofthemodelovertime.Itseemsthatthe
linearregressionmodeldescribedabovecanbetreatedasfirst
orderautoregressivemodelwithexogenousvariables,orsimply
ARX(1,1).One-period-laggedcashflowisthefirstorder
autore-gressivevariableandtheotheraccountingvariablesaretreated
asexogenousvariablesthattakeafirstorderlaggedvalue.For
modelIandmodelVII,weincludeafirstordermovingaverage
term.Thetwomodelsforcomparisonarespecifiedasbelow:
ModelIwithMA(1): CF t+1=β0+β1CF t+β2AR t+β3INV t+β4AP t+β5DDA t+β6INT t
+β7TAX t+β8ε t+ε t+1 , (13) ModelVIIwithMA(1): CF t+1 =β0+β1CF t+β2SALE t+β3COST t+β4SGA t+β5DDA t+β6AR t+β7AP t
+β8TAX t+β9ε t+ε t+1 , (14)
whereε t denotesthemoving averageterm,anditscoefficient will measureitsrelationshipwithfuturecashflow.Intuitively speaking,themovingaveragetermistheunexpectedshockfor lastperiodcashflow.Therefore,itsparametersmeasureshow shocksinfluencenextperiodforecast.Weusemaximum likeli-hoodestimation(MLE)toestimatetheparameters.Thismethod calculatesthejointlikelihoodforallobservations,andthe esti-mator finds the optimum values for the coefficients that can maximize the likelihood.Assume the conditionalexpectation
Trang 9Table 6
Comparison of linear regression model and ARMAX(1,1) model for model I and model VII.
Lagged variables
Estimation period
Test period
Note:Asterisks indicates significance at levels of 5% Numbers in parentheses are correspondingtstatistics.
Model I with MA(1):CF t=β0 +β1CF t−1 +β2AR t−1 +β3INV t−1 +β4AP t−1 +β5DDA t−1 +β6INX t−1 +β7TAX t−1 +β8ε t−1 +ε t.
Model VII with MA(1):CF t=β0 +β1CF t−1 +β2SALE t−1 +β3COST t−1 +β4SGA t−1 +β5DDA t−1 +β6AR t−1 +β7AP t−1 +β8TAX t−1 +β9ε t−1 +ε t.
ofcashflowisi.i.dbyGaussiandistributionwithconstant
vari-anceσ2.ThecoefficientsobtainedarereportedinTable6.When
the moving average (MA) term is introduced, parameters in
modelI havenotchanged much,andthe MAterm isof low
valueandinsignificant.Out-of-sampletestfor modelIshows
thattheadditionofMAtermhasdonenogoodtothe
predic-tivepowerandhasratherhadanegativeeffect.TheMAtermin
modelVIIisstatisticallysignificant.Thepositivesignimplies
thatcashflowshocksofoneperiodtendtopersistinthecash
flowofthe nextperiod.Howeverthe additionofMAterm to
modelVIIprovidesaworseout-of-sampleperformanceR2of
0.43comparedto0.49withoutMAterm
Intheprevioustwosections,modelsaredevelopedfor
one-period-aheadcashflowprediction.Thefundamentalideaisto
findtherelationshipbetweencashflowandone-period-lagged
explanatoryvariables.ModelIandmodelVII,asstated
previ-ously,canbetreatedasautoregressive modelwithexogenous
variable.VARmodelsaysthatallexplanatoryvariablescanbe
consideredasavectorofendogenousvariablesthatdependon
vectors of their laggedvalues In this way,the whole vector canbeforecastrecursively.In thissection,lag-tworegression andVARformofmodelIandmodelVIIareexaminedin two-period-aheadprediction.Theestimationperiodisfrom1996to
2009,andtestperiodis2011and2012.Thereisareasonfornot testingperformancein2010.When2010cashistobeforecast, eitherlag2modelorVARmodelrequiresdatain2008asinput ForVARmodel,2008datafirstisusedtopredict2009,andthen
weusethe2009predictiontofurtherpredict2010.Recallthat datafrom2008to2009isalreadyusedinparameters estima-tionhenceVARmodelfor2010predictionisnotpurelyoutof thesample,andthecomparisonwouldhavemisleadingresults With thisconcern, year2010 areexcluded fromcomparison Themainconcernofthissection istocompareout-of-sample predictivepowerofdifferentmodels,soonlythecomparisonof sumsquarederrorsforeachyeararelistedwhereasregression resultsarenotreported
and 2012 separately The result is obvious that VAR model for model I hasoutperformed the otherthreemodels inboth years For both model I and model VII, regression model and VARmodel havevery similarresults in 2011,but VAR
Trang 10Table 7
Comparison of sum squared errors for model I and VII in two- period-ahead
prediction.
