1. Trang chủ
  2. » Giáo án - Bài giảng

cadmium alters the formation of benzo a pyrene dna adducts in the rptec tert1 human renal proximal tubule epithelial cell line

10 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 662,11 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

c o m / l o c a t e / t o x r e p epithelial cell line a Graduate Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA 70112, United States of America b

Trang 1

j o u r n al ho me p ag e : w w w e l s e v i e r c o m / l o c a t e / t o x r e p

epithelial cell line

a Graduate Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA 70112, United States of America

b Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans,

LA 70112, United States of America

c Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112,

United States of America

Article history:

Received 14 June 2014

Received in revised form 7 July 2014

Accepted 8 July 2014

Available online 14 July 2014

Keywords:

Mixtures toxicology

BPDE-DNA adducts

Renal cancer

RPTEC/TERT1

Previously,wedemonstratedthesensitivityofRPTEC/TERT1cells,animmortalizedhuman renalproximaltubuleepithelialcellline,totwocommonenvironmentalcarcinogens, cad-mium(Cd)andbenzo[a]pyrene(B[a]P).Here,wemeasuredBPDE-DNAadductsusinga competitiveELISAmethodaftercellswereexposedto0.01,0.1,and1␮MB[a]Pto deter-mineifthesecells,whichappearmetabolicallycompetent,produceBPDEmetabolitesthat reactwithDNA.BPDE-DNAadductsweremostsignificantlyelevatedat1␮MB[a]Pafter18 and24hwith36.34±9.14(n=3)and59.75±17.03(n=3)adducts/108nucleotides respec-tively.Formixturestudies,cellswereexposedtoanon-cytotoxicconcentrationofCd,1␮M, for24handsubsequentlyexposedtoconcentrationsofB[a]Pfor24h.Underthese condi-tions,adductsdetectedat1␮MB[a]Pafter24hweresignificantlyreduced,17.28±1.30 (n=3)adducts/108nucleotides,incomparisontothesameconcentrationatprevioustime pointswithoutCdpre-treatment.WeexploredtheNRF2antioxidantpathwayandtotal glutathionelevelsincellsaspossiblemechanismsreducingadductformationunder co-exposure.Resultsshowed asignificantincreaseintheexpressionofNRF2-responsive genes,GCLC,HMOX1,NQO1,after1␮MCd×1␮MB[a]Pco-exposure.Additionally,total glutathionelevelsweresignificantlyincreasedincellsexposedto1␮MCdaloneand1␮M

Cd×1␮MB[a]P.Together,theseresultssuggestthatCdmayantagonizetheformation

ofBPDE-DNAadductsintheRPTEC/TERT1celllineundertheseconditions.We hypothe-sizethatthisoccursthroughprimingoftheantioxidantresponsepathwayresultinginan increasedcapacitytodetoxifyBPDEpriortoBPDE-DNAadductformation

©2014TheAuthors.PublishedbyElsevierIrelandLtd.Thisisanopenaccessarticleunder

theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/)

∗ Corresponding author at: 1440 Canal Street, Suite 2100, New Orleans,

LA 70112, United States of America Tel.: +1 504 988 3910.

E-mail address: jwicklif@tuane.edu (J.K Wickliffe).

Over 90% of kidney cancers originate in the renal proximaltubuleepithelialcellsandareclassifiedasrenal cellcarcinoma(RCC).However,onlyabout2%ofkidney cancercasescanbeattributedtoageneticpredisposition [1,2] The remaining cases occur in otherwise healthy http://dx.doi.org/10.1016/j.toxrep.2014.07.003

2214-7500/© 2014 The Authors Published by Elsevier Ireland Ltd This is an open access article under the CC BY-NC-ND license

Trang 2

evidence of environmental risk factors contributing to

the development of RCC suggests that further scrutiny

ofhumanmutagensandcarcinogensonthecellularand

molecularleveliswarranted[4,5]

Exposuretopolycyclicaromatichydrocarbons(PAHs)

hasbeenassociated withanelevatedrisk ofmany

can-cersincludingskin,lung,bladder,liver,andstomach[6]

PAHsareformedasbyproductsofincompletecombustion

andare ubiquitousin theenvironment.Major routesof

exposureincludeinhalationandingestion,whichcanresult

fromcigarettesmoking,consumptionofgrilledor

contami-natedfoods,andatmosphericpollutionassociatedwiththe

burningoffossilfuels[7].Increasedconsumptionof

char-grilledmeatshasbeenshown todirectlycorrelatewith

elevatedPAH exposureand riskof RCC[8,9].Additional

factorsassociatedwiththedevelopmentofRCCinclude

obesity,smoking,andhypertension[5,10,11]

Theabilityofcells torepairbulky PAH-DNAadducts

maybe altered by the presence of environmental

con-taminantssuchascadmium(Cd).Cdhasbeenshownto

substituteforzincionco-factorsinmanyDNArepair

pro-teinsandenzymesspecificallyresponsibleforrecognizing

andrepairing DNA adducts[12].Cd, aheavy metaland

knownnephrotoxicant,ispresentintheenvironmentin

food,cigarettes,andcontaminated waterrunoff.Human

exposuretoCdoccursprimarilythroughinhalationoffine

particulates(i.e.tobaccosmoke)andconsumptionoffoods

suchasrice,cereal,andmollusks[13].Cdaccumulatesin

theliver,kidneys,andboneandissuspectedtopromote

cancersintheseorgansaswellasinthelungs.Cdlacks

strongmutagenicpropertiesbutmayactasaco-carcinogen

inthebodybyinhibitingDNAdamagerepairprocessesand

increasingoxidativestressincells[14,15]

Because individuals are rarely exposed to

single-chemicalagentsorcarcinogensintheenvironment,itis

importantto studythese compounds ashumans might

encounter them ona dailybasis Exposureto chemical

mixturescanresultintoxicologicaloutcomesthat

substan-tiallydifferfromtheexpectedeffectsofeachcompound

alone.Toxicantsinmixturesmayactthroughsimilaror

distinctlydifferentmechanismsofaction.Chemicalsand

compoundscanactantagonistically,additively,

synergisti-cally,oronechemicalmaypotentiatetheeffectsofanother

[16].Ultimately,theseinteractionsmaysubstantiallyalter

toxicitytodifferentandpossiblyunexpecteddegrees.For

example, in vitro studies have shown that exposure to

binary combinations of PAHs including benzo[a]pyrene

(B[a]P)andbenzo[b]fluoranthene(B[b]F)resultsina

sig-nificantincrease in theformation of DNA adductsthan

exposuretoB[a]Palone.However,exposuretobothB[a]P

and benzo[k]fluoranthene(B[k]F), a similarly structured

PAH,resultsinasignificantreductionintheformationof

DNAadductsthanexposuretoB[a]Palone[17–19].The

opposingresultsthatoccurevenafterexposureto

com-poundsofthesametoxicantclassemphasizetheneedfor

studiesinvestigatingeffectselicitedafterexposureto

mix-turesoftoxicantsfromsimilaranddifferentclasses

In order tostudy the mechanisms of mixture

expo-sure,whichmaypromoteRCC,weutilizedanimmortalized

humanrenalcellline,RPTEC/TERT1.TheRPTEC/TERT1cell

linewasderivedfromtherenalproximaltubule epithe-lialcells(RPTEC)ofanormal,healthymaledonor.These cellswereimmortalizedwiththecatalyticsubunitofthe humantelomerasereversetranscriptaseenzyme(TERT1) [20].Previously,we determined that RPTEC/TERT1 cells exhibit sensitivity and compound-specific responses to B[a]PandCdtreatment[21].Ourresultswereconsistent withcanonicalbiologicalresponsestoboth environmen-taltoxicants and demonstratemetaboliccompetency of the RPTEC/TERT1 cell line To test our hypothesis that