Model ILag 2 Model IVAR Model VIILag 2 Model VIIVAR
Note:the numbers in the table are sum squared errors of out-of-sample prediction
for model I and VII Bold numbers denotes they are the smaller of the two models
during different test year, suggesting the model is better than the other in that
particular test year.
form is much better in year 2012 prediction It is simple
andstraightforwardtoextendthepredictiontolongerperiods,
and the result from this test is very encouraging for further
studies
5 Conclusion
Previous studieson cash flow prediction mainlyfocus on
theinformationprovidedinfinancial statements.Studiessuch
and how disaggregating accruals into its major components
enhancescashflowprediction.Thisstudyappliesanumberof
modelstocashflowdataforSouthAfricanfirms.Threemain
cashflow modelsareinvestigatedinthisstudy,mainly, linear
regression,whichhasbeenwidelyadoptedinsimilarand
rele-vantstudies,movingaveragemodel,whichismostlyappliedin
time-seriesanalysis,andvectorautoregressivemodel,thathas
beenwidelyappliedinmacroeconomicsandfinance.Thelatter
twotypesofmodelsareappliedforthefirsttimetocashflow
prediction
Theresultsreportedinthisstudycontrastthatreported
else-where Disaggregating cash flows into its major components
doesnot appeartoenhancecashflowpredictionforthe
aver-ageSouthAfricanfirmscomparedtoresultsreportedbyBarth
Australianfirms.Theresultssuggestthatimplicationsof
stud-ies conducted elsewhere cannot be extrapolated across other
countrieswithouttakingintoaccountcountrycontextand
dif-ferences.The reportedresultsinthisstudy show thatmodels
incorporatingincomestatement informationseemtoresult in
worse out-of-sample prediction However, when two lags of
independentvariablesareincludedinpredictionmodels,results
differ inseveral ways whichsuggests that variable inclusion
incashflowmodeling inSouthAfricashouldbetreatedwith
caution In addition, predictionaccuracy, as measured by R2
for South African firms are high compared to extant studies
elsewhere.Studiesoncashflowpredictionpoolallfirms’data
togetherandignoreheterogeneitythatexistsamongfirmsand
industry Thereisthereforethe needfor studiesoncashflow predictionthatfocusonindustryandindividualfirms
Acknowledgement
Theauthorsappreciatethecommentsbytheparticipantsat AfricanAccountingandFinanceAssociation3rdAnnual Con-ference,2013,UgandaandthefinancialsupportbyKelvinSmith scholarshipfromUniversityofGlasgow
References
Arthur, N., Chuang, C., 2006 Ias 7 Alternative Methods of Disclosing Cash Flow from Operations: Evidence on the Usefulness of Direct Method Cash Flow Disclosures Working Paper The University of Sydney.
Badertscher, B.A., Phillips, J.D., Pincus, M., Rego, S.O., 2009 Earnings man-agement strategies and the trade-off between tax benefits and detection risk:
to conform or not to conform? Account Rev 84, 63–97.
Barth, M., Cram, D., Nelson, K., 2001 Accruals and the prediction of future cash flows Account Rev 76, 27–58.
Box, G.E., Jenkins, G.M., Reinsel, G.C., 2008 Time Series Analysis: Forecast-ing and Control John Wiley & Sons, Hoboken, New Jersey.
Brochet, F., Nam, S., Ronen, J., 2008 The Role of Accruals in Predicting Future Cash Flows and Stock Returns Working Paper, Available at SSRN 1126022 Cheng, C., Hollie, D., 2008 Do core and non-core cash flows from operations persist differentially in predicting future cash flows? Rev Quant Finance Account 31, 29–53.
Dechow, P., Kothari, S., Watts, R.L., 1998 The relation between earnings and cash flows J Account Econ 25, 133–168.
Dechow, P.M., Ge, W., 2006 The persistence of earnings and cash flows and the role of special items: implications for the accrual anomaly Rev Account Stud 11, 253–296.
Dechow, P.M., Sloan, R.G., Sweeney, A.P., 1995 Detecting earnings manage-ment Account Rev 70, 193–225.
Farshadfar, S., Monem, R., 2013 Further evidence on the usefulness of direct method cash flow components for forecasting future cash flows Int J Account 48, 111–133.
Francis, R.N., Eason, P., 2012 Accruals and the nạve out-of-sample prediction
of operating cash flow Adv Account 28, 226–234.
Jones, J.J., 1991 Earnings management during import relief investigations J Account Res 29, 193–228.
Kothari, S.P., Leone, A.J., Wasley, C.E., 2005 Performance matched discre-tionary accrual measures J Account Econ 39, 163–197.
Lorek, K.S., Willinger, G.L., 2010 Time series versus cross-sectionally derived predictions of future cash flows Adv Account 26, 29–36.
Ogneva, M., 2012 Accrual quality, realized returns, and expected returns: the importance of controlling for cash flow shocks Account Rev 87, 1415–1444.
Orpurt, S., Zang, Y., 2009 Do direct cash flow disclosures help predict future operating cash flows and earnings? Account Rev 84, 893–935.
Pae, J., Yoon, S.-S., 2012 Determinants of analysts cash flow forecast accuracy.
J Account Audit Finance 27, 123–144.
Roychowdhury, S., 2006 Earnings management through real activities manip-ulation J Account Econ 42, 335–370.
Sims, C.A., 1980 Macroeconomics and reality Econometrica 48, 1–48 Whittle, P., 1951 Hypothesis testing in time series analysis Hafner Publishing Company, New York.