Cdmayalterformation ofadductsafterB[a]Pexposure,

wehaveexploredconcentration-dependentformationof BPDE-DNAadductsthroughcellularbioactivationofB[a]P

We examined the persistence of those adducts under conditionsofpre-treatmentwithCd.Weintendedto deter-mine theeffects of Cdonthepersistence ofBPDE-DNA adductsasafunctionoftime,co-exposure,andoxidative stress

Wehypothesizethatexposuretoabinarycombination

oftheenvironmentalcarcinogens,Cd,aheavymetal,and B[a]P,arepresentativePAH,actstoalterDNAadduct for-mationincomparisontolevelsfoundafterB[a]Pexposure alone AsCdis knowntoinhibittherecognitionand/or repairofPAH-DNAadducts,itisplausibletofind persis-tence of adducts under conditions of co-exposure [22] Alternatively, co-exposuremayresult inanantagonistic responseleadingtotheformationoffewerDNAadducts throughincreaseddetoxificationorinhibitionof bioacti-vation.However,ourpreviousworkintheRPTEC/TERT1 cell line suggeststhat theinhibition of bioactivation is unlikely[21].Theinteractionofchronic,lowlevelexposure

tobothCdandPAHsoveralifetimemayprovidesupport forenvironmentalcontributionstothedevelopmentofRCC

inhealthyindividuals

2.1 Reagents 2.1.1 Chemicals AllchemicalswerepurchasedfromSigma–Aldrich(St Louis, MO) unless noted otherwise Cadmium chloride (CdCl2,202908)wasdissolvedinfreshcompletemedium anddeliveredat0.1%ofthefinalculturevolumetoyieldthe appropriatetargetconcentrations.Benzo[a]pyrene(B[a]P, B1760)wasdissolvedindimethylsulfoxide(DMSO,D8418) anddeliveredat0.05%ofthefinalculturevolumetoyield theappropriatetargetconcentrations.B[a]Ppreparations andexposureswerecarriedoutunderlowlightconditions 2.1.2 DNAisolationreagents

Enzymes used for DNA isolation including RNaseT1, mRNAse A, and proteinase K were purchased from Sigma–Aldrich Tris-buffered saturated phenol, phe-nol:chloroform:isoamyl (25:24:1), and 5 PRIME Phase Lock Gel, light, 15mL tubes for DNA isolation were purchasedfromFisherScientific(Pittsburg,PA)

2.1.3 BPDE-DNAadductELISAreagents Greiner Bio-One microplates (high-binding, white) werepurchasedfromFisherScientific.I-Blockcasein-based

Trang 3

blockingsolutionandCPD-StarSubstrate with

Emerald-II Enhancer were purchased from Life TechnologiesTM

(GrandIsland,NY).PolyclonalBPDE-DNAantiserumwas

kindly provided by Dr Regina Santella Biotin-labeled

goatanti-rabbitsecondaryantibody(Cat#111-065-045)

was purchased from Jackson ImmunoResearch (West

Grove, PA) Streptavidin-alkalinephosphatase conjugate

(Cat #21324) was a product of Pierce and purchased

fromFisherScientific.StandardBPDE-DNAadductswere

prepared fromhighlypurified calf thymusDNA(Sigma,

St Louis, MO) and

benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide(),(anti) from MRIGLOBAL Chemical

Car-cinogen Repository(Kansas City, MO) according to the

proceduresdescribedbyJennetteetal.[23]

2.2 Cellculture

RPTEC/TERT1cellsandculturemediumwerepurchased

fromEvercyteLaboratories(Vienna,Austria),andgrown

accordingtoEvercyte’sinstructions Cellswerecultured

at37◦C ina humidifiedatmospherecontaining5%CO2

RPTEC/TERT1cellswerepassagedapproximatelyonceor

twiceperweekandsubculturedata1:2or1:3ratio.Cell

culturevesselswerepurchasedfromFisherScientificand

CellTreat®ScientificProducts(Shirley,MA)andweretissue

culturetreatedtopromoteadherentcellgrowth

2.3 Cellexposure

Cdwasdissolvedinfreshcompletemediumand

deliv-eredat0.1%offinalvolumetogiveappropriatedoseranges

B[a]PwasdissolvedinDMSOanddeliveredat0.05%final

volume to giveappropriate concentrationranges B[a]P

exposures were conducted under low light conditions

Regardless of exposureformat,final volumepercentage

ofeachchemicalwasmaintained.Forco-exposure

exper-iments, 1␮M Cd was used to pre-treat cells for 24h

beforeB[a]Pexposure.TheCdpre-treatment

concentra-tionwasdeterminedbasedonpreviouscharacterizationof

thecellline’sresponsestovariousCdconcentrations.One

micromolarCdwasthehighestconcentrationtestedthat

showednosignificantcytotoxicityat24-h,48-h,or1-week

post-exposurewhiledemonstratingsignificantlyincreased

cellularresponsesatthelevelofthegeneandprotein[21]

ForDNA isolation,RPTEC/TERT1cellsweretreatedat

confluenceinT75cm2tissueculturetreatedflasks.After

exposuretimepoints,cellswerewashedtwicewithcold

1×PBS,collectedbycentrifugationat4◦C,andstoredat

−80◦CuntilDNAwasisolated.

2.4 Geneexpression

RPTEC/TERT1cellsweregrowntoconfluencein60mm

dishes and exposed to Cd or B[a]P as described above

Cells were exposed in triplicate for each concentration

and time point examined.Total RNAwasisolated from

cells afterappropriate time points using the

QIAshred-der(QIAGEN,79656,Valencia,CA)andRNeasyextraction

kit(QIAGEN,74136)followingthemanufacturer’s

instruc-tion.RNAconcentrationand puritywereassessedusing

aThermoScientificNanodrop2000cspectrophotometer

Table 1

Primer-probe sets used for RPTEC/TERT1 gene expression, Applied Biosystems ® TaqMan ® gene expression assays.

antioxidant

water

followedthemanufacturer’sinstructions:50◦Cfor2min and95◦Cfor10minfollowedby40cyclesof95◦Cfor15s and60◦Cfor1min.Reactionswereconductedin20␮L vol-umeswitheachsamplebeingruninduplicate.Allreactions werecarriedoutusingaBioRadC1000TM thermalcycler equippedwithaCFX96TMReal-TimePCRDetectionSystem 2.5 DNAisolation

GenomicDNAwasisolatedwithastandardphenol chlo-roformextraction Briefly, cellpellets werethawed and incubatedwith1×TEbuffer,RNaseT1,mRNAseA,andSDS for45minat37◦C.Pelletswereincubatedwithproteinase

Kfor60minat60◦Candthenovernightat37◦C Depro-teinized DNA was extracted using 5 PRIME Phase Lock Gellight,15mL,tubestoincreaseyieldfromtheaqueous phase.PrecipitatedDNAwasspooledontoaglasspipette, transferredto70%ethanol,andcollectedbycentrifugation (18,000rcffor10min).EthanolwasdecantedandDNAwas allowedtodry completelybeforereconstitutingin ster-ile,DNAgradewater.DNAconcentrationandpuritywere assessedusingaThermoScientificNanodrop2000c spec-trophotometer

2.6 BPDE-DNAadductELISA BPDE-DNAadductswere measuredbya competitive ELISAmethod[24–26].Briefly,96-wellwhitemicroplates werecoatedbyadding50pgBPDE-substitutedDNAinPBS

toeachmicrowell.TheDNAwassonicatedanddenatured

inaboilingwaterbathfor5minbeforecoating.Plateswere allowedtodry overnightand washed twelvetimes the nextdaywithwashingbuffer(1×PBS/0.05%Tween20).All subsequentwashstepswerealsoperformedtwelvetimes PlatesweretreatedwithI-Block(200␮L/well)for90min

at37◦Ctopreventnon-specificbinding.Standardcurves andsampleswerepreparedbymixingandincubatingwith thepreviouslycharacterizedpolyclonalBPDE-DNA antis-eraat1:3,000,000inI-Blockbuffer[25].A5-pointstandard

Trang 4

adducts/well.Unknown sampleswereassessed at10␮g

DNAperwellintriplicateaftersonication and

denatur-ation.Theplatewaswashedafterincubationwithprimary

antibody,andabiotin-labeledgoatanti-rabbitsecondary

antibody(1:2500inI-Block)wasincubatedwithineach

well for 1h After an additional wash, the plate was

incubatedfor1hwithstreptavidin-alkalinephosphatase

conjugate(1:40,000inI-Block).Afteronemorewashstep,

theCPD-StarSubstratewithEmerald-IIEnhancerwasused

toproduceandamplifysignal.Luminescencewasreadwith

aTecanInfinite®200PROmultimodereader(Tecan,San

Jose,CA)

Adductswerecalculatedforunknownsamplesbased

onpercentinhibitionofthestandardcurveandexpressed

asaveragenumberofadductsper108 nucleotides

Non-specific background signal detected in vehicle control

groupswassubtracted

2.7 Totalglutathioneassay

After determined exposure time points, cells were

trypsinized,collected,andwashedtwicein1×coldPBS

Totalglutathione levels in cells were determinedusing

OxiSelectTMTotalGlutathione(GSSG/GSH)AssayKit(Cell

Biolabs,Inc.,SanDiego,CA)accordingtothemanufacturer’s

instructions Cell isolates werediluted at 1:100 for use

withinthelinearrangeoftheassay

2.8 Statisticalanalysis

One-andtwo-wayANOVAswereperformedusingthe

GraphPadPrismanalyticalsoftware,version6.0(SanDiego,

CA).Datatotalglutathioneassayswereanalyzedusinga

one-wayANOVAandDunnett’smultiplecomparisontests

Dataforgeneexpressionwereanalyzedusingatwo-way

ANOVAandTukey’sposthoctest.An˛of0.05wasusedas

thecriteriafordeterminingsignificance

Generallinearmodelswereusedtotestfordifferences

among treatments, treatment groups, and time points

fortheBPDE-DNA adductELISA WheretheinitialGLM

analysisofvariance(GLM-ANOVA)indicatedasignificant

difference,post hoc mean comparisons wereconducted

usingaTukeycorrection.Statisticaltestingwasconducted

usingIBMSPSSStatisticsversion19software(Armonk,NY)

An˛of0.05wasusedasthecriteriafordetermining

sig-nificance

3.1 BPDE-DNAadductsareformedanddetectedafter

exposuretoB[a]Pbutalteredafterco-exposuretoB[a]P

andCd

After 18h of exposure to B[a]P alone, BPDE-DNA

adducts were detected in RPTEC/TERT1 DNA samples

Althoughthereappearedtobeadose-dependentincrease

in adduct formation after18h, exposureto1␮MB[a]P

wassignificantlyincreasedoverDMSOvehiclecontrolor

lowerconcentrations, 0.01 and 0.1␮M B[a]P.After24h

ofexposureto B[a]Palone, adduct formationwas most

Table 2

BPDE-DNA adducts formed after B[a]P and Cd exposure in RPTEC/TERT1 cells detected by ELISA.

In order to assess the ability of Cd to alter adduct formationandpersistence,adductswereanalyzedunder conditionsofCdandB[a]Pco-exposure.Cellswereexposed

toCdalonefor18and24htoverifytheabsenceofadducts TherewerenoBPDE-DNAadductsfoundabovebackground

ateithertimepointafterCdexposure(datanotshown) For co-exposure, cells wereexposed toa non-cytotoxic concentrationofCd,1␮M,for24h.Cytotoxicityof each compound wasbasedonpreviouswork[21].After24h, cellswereexposedtoDMSOvehiclecontrolor appropri-ateconcentrationsofB[a]Pfor24h.Adductsdetectedin groupsexposedtolowerconcentrationsofB[a]Premained relativelyunchangedbetweentreatmentgroups.However, cellsexposedto1␮MCd×1␮MB[a]Pdemonstrated sig-nificantlyreducedlevelsofadductsincomparisonto1␮M B[a]Paloneateithertimepoint(Fig.1,Table2)

3.2 ExposuretoCdincreasesexpressionofNRF2 responsivegenes

Gene expression changes of the NRF2 responsive genes,glutamate-cysteineligase,catalyticsubunit(GCLC), hemeoxygenase1(HMOX1),andNAD(P)Hdehydrogenase, quinone1(NQO1),wereexaminedafterexposureto deter-mine if Cdalone or Cdand B[a]P togetherappeared to induceanantioxidantresponse thatmayincrease BPDE detoxification and reduce BPDE-DNA adduct formation under co-exposureconditions at 1␮M Cd×1␮M B[a]P While GCLC wasdetected,there was nochange among treatmentgroupsaftera24-hexposuretoCd(Fig.2A).After

24hofexposureto0.1,1,and10␮MCd,therewasnearly

a3-foldincreaseinHMOX1at10␮MCdincomparisonto untreatedcellsandallotherconcentrations(Fig.2B) Addi-tionally,allconcentrations ofCdshowedapproximately

a 2–3-foldincrease inNQO1overthatofuntreated cells (Fig.2C)

Twenty-fourhoursofB[a]Pexposuredidnotincrease geneexpressionofGCLC,HMOX1,orNQO1(Fig.3A–C).All

Trang 5

18 Hrs B[a]P 24 Hrs B[a]P 24 Hrs Cd x 24 Hrs B[a]P

DM SO 0. 01 µM 0. 1 µM 1 µM DM SO 0. 01 µ

M

0 1 µM1 µ

M

DM SO 0.0 1 µM 0.1

µM 1 µM 0

20 40 60 80

B[a]P Con centration

*

*

+

+

Fig 1. BPDE-DNA adducts are formed and detected in RPTEC/TERT1 cells after exposure to B[a]P but reduced under co-exposure to 1 ␮M Cd and 1 ␮M B[a]P After 18 and 24 h of treatment with B[a]P a significant increase in the number of adducts was detected at 1 ␮M B[a]P Treatment of cells for 24 h with

1 ␮M Cd before a 24 h exposure to concentrations of B[a]P showed a significant decrease in adducts detected at 1 ␮M B[a]P in comparison to B[a]P alone Bars represent average adducts/10 8 nucleotides (n = 3) ± SEM *Significant difference from 1 ␮M B[a]P at 18 h, p < 0.01, + Significant difference from 1 ␮M B[a]P at 24 h, p < 0.01.

genesweredetectedatbasallevelsbyrealtimePCR

How-ever,co-exposuresignificantlyincreasedgeneexpression

of allthree genes atthe highest concentrationof 1␮M

Cd×1␮MB[a]Povervehiclecontrolandotherco-exposure

groups.GCLC geneexpressionwasincreasedby

approx-imately 2-fold, HMOX1 gene expression was increased

byapproximately3-fold,andNQO1geneexpressionwas

increasedbyapproximately4-fold(Fig.4A–C).This

sug-gests that co-exposure,under theseconditions, triggers

a stronger transcriptional antioxidantresponse than Cd

alone

3.3 CdandCd×B[a]Pexposureincreasetotal

glutathionelevelsinRPTEC/TERT1cells

TotalglutathionewasmeasuredafterCdexposurefor

24handafterco-exposurewithB[a]P.Totalglutathione

levelswereapproximatelydoubleincellstreatedwith1

and10␮MCdincomparisontountreatedgroupsafter24h

Cellstreated with0.1␮MCdexhibited aslight increase

in total glutathione, but this increase was not

statisti-callysignificant.Totalglutathione wasalsosignificantly

increasedincellspre-treatedwith1␮MCdfor24h

fol-lowedbyexposureto0.01, 0.1,and1␮MB[a]Pfor24h

(Fig.5).Thissupports ourhypothesis that Cdinducesa

biochemicalantioxidantresponse,andco-exposuretoCd

andB[a]Presultsinasubstantialincreaseinreduced

glu-tathione(GSH)levelspossiblygreaterthanthoseinduced

byCdalone

The multifaceted effects that have environmental

mixturesonthehumanbodyhavebeennotoriously

prob-lematictoresolve.Foroveradecade,scientistshavefaced

exceedinglydifficultchallengesinchemicaltoxicological researchwhen studying chemical mixtures designed to addressgapsinourknowledge[27].However,the impor-tanceofpursuingchemicalmixtureexperimentscontinues

toincrease withtherise indiseases that have noclear geneticpredisposition.AssessmentsbytheAmerican Can-cerSocietycreditheritablemutationsinthedevelopment

ofonly 5%ofallcancers [3].Likewise,current evidence suggeststhatanoverwhelming90%ofhumandisease bur-den,especiallydegenerativeconditions,canbeattributed

toenvironmentalfactorssuchasexposure,lifestyle,and diet [28–31] Humans encounter mixtures of chemical compoundsdailyandthroughouttheirlives;however, rel-ativelylittle researchto datehasaimed toaddress the differentialeffects thatmixtures haveonmolecularand mechanisticendpointsin comparisontostudiesfocused

onindividualchemicalsandcompounds.Arecentreview

onPAHmixturestoxicologyillustratesthesecomplexities butalsoprovidesstrongrationalefor approachingthese issues [32] Biological processes and molecular factors thatcounteractthedevelopmentofcancer(e.g.increased antioxidantordetoxificationcapacity)mustbestudiedin thecontextofexposuretothesemixtures.Environmental toxicantsthatinterferewithefficientprocessingand accu-raterepairofDNAadductsmayincreasethemutagenicity

ofothertoxicantsbydecreasingDNA repaircapacity.In thiscontext,suchenvironmentaltoxicantsfunctionas co-carcinogens

In an effort to characterize the effects of a simple binarymixtureonrenal proximaltubule cells, wehave examinedcellularresponsesoftheRPTEC/TERT1 immor-talizedcelllinetoB[a]PandCd,twodistinctlydifferent carcinogens.Ourpreviousstudieswiththiscelllinehave demonstrateditssensitivitytobothB[a]PandCdaswell

as compound-specific responses[21] Here, we confirm

Trang 6

0 µM

0 1

µM

1 µM 10 µM

0

1

2

3

GCLC

Cd Concentratio n

0 µM 0. 1 µM 1 µM 10 µM

0

1

2

3

HMOX1

Cd Concentratio n

*

#

0 µM

0.

µM

1 µM 10 µM

0

1

2

3

NQO1

Cd Concentration

+

A

B

C

Fig 2.RPTEC/TERT1 cells respond to 24 h Cd exposure by upregulating

HMOX1 and NQO1 but not GCLC After 24 h of treatment with Cd at

vari-ous concentrations, RPTEC/TERT1 cells showed no change in (A) GCLC at

any concentration There was a significant increase in gene expression at

the highest concentration, 10 ␮M Cd, of (B) HMOX1 and (C) NQO1 Bars

represent mean fold expression (n = 3) ± SEM All genes of interest were

normalized to ACTB 0 ␮M, where denoted, was set as 1 *Significant

dif-ference from 0 ␮M Cd, p < 0.01, # Significant difference from 10 ␮M Cd,

p < 0.01, and + Significant difference from 0 ␮M Cd, p < 0.05.

DM SO 0.0 1 µM 0.1

µM 1 µ M 0

1 2 3

GCLC

B[a]P Concentration

DMSO 0.0 1 µM 0 1

µM 1 µM 0

1 2 3

HMOX1

B[a]P Concentration

DMSO 0. 01 µM 0. 1 µM 1 µM 0

1 2 3

B[a]P Concentration

A

B

C

Fig 3.Twenty-four hours of B[a]P exposure does not induce changes in GCLC, HMOX1, or NQO1 None significantly differ Bars represent mean fold expression (n = 3) ± SEM All genes of interest were normalized to ACTB DMSO, where denoted, was set as 1.

Trang 7

O

0.0 1 µ

M

0 1 µ

M

1 µ M 0

2

4

6

1µM Cd x B[a]P Concentrations

GCLC

*

DM SO 0. 01 µM 0.1 µM 1 µM

0

2

4

6

1µM Cd x B[a]P Concentrations

*

DMSO 0.0 1 µM 0.

µM 1 µ M 0

2

4

1µM Cd x B[a]P Concentrations

*

Fig 4.Co-exposure conditions with Cd and B[a]P result in upregulation of

GCLC, HMOX1, and NQO1 in RPTEC/TERT1 cells Cells were exposed to 1 ␮M

Cd for 24 h followed by a 24 h exposure to B[a]P at different

concentra-tions One micromolar Cd was previously determined to be non-cytotoxic

to RPTEC/TERT1 cells after 24 h RPTEC/TERT1 cells demonstrated

signifi-cant upregulation of (A) GCLC, (B) HMOX1, and (C) NQO1 after exposure to

1 ␮M Cd × 1 ␮M B[a]P Bars represent mean fold expression (n = 3) ± SEM.

All genes of interest were normalized to ACTB DMSO, where denoted,

was set as 1 *Significant difference from DMSO, p < 0.01 and # Significant

difference from 1 ␮M Cd × 1 ␮M B[a]P, p < 0.01.

0 µM 0.1

µM C d

1 µM

C d

10 µM Cd

1 µ M

Cd x 0.0 1 µM B[a ]P

1 µM

Cd x 0 1 µM B[ a]

P

1 µ M Cd

x

µM B [a] P 0.0

0.5 1.0 1.5

Treatment

*

Fig 5. Cd exposure increases total glutathione in RPTEC/TERT1 cells Total glutathione levels were significantly increased after 24 h of exposure to 1 and 10 ␮M Cd Total glutathione levels were also significantly increased after exposure to 1 ␮M Cd for 24 h followed by a 24 h exposure to B[a]P concentrations Bars represent mean total glutathione levels (n = 3) ± SEM.

*Significant difference from 0 ␮M Cd, p < 0.05.

themetabolismofB[a]PtometaboliteswhichformDNA adductsundertheseconditions.WedetectedBPDE-DNA adductsat18and 24hpost-exposure toB[a]Palone.At

24hpost-exposure,therewerefeweradductsdetectedat intermediateconcentrations,0.01and0.1␮MB[a]P,than

at18hpost-exposure.Whilethenumbersofadductswere notsignificantlyreduced,thedecreaseatthese concentra-tionssuggeststhattheremaybesomeremovalorrepairof theinitialadducts.However,thelimitedsensitivityofthe ELISAmethodatthelowerconcentrationsofB[a]Ptested

in theseexperiments makes thesesuggestions specula-tive.AtthehighestconcentrationofB[a]P(1␮M)tested alone, we foundthat significantly greater adduct levels remainedatboth18-and24-htimepoints.Atthis con-centrationofB[a]P,detoxificationandrepairmechanisms may have been unableto process the amountof B[a]P metabolitesin the examined time period Theremay a thresholdeffect,possiblyshort-termbutinexcessof24h,

inwhichbioactivationexceedsdetoxificationandrepair, whichgeneratesBPDE-DNAadductsatarategreaterthan therateatwhichDNArepairprocessescanremovethem ThisconclusioniswarrantedespeciallyifB[a]Ptreatments alone in this experiment do not inducean antioxidant response,increasedetoxificationcapacity,orincreaseDNA repaircapacity.Incontrast,whencellswerepre-treated with1␮MCd,BPDE-DNAadductsformedafter1␮MB[a]P exposureweresignificantlyreduced.Thiseffectwasnot observedtothis degreeatotherconcentrations ofB[a]P afterCdpre-treatment.Itis possiblethatCYP-mediated biotransformationatthelowerconcentrationsofB[a]Pwas occurringwithout exceeding detoxification and/or DNA repaircapabilities.Thiswouldallowcellularmitigationof BPDE-DNAadducts withoutan increase in induction as

Trang 8

mentionedpreviously,thesensitivityoftheELISAmethod

atlowerconcentrationsofB[a]Pusedintheseexperiments

maynot be adequateto distinguishstatistically

signifi-cantdifferences in BPDE-DNA adduct levels among the

treatmentandco-treatmentgroupswithadequate

preci-sion.Wesuspectthat B[a]Pismetabolizedatthelower

concentrations,butmoresensitiveanalyticalmethodsare

necessarytodiscriminatesignificantdifferencesinadduct

formationand persistencebased ontreatmentregimen

Wesuggestthatfutureexperimentsbedesignedtoaddress

suchexperimentalpossibilitiesandstatisticalpower

limi-tations

Thereductioninadductsunderco-exposureatthe

high-estconcentrationofB[a]P maybea functionCd×B[a]P

priming the detoxification system through the NRF2

antioxidant pathway These effects appear to result in

increased levels of glutathione and increased

inactiva-tionordetoxificationofBPDEpriortoadductformation

FuturemeasurementsofBPDE-DNAconjugatesin

conjunc-tion withglutathione levels shouldbe used toconfirm

thissupposition.B[a]Pexposurealone,underthese

condi-tions,doesnotappeartoinduceanysuchresponse.While

itappearsthatCdaloneinducesasignificantantioxidant

responseresultinginincreasedlevelsofglutathione,Cd

and B[a]Ptogetherat thehighest concentrations tested

induceaneven more robustresponse Thisresponse to

bothCdandB[a]Pinourexperimentsseemstomitigate

DNAadductionformationthroughenhanceddetoxification

capacity.Ourpreviousworkdoesnotsupportone

alter-nativeexplanationthatCdinhibitstheformationofBDPE

throughCYPfeedbackinhibition[21]

ThebindingofB[a]Ptothearylhydrocarbonreceptor

increasestheexpressionofxenobioticresponseelement

(XRE)genesandtheirencodedenzymes,whichare

respon-sible for metabolizing B[a]P to reactive intermediates

[33,34] These reactive intermediates, along with

reac-tiveoxygenspecies(ROS)fromheavymetals,canincrease

thetranscriptionofantioxidant responseelement(ARE)

genesthroughNRF2binding[35,36].Activationofthisgene

batterymayberesponsibleformetabolitedetoxification

Wesuspectthatthisprocess,underourexperimental

co-exposureconditions,reducedlevelofadductsdetectedat

1␮MB[a]Pfollowing1␮MCdpre-treatment.Wefoundthe

expressionofNRF2-targetedgenes,GCLC,NQO1,HMOX1,to

besignificantlyincreasedunderexperimentalconditions

coincidingwiththemostsignificantreductionin

BPDE-DNAadductsunderco-exposure.Our resultsaresimilar

toinvivostudieswhichhavediscoveredthatprimingthe

NRF2systemdecreasesthelevelsofadductsformedafter

B[a]Pexposure.Nrf2knockoutmicedevelopmoretumors

thanwild-typemicewhentreatedwithB[a]Palone.When

micearegivenaNrf2activatorwithB[a]P,wild-typemice

develophalfasmanytumors.However,tumorreductionis

notseeninNrf2knockoutmicegivenaNrf2activatorwith

B[a]Pexposure[35].Inotherstudiesincludingtransformed

kidneycelllinesfromhumansandrats,Cdhasbeenshown

toinducetheNRF2pathwaythroughanoxidativestress

mechanism[37–39].FuturestudiesintheRPTEC/TERT1cell

lineshouldconsidertheapplicationofaNRF2inhibitorto

mimicinvivoNrf2knockoutconditionsandfurtherverify

theresponsesseenafterB[a]Pexposure.SeveralNRF2 acti-vatingagents,bothnaturalandsynthetic,havebeen exam-inedaschemoprotectivesforchronicdiseaseandoverall cellhealth.Flavonoids,forexample,arenaturallyoccurring antioxidantsfoundincruciferousvegetables,apples,and onions.TheyhavebeenshowntoincreaseNRF2mediated expressionofNQO1andGST.Additionally,naturally occur-ringphytochemicalssuchaschalconesandcoumarinshave been shown toact similarly by inducing NRF2 expres-sionofNQO1andGSTtoactasanti-inflammatoriesand antioxidants[40].Similarly, bardoxolonemethyl,a syn-theticNRF2 activatorderivedfromnatural antioxidants, hasbeensuccessfulinincreasingkidneyfunctionand halt-ingtheprogressionofrenalinjuryinPhase2clinicaltrials

inpatientswithchronickidneydisease[41] OurgoalsweretomeasureresponsesinRPTEC/TERT1 cellstodefined,non-cytotoxicmixturesoftwodistinctly differenttoxicants.Whileourresultssuggestan antagonis-tic,orperhapsahormeticeffect,ontheendpointexamined, DNAadductformationandpersistence,furtherstudiesare necessarytoexploretheseresultsanddetermineeffects

onotherdownstreambiomarkers.Ofparticularinterestis themutagenicityofBPDE-DNAadductsundersuch condi-tionsofco-exposureespeciallyatlower,environmentally relevant concentrations We hypothesizethat increased detoxificationcapacityisresponsibleforthereduced lev-elsof BPDE-DNAadducts whichmay protectcells from thesepremutageniclesions.Thiscouldbeinterpretedas

ahormeticeffect[42].Itisalsopossiblethat,while detox-ificationcapacityis increased,subsequentDNArepair is inhibitedbythepresenceofCd.CdinhibitionofDNArepair maypromoterepairmistakesorerror-pronetranslesion synthesis oftheremainingadductsleadingtoa relative increase in mutagenicity under these conditions (for a review,see[43])

ApparentNRF2activationandtheincreasedtotal glu-tathione levelsfoundin Cdandco-exposuregroups are evidenceofcellularoxidativestress.CdandCdcompounds areGroup1carcinogensandareknowntocausecancerin humans[13].DNAdamagecausedindirectlybyCd,suchas oxidativeinsultandrepressionofDNAdamagerepair,must

beconsideredinmutationalinvestigations.Quantifyingthe levelsofPAH-DNAadductsinhumanstudiescanserveas

abiomarkerforexposureaswellasprovideinformation

onanindividual’sDNArepaircapacityandmutagenicrisk [24].However,itwouldbeidealtoalsomeasuremutation frequencytoconfirmmutagenicpotentialasafunctionof adductformationundercontrolledconditionswithinvitro and in vivo modelsto betterrepresent and understand mechanismsbywhichmixturesimpacthumans

WehaveconductedthesestudiesintheRPTEC/TERT1 humanimmortalizedcelllinebecausetheywerederived from a normal, healthy individual, have proven to be metabolicallycompetent,andexhibitcanonicalresponses similartohumankidneycellswhenexposedtotheselected environmentaltoxicants.However,we acknowledgethe difficultiesincarryingoutrobust,controlled experimenta-tiononchemicalmixtures.Duetothecomplicatednature

ofmixturestoxicology,itremainschallengingto extrapo-latetheresultsobtainedinthisoranyinvitroorinvivo modeltoactualhumanrisk.Nevertheless,invitromodels

Trang 9

andmixtures.Astheyimprovetobettermodelthetissue

ofinterest,invitromodelswillproveextremelyvaluable

in mixtures toxicology.Advancements in high

through-putscreeninghaveallowedscientiststobegintoelucidate

increasinglycomplexmechanismsandinteractions

inher-enttomixturestoxicology.Asresearchcontinuesonboth

environmental and genetic components of disease, the

causesofconditions suchascancerarebecoming more

recognizedasenvironmentallymediated.Thus,itcanbe

hypothesizedthatthemajorityofgeneticchangesresulting

incancerareacquiredoveralifetimethroughone’s

interac-tionswiththeenvironment.Therefore,itiscriticaltobetter

understandthemolecularprocessesthatcontributetothe

initiationofcancer

TheTransparencydocumentassociatedwiththisarticle

canbefoundintheonlineversion

Funding

Fundingwasprovidedinpartbyagenerousgrantfrom

theBatonRougeAreaFoundation,BatonRouge,LA.Funding

wasalsoprovidedinpartbyagrantandcooperative

agree-mentfromtheNIH/NIEHS1U19ES20677-01.Itscontents

aresolelytheresponsibilityoftheauthorsanddonot

nec-essarilyrepresenttheofficialviewsoftheNIEHSorNIH

FundingandsupportwasalsoprovidedbytheTulane

Can-cerCenterandtheLouisianaCancerResearchConsortium

Acknowledgements

WewouldliketothankDr.ReginaM.Santella,

Profes-sorofEnvironmentalHealthSciences,MailmanSchoolof

PublicHealthatColumbiaUniversity,New York,NY,for

training intheBPDE-DNAadductELISAmethodand for

generouslyprovidingcriticalreagentsusedintheassay

References

[1] R.J Motzer, N.H Bander, D.M Nanus, Renal-cell carcinoma,

N Engl J Med 335 (1996) 865–875, http://dx.doi.org/10.

1056/NEJM199609193351207.

[2] T.J Polascik, D.G Bostwick, P Cairns, Molecular genetics and

histopathologic features of adult distal nephron tumors, Urology 60

(2002) 941–946.

[3] Cancer Facts and Figures 2012, American Cancer Society, Atlanta, GA,

2012.

[4] United States Renal Data System, Annual Data Report: Atlas of

Chronic Kidney Disease and End Stage Renal Diseases in the United

States, 2013 ed., National Institutes of Health National Institue of

Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013.

[5] W.H Chow, L.M Dong, S.S Devesa, Epidemiology and risk factors for

kidney cancer, Nat Rev Urol 7 (2010) 245–257, http://dx.doi.org/10.

1038/nrurol.2010.46.

[6] Toxic Substances Database, Agency for Toxic Substances Disease

Reg-istry, Atlanta, GA, 2011.

[7] IARC Working Group on the Evaluation of Carcinogenic Risks

to Humans and International Agency for Research on Cancer,

Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some

Related Occupational Exposures, IARC Press; Distributed by World

Health Organization, Lyon, France/Geneva, 2010.

[8] C.R Daniel, A.J Cross, B.I Graubard, Y Park, M.H Ward, N.

Rothman, A.R Hollenbeck, W.H Chow, R Sinha, Large

prospec-of renal cell carcinoma, Am J Clin Nutr 95 (2012) 155–162, http://dx.doi.org/10.3945/ajcn.111.019364.

[9] C.R Daniel, K.L Schwartz, J.S Colt, L.M Dong, J.J Ruterbusch, M.P Purdue, A.J Cross, N Rothman, F.G Davis, S Wacholder, B.I Graubard, W.H Chow, R Sinha, Meat-cooking mutagens and risk of renal cell carcinoma, Br J Cancer 105 (2011) 1096–1104, http://dx.doi org/10.1038/bjc.2011.343.

[10] E Jonasch, P.A Futreal, I.J Davis, S.T Bailey, W.Y Kim, J Brugaro-las, A.J Giaccia, G Kurban, A Pause, J Frydman, A.J Zurita, B.I Rini,

P Sharma, M.B Atkins, C.L Walker, W.K Rathmell, State of the sci-ence: an update on renal cell carcinoma, Mol Cancer Res 10 (2012) 859–880, http://dx.doi.org/10.1158/1541-7786.MCR-12-0117 [11] B Ljungberg, S.C Campbell, H.Y Choi, D Jacqmin, J.E Lee, S Weikert, L.A Kiemeney, The epidemiology of renal cell carcinoma, Eur Urol.

60 (2011) 615–621, http://dx.doi.org/10.1016/j.eururo.2011.06.049 [12] A Hartwig, T Schwerdtle, Interactions by carcinogenic metal com-pounds with DNA repair processes: toxicological implications, Toxicol Lett 127 (2002) 47–54.

[13] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans and International Agency for Research on Cancer, A Review

of Human Carcinogens Part C: Arsenic, Metals, Fibers, and Dusts, International Agency for Research on Cancer, Lyon, France, 2012, pp 121–141.

[14] P Joseph, Mechanisms of cadmium carcinogenesis, Toxicol Appl Pharmacol 238 (2009) 272–279, http://dx.doi.org/10.1016/j taap.2009.01.011.

[15] M Waisberg, P Joseph, B Hale, D Beyersmann, Molecular and cellu-lar mechanisms of cadmium carcinogenesis, Toxicology 192 (2003) 95–117, http://dx.doi.org/10.1016/s0300-483x(03)00305-6 [16] C.D Klassen, Casarett and Doull’s Toxicology: The Basic Science of Poisons, 7th ed., McGraw Hill, 2008, pp 1310.

[17] O Sevastyanova, B Binkova, J Topinka, R.J Sram, I Kalina, T Popov,

Z Novakova, P.B Farmer, In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines, Mutat Res 620 (2007) 123–134, http://dx.doi.org/10.1016/j mrfmmm.2007.03.002.

[18] Y.C Staal, D.G Hebels, M.H van Herwijnen, R.W Gottschalk, F.J van Schooten, J.H van Delft, Binary PAH mixtures cause additive

or antagonistic effects on gene expression but synergistic effects

on DNA adduct formation, Carcinogenesis 28 (2007) 2632–2640, http://dx.doi.org/10.1093/carcin/bgm182.

[19] A Tarantini, A Maitre, E Lefebvre, M Marques, A Rajhi, T Douki, Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells, Toxicology 279 (2011) 36–44, http://dx.doi.org/10.1016/j tox.2010.09.002.

[20] M Wieser, G Stadler, P Jennings, B Streubel, W Pfaller, P Ambros, C Riedl, H Katinger, J Grillari, R Grillari-Voglauer, hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics, Am J Physiol Renal Physiol 295 (2008) F1365–F1375, http://dx.doi.org/10.1152/ ajprenal.90405.2008.

[21] B.R Simon, M.J Wilson, J.K Wickliffe, The RPTEC/TERT1 cell line models key renal cell responses to the environmental toxicants, benzo[a]pyrene and cadmium, Toxicol Rep 1 (2014) 231–242 [22] E Kopera, T Schwerdtle, A Hartwig, W Ba, Co(II) and Cd(II) substi-tute for Zn(II) in the zinc finger derived from the DNA repair protein XPA demonstrating a variety of potential mechanisms of toxicity, Chem Res Toxicol 17 (2004) 1452–1458.

[23] K.W Jennette, A.M Jeffrey, S.H Blobstein, F.A Beland, R.G Har-vey, I.B Weinstein, Nucleoside adducts from the in vitro reaction

of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids, Biochemistry 16 (1977) 932–938 [24] M.D Gammon, R.M Santella, A.I Neugut, S.M Eng, S.L Teitelbaum,

A Paykin, B Levin, M.B Terry, T.L Young, L.W Wang, Q Wang, J.A Britton, M.S Wolff, S.D Stellman, M Hatch, G.C Kabat, R Senie, G Garbowski, C Maffeo, P Montalvan, G Berkowitz, M Kemeny, M Cit-ron, F Schnabel, A Schuss, S Hajdu, V Vinceguerra, Environmental toxins and breast cancer on Long Island I Polycyclic aromatic hydro-carbon DNA adducts, Cancer Epidemiol Biomarkers Prev 11 (2002) 677–685.

[25] J.L Mumford, K Williams, T.C Wilcosky, R.B Everson, T.L Young, R.M Santella, A sensitive color ELISA for detecting polycyclic aromatic hydrocarbon-DNA adducts in human tissues, Mutat Res 359 (1996) 171–177.

[26] R.M Santella, A Weston, F.P Perera, G.T Trivers, C.C Harris, T.L Young, D Nguyen, B.M Lee, M.C Poirier, Inter-laboratory comparison of antisera and immunoassays for benzo[a]pyrene-diol-epoxide-I-modified DNA, Carcinogenesis

Trang 10

[27] V.J Feron, J.P Groten, Toxicological evaluation of chemical mixtures,

Food Chem Toxicol 40 (2002) 825–839.

[28] P Anand, A.B Kunnumakkara, A.B Kunnumakara, C Sundaram, K.B.

Harikumar, S.T Tharakan, O.S Lai, B Sung, B.B Aggarwal,

Can-cer is a preventable disease that requires major lifestyle changes,

Pharm Res 25 (2008) 2097–2116, http://dx.doi.org/10.1007/

s11095-008-9661-9.

[29] S.M Rappaport, Implications of the exposome for exposure science,

J Expo Sci Environ Epidemiol 21 (2011) 5–9, http://dx.doi.org/10.

1038/jes.2010.50.

[30] S.M Rappaport What is the Exposome? Monterey, California, 2013.

[31] B Sung, S Prasad, V.R Yadav, A Lavasanifar, B.B

Aggar-wal, Cancer and diet: how are they related? Free Radic Res.

45 (8) (2011) 864–879, http://dx.doi.org/10.3109/10715762.2011.

582869.

[32] I.W Jarvis, K Dreij, A Mattsson, B Jernstrom, U Stenius, Interactions

between polycyclic aromatic hydrocarbons in complex mixtures and

implications for cancer risk assessment, Toxicology 321C (2014)

27–39, http://dx.doi.org/10.1016/j.tox.2014.03.012.

[33] T Shimada, Y Fujii-Kuriyama, Metabolic activation of polycyclic

aro-matic hydrocarbons to carcinogens by cytochromes P450 1A1 and

1B1, Cancer Sci 95 (2004) 1–6.

[34] W Xue, D Warshawsky, Metabolic activation of polycyclic and

heterocyclic aromatic hydrocarbons and DNA damage: a review,

Toxicol Appl Pharmacol 206 (2005) 73–93, http://dx.doi.org/10.

1016/j.taap.2004.11.006.

[35] L.M Aleksunes, J.E Manautou, Emerging role of Nrf2 in

protec-ting against hepatic and gastrointestinal disease, Toxicol Pathol 35

(2007) 459–473, http://dx.doi.org/10.1080/01926230701311344.

[36] T Nguyen, P Nioi, C.B Pickett, The Nrf2-antioxidant response ele-ment signaling pathway and its activation by oxidative stress,

J Biol Chem 284 (2009) 13291–13295, http://dx.doi.org/10 1074/jbc.R900010200.

[37] J Chen, Z.A Shaikh, Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells, Toxicol Appl Pharmacol 241 (2009) 81–89, http://dx.doi.org/10 1016/j.taap.2009.07.038.

[38] X He, M.G Chen, Q Ma, Activation of Nrf2 in defense against cadmium-induced oxidative stress, Chem Res Toxicol 21 (2008) 1375–1383, http://dx.doi.org/10.1021/tx800019a.

[39] A Wilmes, D Crean, S Aydin, W Pfaller, P Jennings, M.O Leonard, Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity, Toxicol In Vitro

25 (2011) 613–622, http://dx.doi.org/10.1016/j.tiv.2010.12.009 [40] H Kumar, I.S Kim, S.V More, B.W Kim, D.K Choi, Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases, Nat Prod Rep 31 (2014) 109–139, http://dx.doi org/10.1039/c3np70065h.

[41] S Ruiz, P.E Pergola, R.A Zager, N.D Vaziri, Targeting the transcrip-tion factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease, Kidney Int 83 (2013) 1029–1041, http://dx doi.org/10.1038/ki.2012.439.

[42] E.J Calabrese, Hormesis: why it is important to toxicology and toxicologists, Environ Toxicol Chem 27 (2008) 1451–1474, http://dx.doi.org/10.1897/07-541.

[43] A Hartwig, Metal interaction with redox regulation: an integrating concept in metal carcinogenesis? Free Radic Biol Med 55 (2013) 63–72, http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.009.

Ngày đăng: 01/11/2022, 09:02

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] R.J. Motzer, N.H. Bander, D.M. Nanus, Renal-cell carcinoma, N. Engl. J. Med. 335 (1996) 865–875, http://dx.doi.org/10.1056/NEJM199609193351207 Link
[5] W.H. Chow, L.M. Dong, S.S. Devesa, Epidemiology and risk factors for kidney cancer, Nat. Rev. Urol. 7 (2010) 245–257, http://dx.doi.org/10.1038/nrurol.2010.46 Link
[8] C.R. Daniel, A.J. Cross, B.I. Graubard, Y. Park, M.H. Ward, N.Rothman, A.R. Hollenbeck, W.H. Chow, R. Sinha, Large prospec- tive investigation of meat intake, related mutagens, and riskof renal cell carcinoma, Am. J. Clin. Nutr. 95 (2012) 155–162, http://dx.doi.org/10.3945/ajcn.111.019364 Link
[9] C.R. Daniel, K.L. Schwartz, J.S. Colt, L.M. Dong, J.J. Ruterbusch, M.P.Purdue, A.J. Cross, N. Rothman, F.G. Davis, S. Wacholder, B.I. Graubard, W.H. Chow, R. Sinha, Meat-cooking mutagens and risk of renal cell carcinoma, Br. J. Cancer 105 (2011) 1096–1104, http://dx.doi.org/10.1038/bjc.2011.343 Link
[10] E. Jonasch, P.A. Futreal, I.J. Davis, S.T. Bailey, W.Y. Kim, J. Brugaro- las, A.J. Giaccia, G. Kurban, A. Pause, J. Frydman, A.J. Zurita, B.I. Rini, P. Sharma, M.B. Atkins, C.L. Walker, W.K. Rathmell, State of the sci- ence: an update on renal cell carcinoma, Mol. Cancer Res. 10 (2012) 859–880, http://dx.doi.org/10.1158/1541-7786.MCR-12-0117 Link
[11] B. Ljungberg, S.C. Campbell, H.Y. Choi, D. Jacqmin, J.E. Lee, S. Weikert, L.A. Kiemeney, The epidemiology of renal cell carcinoma, Eur. Urol.60 (2011) 615–621, http://dx.doi.org/10.1016/j.eururo.2011.06.049 Link
[14] P. Joseph, Mechanisms of cadmium carcinogenesis, Toxicol.Appl. Pharmacol. 238 (2009) 272–279, http://dx.doi.org/10.1016/j.taap.2009.01.011 Link
[15] M. Waisberg, P. Joseph, B. Hale, D. Beyersmann, Molecular and cellu- lar mechanisms of cadmium carcinogenesis, Toxicology 192 (2003) 95–117, http://dx.doi.org/10.1016/s0300-483x(03)00305-6 Link
[17] O. Sevastyanova, B. Binkova, J. Topinka, R.J. Sram, I. Kalina, T. Popov, Z. Novakova, P.B. Farmer, In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines, Mutat. Res. 620 (2007) 123–134, http://dx.doi.org/10.1016/j.mrfmmm.2007.03.002 Link
[18] Y.C. Staal, D.G. Hebels, M.H. van Herwijnen, R.W. Gottschalk, F.J.van Schooten, J.H. van Delft, Binary PAH mixtures cause additive or antagonistic effects on gene expression but synergistic effects on DNA adduct formation, Carcinogenesis 28 (2007) 2632–2640, http://dx.doi.org/10.1093/carcin/bgm182 Link
[19] A. Tarantini, A. Maitre, E. Lefebvre, M. Marques, A. Rajhi, T. Douki, Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells, Toxicology 279 (2011) 36–44, http://dx.doi.org/10.1016/j.tox.2010.09.002 Link
[20] M. Wieser, G. Stadler, P. Jennings, B. Streubel, W. Pfaller, P.Ambros, C. Riedl, H. Katinger, J. Grillari, R. Grillari-Voglauer, hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics, Am. J. Physiol.Renal Physiol. 295 (2008) F1365–F1375, http://dx.doi.org/10.1152/ajprenal.90405.2008 Link
[2] T.J. Polascik, D.G. Bostwick, P. Cairns, Molecular genetics and histopathologic features of adult distal nephron tumors, Urology 60 (2002) 941–946 Khác
[4] United States Renal Data System, Annual Data Report: Atlas of Chronic Kidney Disease and End Stage Renal Diseases in the United States, 2013 ed., National Institutes of Health National Institue of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013 Khác
[7] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans and International Agency for Research on Cancer, Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Occupational Exposures, IARC Press; Distributed by World Health Organization, Lyon, France/Geneva, 2010 Khác
[12] A. Hartwig, T. Schwerdtle, Interactions by carcinogenic metal com- pounds with DNA repair processes: toxicological implications, Toxicol. Lett. 127 (2002) 47–54 Khác
[13] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans and International Agency for Research on Cancer, A Review of Human Carcinogens. Part C: Arsenic, Metals, Fibers, and Dusts, International Agency for Research on Cancer, Lyon, France, 2012, pp.121–141 Khác
[16] C.D. Klassen, Casarett and Doull’s Toxicology: The Basic Science of Poisons, 7th ed., McGraw Hill, 2008, pp. 1310 Khác
[21] B.R. Simon, M.J. Wilson, J.K. Wickliffe, The RPTEC/TERT1 cell line models key renal cell responses to the environmental toxicants, benzo[a]pyrene and cadmium, Toxicol. Rep. 1 (2014) 231–242 Khác
[22] E. Kopera, T. Schwerdtle, A. Hartwig, W. Ba, Co(II) and Cd(II) substi- tute for Zn(II) in the zinc finger derived from the DNA repair protein XPA demonstrating a variety of potential mechanisms of toxicity, Chem. Res. Toxicol. 17 (2004) 1452–1458 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm