1. Trang chủ
  2. » Giáo án - Bài giảng

boundedness for riesz transform associated with schr dinger operators and its commutator on weighted morrey spaces related to certain nonnegative potentials

16 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 232,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The Riesz transform associated with the operator L is denoted by T = ∇–+ V–1 and the dual Riesz transform is denoted by T∗= –+ V–1∇.. Also, the dual Riesz transform associated with the S

Trang 1

R E S E A R C H Open Access

Boundedness for Riesz transform associated

with Schrödinger operators and its

commutator on weighted Morrey spaces

related to certain nonnegative potentials

Yu Liu*and Lijuan Wang

* Correspondence:

liuyu75@pku.org.cn

School of Mathematics and Physics,

University of Science and

Technology Beijing, Beijing, 100083,

China

Abstract

Let L = –+ V be a Schrödinger operator, whereis the Laplacian onRnand the

nonnegative potential V belongs to the reverse Hölder class B q for q ≥ n/2 The Riesz transform associated with the operator L is denoted by T = ∇(–+ V)–1 and the dual

Riesz transform is denoted by T∗= (–+ V)–1∇ In this paper, we establish the

boundedness for the operator T∗and its commutator on the weighted Morrey spaces

L p, α λ ,V, ω(Rn) related to certain nonnegative potentials belonging to the reverse Hölder

class B q for n/2 ≤ q < n, where p0< p < ∞ and p10 =1q–1n

Keywords: Morrey spaces; commutator; reverse Hölder class; Schrödinger operator;

Riesz transform

1 Introduction

In this paper, we consider the Schrödinger operator

L = –  + V(x) on R n , n≥ ,

where V (x) is a nonnegative potential belonging to the reverse Hölder class B q for q ≥ n/ The Riesz transform associated with the Schrödinger operator L is defined by T = ∇L–

and the commutator operator

[b, T](f )(x) = T(bf )(x) – b(x)Tf (x), x∈ Rn, ()

where f is a suitable integral function Also, the dual Riesz transform associated with the Schrödinger operator L is defined by T= L–∇ and the commutator operator



b, T∗

(f )(x) = T(bf )(x) – b(x)Tf (x), x∈ Rn () First, Tang and Dong established the boundedness of some Schrödinger type operators

on the Morrey spaces related to the nonnegative potential V belonging to the reverse

Hölder class in [] Furthermore, Liu and Wang investigated the boundedness of the dual

©2014 Liu and Wang; licensee Springer This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

Trang 2

Riesz transforms and its commutators on the Morrey spaces related to the nonnegative

potential V belonging to the reverse Hölder class in [] Recently, Pan and Tang established

the boundedness of some Schrödinger type operators on weighted Morrey spaces related

to the nonnegative potential V belonging to the reverse Hölder class in [] Motivated

by [], our aim is to establish the boundedness for the dual Riesz transform associated

with Schrödinger operators and its commutators on weighted Morrey spaces related to

the certain nonnegative potentials, where the condition on the potential is weaker than

that in [] Our result is a nontrivial generalization of the main results in []

A nonnegative locally L q integrable function V (x) onRn is said to belong to B q ( < q <

∞) if there exists C >  such that the reverse Hölder inequality



|B|



B

V (x) q dx

/q

≤ C



|B|



B

V (x) dx



()

holds for every ball B inRn

It is important that the B q class has a property of ‘self improvement’; that is, if V ∈ B q,

then V ∈ B q+εfor someε >  (see []).

We assume the potential V ∈ B q for q ≥ n/ throughout the paper We introduce the

auxiliary functionρ(x, V) = ρ(x) defined by

ρ(x) = sup

r>



r :

r n–



B(x,r)

V (y) dy≤ 

 , x∈ Rn

It is well known that  <ρ(x) < ∞ for any x ∈ R n (cf Lemma  in Section ).

A kind of new Morrey spaces is established by Tang and Dong in [] Furthermore, the

weighted Morrey space is introduced by Pan and Tang in [] Let p ∈ [, ∞), α ∈ (–∞, ∞),

andλ ∈ [, ) For f ∈ L p

loc(Rn ) and V ∈ B q (q > ), we say f ∈ L p,λ α,V,ω(Rn) (weighted Morrey

spaces related to the nonnegative potential V ) provided that

f p

L p,λ α,V,ω(Rn)= sup

B(x,r)⊂R n



 + r

ρ(x)

α

ω B(x, r)λ



B(x,r)

f (x) p

ω(x) dx < ∞,

where B = B(x, r) denotes a ball with centered at xand radius r, and the weight functions

ω ∈ A ρ,∞ p (see Section )

Now we are in a position to give the main results in this paper

Theorem  Suppose V ∈ B q for n/ ≤ q < n, α ∈ (–∞, ∞), λ ∈ (, ), and /p= /q – /n.

Then, for p≤ p < ∞ and ω ∈ A ρ,∞ p/p

,

Tf

L p,λ α,V,ω(Rn)≤ C f L p,λ

α,V,ω(Rn),

where C is independent of f

Theorem  Suppose V ∈ B q for n/ ≤ q < n, b ∈ BMO ρ,α ∈ (–∞, ∞), λ ∈ (, ), and pso

that /p= /q – /n Then, for p≤ p < ∞ and ω ∈ A ρ,∞ p/p

, b, T∗

f

L p,λ α,V,ω(Rn)≤ C f L p,λ

α,V,ω(Rn),

where C is independent of f

Trang 3

We will use C to denote a positive constant, which is not necessarily same at each occur-rence and even is different in the same line, and may depend on the dimension n and the

constant in () By A ∼ B, we mean that there exists a constant C such that /C ≤ A/B ≤ C.

2 Some lemmas

In this section, we collect some known results proved in [] in order to prove the main

results in this paper

Lemma  There exist constants C, k >  such that

C



 +|x – y|

ρ(x)

–k

ρ(y)

ρ(x) ≤ C



 +|x – y|

ρ(x)

k/(k +)

In particular, ρ(y) ∼ ρ(x) if |x – y| < Cρ(x).

Lemma  () For  < r < R < ∞,

r n–



B(x,r)

V (y) dy ≤ C



r R

–n q

R n–



B(x,R)

V (y) dy and

r n–



B(x,r)

V (y) dy ∼  if and only if r ∼ ρ(x).

() There exist C >  and l>  such that

R n–



B(x,R)

V (y) dy ≤ C



 + R

ρ(x)

l

LetK be the kernel of T and Kbe the kernel of T

Lemma  If V ∈ B q for q ≥ n/, then for every N there exists a constant C N >  such that

K(x, z) ≤ C N

( +|x–z| ρ(x))N

|x – z| n–



B(z, |x–z|/)

V (u)

|u – z| n– du +

|x – z|

 ()

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).

In this paper, we always write θ (B) = ( + r/ ρ(x))θ, whereθ > ; xand r denote the center and radius of B, respectively.

A weight will always mean a nonnegative function which is locally integrable As in [],

we say that a weightω belongs to the class A ρ,θ p for  < p <∞, if there is a positive constant

C such that for the whole ball B = B(x, r)



 θ (B) |B|



B ω(y) dy



 θ (B) |B|



B ωp–

(y) dy

p–

≤ C.

We also say that a nonnegative functionω satisfies the A ρ,θ condition if there exists a

positive constant C, for all balls B

M θ(ω)(x) ≤ Cω(x), a.e x ∈ R n,

Trang 4

M θ V f (x) = sup

x ∈B

 θ (B)|B|



B

f (y) dy.

Since θ (B) ≥ , obviously, A p ⊂ A ρ,θ p for ≤ p < ∞, where A pdenote the classical

Muck-enhoupt weights (see []) It follows from [] that A p ⊂⊂ A ρ,θ p for ≤ p < ∞ For

con-venience, we always assume that (B) denotes  θ (B), A ρ,∞ p = θ> A ρ,θ p , and A ρ,∞∞ =

p≥A ρ,∞ p

Lemma  ([]) Let  < θ < ∞, then:

(i) If  ≤ p< p<∞, then A ρ,θ p⊂ A ρ,θ p

(ii) ω ∈ A ρ,θ p if and only if ωp–∈ A ρ,θ p , where /p + /p= 

(iii) If ω ∈ A ρ,θ p for  ≤ p < ∞, then there exists a constant C >  such that for any λ > 

ω λB(x, r) ≤ C



 + λr ρ(x)

(k +)θ

ω B(x, r)

Lemma  ([]) Let  < θ < ∞,  ≤ p < ∞ If ω ∈ A ρ,θ p , then there exist positive constants δ,

η, and C such that



|B|



B ω(y)+δ dy

/(+δ)

≤ C |B|



B ω(y) dy



 + r

ρ(x)

η

for all ball B(x, r).

As a consequence of Lemma , we have the following result

Corollary  ([]) Let  < θ < ∞,  ≤ p < ∞ If ω ∈ A ρ,θ p , then there exist positive constants

q > , η, and C such that

ω(E) ω(B) ≤ C

|E|

|B|

/q

 + r

ρ(x)

η

for any measurable subset E of a ball B(x, r).

Bongioanni et al [] introduced a new space BMO θ(ρ) defined by

f BMO θ(ρ)= sup

B⊂Rn

 θ (B) |B|



B

f (x) – f B dx <∞,

where f B=|B| 

B f (y) dy and  θ (B) = ( + r/ ρ(x))θ , B = B(x, r), and θ > .

In particularly, Bongioanni et al [] proved the following results for BMO θ(ρ).

Proposition  Let θ >  and  ≤ s < ∞ If b ∈ BMO θ(ρ), then



|B|



B

b(x) – b B s

dx

/s

≤ C b BMO θ(ρ)



 + r

ρ(x)

θ

holds for all B = B(x, r), with x∈ Rn and r > , where θ= (k+ )θ and kis the constant

appearing in Lemma .

Trang 5

Proposition  Let b ∈ BMO θ(ρ), B = B(x, r), and  ≤ s < ∞ Then



|k B|



k B

b(y) – b B s

dy



s

≤ C b BMO θ(ρ) k



 + 

k r ρ(x)

θ

()

for all k ∈ N, with θ= (k+ )θ and the constant kis given as in Proposition .

Obviously, the classical BMO space is properly contained in BMO θ(ρ); for more

exam-ples please see [] For convenience, we let BMO ρ= θ> BMO θ(ρ).

From Corollary . in [], the following result holds true

Corollary  If b ∈ BMO ρ and ω ∈ A ρ,∞, then there exist positive constants C and η such

that for every ball B = B(x, r), we have

ω(B)



B

b(x) – b B p

ω(x) dx ≤



 + r

ρ(x)

η

b p BMO ρ,

where b B=|B| 

B b(y) dy.

3 The proof of our main results

Proof of Theorem  Without loss of generality, we may assume that α <  and ω ∈ A ρ,θ p/p

Pick any ball B = B(x, r), and write

f (x) = f(x) + f(x), where f=χ B(x,r) f Hence, we have



B(x,r)

Tf (x) p

ω(x) dx

/p

≤

B(x,r)

Tf(x) p ω(x) dx

/p

+



B(x,r)

Tf(x) p ω(x) dx

/p

()

By the L p ω boundedness of T∗(see Theorem  in []), we obtain



B(x,r)

Tf(x) p

ω(x) dx ≤ C



 + r

ρ(x)

–α

ω B(x, r) λ f p

L p,λ α,V,ω(Rn) ()

Now, for x ∈ B(x, r) and using Lemma , we have

Tf(x) = 

|x–z|>r K(x, z)f (z) dz

≤ I(x) + I(x), () where

I(x) = C N



|x–z|>r

|f (z)|

|x – z| n( +|x–z| ρ(x))N dz

Trang 6

I(x) = C N



|x–z|>r

|f (z)|

|x – z| n–( +|x–z| ρ(x))N



B(z, |x–z|/)

V (u)

|u – z| n– du dz.

Then



B(x,r)

Tf(x) p

ω(x) dx

/p

≤

B(x,r)

I(x) p ω(x) dx

/p

+



B(x,r)

I(x) p ω(x) dx

/p

By the proof of Theorem . in [], we have



B(x,r)

I(x) p ω(x) dx ≤ C



 + r

ρ(x)

–α

ω B(x, r) λ f p

L p,λ α,V,ω(Rn)

Next we deal with I(x) For x ∈ B(x, r), |x–z|

≤ |x – z| ≤|x–z|

 We get



B(x,r)

I(x) p ω(x) dx

= C N



B(x,r)



|x–z|>r

|f (z)|

|x – z| n–( +|x–z| ρ(x))N



B(z, |x–z|/)

V (u)

|u – z| n– du dz

p

ω(x) dx



i=

C N



B(x,r)



B(x ,i+ r) \B(x ,i r)

|f (z)|

|x– z|n–( +|x–z|

ρ(x) )N

×



B(x ,i+ r)

V (u)

|u – z| n– du dz

p

ω(x) dx



i=

C N



B(x,r)

 ( +ρ(x)i r)Np

i r –(n–)p



B(x ,i r)

f (z) I(V χ B(x ,i r) ) dz

p

ω(x) dx.

Let p≤ p < ∞ By simple computation, p

p

=  +p v By the definition of A ρ,θ p/p

,



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω –v/p (y) dy

/v

=



(B(x, i r)) |B(x, i r)|



B(x ,i r) ω

p

v +– (y) dy

(p v+–) 

v( p v +–)

≤ C



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω(y) dy

–p

where /q = /s + /n and /p + /v + /s = .

Using Hölder’s inequality, (), and the boundedness of the fractional integralI: L q

L s with /q = /s + /n, for /p + /v + /s = , we have



B(x ,i r)

f (x) I(V χ B(x ,i r) ) dx

=



B(x,i r)

f (x) ω /p ω –/p I(V χ B(x ,i r) ) dx

Trang 7

x, i r B

x, i r



B(x ,i r)

f (x) p ω(x) dx

/p

×



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω(x) –v/p dx

/v

×



B(x ,i r)

I(V χ B(x ,i r)) s dx

/s

≤ C  B

x, i r B

x, i r



B(x ,i r)

f (x) p

ω(x) dx

/p

×



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω(x) dx

–/p

×



B(x ,i r)

I(V χ B(x ,i r)) s dx

/s

≤ C  B

x, i r B

x, i r /p+/v



B(x ,i r)

f (x) p

ω(x) dx

/p

× ω B

x, i r –/p I(V χ B(x ,i r))

s

≤ C  B

x, i r B

x, i r /p+/v



B(x ,i r)

f (x) p

ω(x) dx

/p

× ω B

For V ∈ B q, using Lemma , we get

Vχ B(x ,i r) q ≤ Ci r –n/q



B(x ,i r)

V (x) dx

≤ Ci r –n/q+n–

i r –n+



B(x ,i r)

V (x) dx

≤ Ci r –n/q+n–



 + 

i r ρ(x)

l

It is easy to check that –(n–)p– pn q +(n–)p+n+ pn v =  Furthermore, using Corollary ,

we have

ω(B(x, r))

ω(B(x, i+ r)) ≤ Cin q



 + 

i r ρ(x)

η

Therefore, by (),



B(x,r)

I(x) p ω(x) dx

= C N



B(x,r)



|x–z|>r

|f (z)|

|x – z| n–( +|x–z| ρ(x))N



B(z, |x–z|/)

V (u)

|u – z| n– du dz

p

ω(x) dx



C N

i r –(n–)p–

pn q +(n–)p+n+ pn v

Trang 8



B(x,r)

( +ρ(xi r

 ))(+p v)θ+lp

ω(B(x, i r))( + ρ(x)i r)Np



B(x ,i r)

f (y) p

ω(y) dyω(x) dx



i=

C N ω B

x, i+ r λ– f p

L p,λ α,V,ω(Rn)



B(x,r)

( +ρ(xi r

 ))–α+(+ p v)θ+lp

( + i r ρ(x))Np ω(x) dx



i=

C N ω B

x, i+ r λ– ω B(x, r)

i r ρ(x ))–α+(+ p

v)θ+lp

( +ρ(xi r

 ))Np/(k +) f p

L p,λ α,V,ω(Rn)



i=

C N



ω(B(x, r))

ω(B(x, i+ r))

–λ

ω B(x, r) λ( +

i r ρ(x ))–α+(+ p

v)θ+lp

( +ρ(xi r

 ))Np/(k +) f p

L p,λ α,V,ω(Rn)



i=

C N–in(– λ)/q ω B(x, r) λ( +

i r ρ(x ))–α+(+ p v)θ+lp+η

( + i r ρ(x ))Np/(k +) f p

L p,λ α,V,ω(Rn)

≤ C f p

L p,λ

where we choose N large enough so that the above series converges.

From ()-(), we obtain

Tf

L p,λ α,V,ω(Rn)≤ C f L p,λ

α,V,ω(Rn) Thus, Theorem  is proved 

Proof of Theorem  During the proof of Theorem , we always denote θ= (k+ )θ

With-out loss of generality, we may assume thatα < , b ∈ BMO θ(ρ), and ω ∈ A ρ,θ p/p

 Pick any ball

B = B(x, r), and write

f (x) = f(x) + f(x), where f=χ B(x,r) f Hence, we have



B(x,r)

b, T∗

f (x) p

ω(x) dx

/p



B(x,r)

b, T∗

f(x) p

ω(x) dx

/p

+



B(x,r)

b, T∗

f(x) p

ω(x) dx

/p

()

By the L p ω boundedness of [b, T∗] (see Theorem  in []), we obtain



B(x,r)

b, T∗

f(x) p

ω(x) dx ≤ C



 + r

ρ(x)

–α

ω B(x, r) λ f p

L p,λ α,V,ω(Rn) ()

Set b B=|B(x

,r)|



B(x,r) b(x) dx Write [b, T]f= (b – b B )Tf– T(f(b – b B)) Then



B(x,r)

b, T∗

f(x) p

ω(x) dx

/p



B(x ,r)

(b – b B )Tfp

ω(x) dx

/p

+



B(x ,r)

T

f(b – b B) p ω(x) dx

/p

()

Trang 9

By () in the proof of Theorem , we obtain



B(x,r)

(b – b B )Tfp

ω(x) dx

≤ p–



B(x,r)

|b – b B|p

I(x) p ω(x) dx +

B(x,r)

|b – b B|p

I(x) p ω(x) dx



Let p≤ p < ∞ By simple computation, p

p

<  +p p By Lemma , A ρ,θ p/p

⊆ A ρ,θ +p/p Then



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω –p/p

(y) dy

p/p

=



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω

+p

p–(y) dy

(+p

p–)

≤ C



(B(x, i r)) |B(x, i r)|



B(x ,i r)

ω(y) dy

–

By Lemma  and Corollary , as well as Lemma , we have



B(x,r)

|b – b B|p

I(x) p ω(x) dx

≤ C N



B(x,r)

|b – b B|p



|x–z|>r

|f (z)|

|x – z| n( +|x–z| ρ(x))N dz

p

ω(x) dx



i=

C N



B(x,r)

|b – b B|p



B(x ,i+ r) \B(x ,i r)

|f (z)|

|x– z|n( +|x–z|

ρ(x) )N dz

p

ω(x) dx



i=

C N



B(x,r)

|b – b B|p

( +ρ(x)i r)Np

i r –np



B(x ,i r)

f (z) dzp

ω(x) dx



i=

C N



B(x,r)

|b – b B|p

( +ρ(x)i r)Np

i r –np

×

B(x ,i r)

f (z) ω (z) /p ω(z) –/p dz

p

ω(x) dx



i=

C N



B(x,r)

|b – b B|p

( + i r ρ(x))Np

i r –np



B(x ,i r)

f (z) p ω(z) dz



×

B(x ,i r)

ω(z)p p

dz

p p

ω(x) dx



i=

C N



B(x,r) |b – b B|p

( + i r ρ(x))Np

i r –np



B(x ,i r)

f (z) p

ω(z) dz



×



 + 

i r ρ(x)

(+p

p)θ

B

x, i r +

p p ω B

x, i r –ω(x) dx



i=

C N



B(x,r)

|b – b B|p( + i r

ρ(x )) ( +ρ(x)i r)Np ω B

x, i r –

Trang 10



B(x ,i r)

f (z) p

ω(z) dzω(x) dx



i=

C N ω B

x, i+ r λ– f p

L p,λ α,V,ω(Rn)



B(x,r)

|b – b B|p( +ρ(xi r

 ))–α+pθ ( +ρ(x)i r)Np ω(x) dx



i=

C N ω B

x, i+ r λ– ω B(x, r)

i r ρ(x ))–α+pθ+η

( +ρ(xi r

 ))Np/(k +) b p

BMO ρ f p

L p,λ α,V,ω(Rn)



i=

C N



ω(B(x, r))

ω(B(x, i+ r))

–λ

ω B(x, r) λ

× ( +

i r ρ(x ))–α+pθ+η ( + ρ(xi r

 ))Np/(k +) b p

BMO ρ f p

L p,λ α,V,ω(Rn)



i=

C N–in(– λ)/q ω B(x, r) λ( +

i r ρ(x ))–α+pθ+η

( +ρ(xi r

 ))Np/(k +) b p

BMO ρ f p

L p,λ α,V,ω(Rn), ()

where we choose N large enough so that the above series converges.

For I(x), we assume n/ < q < n due to Lemma  Then, since x ∈ B(x, r), we also have

|x–z|

≤ |x – z| ≤|x –z|

 Then



B(x,r) |b – b B|p

I(x) p ω(x) dx

≤ C N



B(x,r)

|b – b B|p



|x–z|>r

|f (z)|

|x – z| n–( +|x–z| ρ(x))N

×

B(z, |x–z|/)

V (u)

|u – z| n– du dz

p

ω(x) dx



i=

C N



B(x,r)

|b – b B|p



B(x ,i+ r) \B(x ,i r)

|f (z)|

|x– z|n–( +|x–z|

ρ(x) )N

×



B(x ,i+ r)

V (u)

|u – z| n– du dz

p

ω(x) dx



i=

C N



B(x,r)

 ( +ρ(x)i r)Np

i r –(n–)p |b – b B|p

×

B(x ,i r)

f (z) I(V χ B(x ,i r) ) dz

p

ω(x) dx.

By () and () in the proof of Theorem , we obtain



B(x,r) |b – b B|p

I(x) p ω(x) dx

≤ C N



B(x,r) |b – b B|p



|x–z|>r

|f (z)|

|x – z| n–( +|x–z| ρ(x))N

×



B(z, |x–z|/)

V (u)

|u – z| n– du dz

p

ω(x) dx

... C.

We also say that a nonnegative functionω satisfies the A ρ,θ condition if there exists a

positive constant C, for all balls B

M... xand r denote the center and radius of B, respectively.

A weight will always mean a nonnegative function which is locally integrable As in [],

we say that a weightω belongs... class="page_container" data-page="3">

We will use C to denote a positive constant, which is not necessarily same at each occur-rence and even is different in the same line, and may depend on the

Ngày đăng: 01/11/2022, 09:02

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
2. Liu, Y, Wang, LJ: Boundedness for Riesz transform associated with Schrửdinger operators and its commutator on Morrey spaces related to certain nonnegative potentials Sách, tạp chí
Tiêu đề: Boundedness for Riesz transform associated with Schrödinger operators and its commutator on Morrey spaces related to certain nonnegative potentials
Tác giả: Liu, Y, Wang, LJ
3. Pan, GX, Tang, L: Boundedness for some Schrửdinger type operators on weighted Morrey spaces. J. Funct. Spaces 2014, Article ID 878629 (2014) Sách, tạp chí
Tiêu đề: Boundedness for some Schrödinger type operators on weighted Morrey spaces
Tác giả: Pan, GX, Tang, L
Nhà XB: J. Funct. Spaces
Năm: 2014
4. Shen, ZW: L p Estimates for Schrửdinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513-546 (1995) Sách, tạp chí
Tiêu đề: L^p Estimates for Schrödinger operators with certain potentials
Tác giả: Z. W. Shen
Nhà XB: Ann. Inst. Fourier (Grenoble)
Năm: 1995
5. Bongioanni, B, Harboure, E, Salinas, O: Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. J. Math. Anal. Appl. 373, 563-579 (2011) Sách, tạp chí
Tiêu đề: Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction
Tác giả: Bongioanni, B, Harboure, E, Salinas, O
Nhà XB: J. Math. Anal. Appl.
Năm: 2011
6. Stein, EM: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) Sách, tạp chí
Tiêu đề: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
Tác giả: Elias M. Stein
Nhà XB: Princeton University Press
Năm: 1993
7. Tang, L: Weighted norm inequalities for Schrửdinger type operators. Forum Math. (2013).doi:10.1515/forum-2013-0070 Sách, tạp chí
Tiêu đề: Weighted norm inequalities for Schrödinger type operators
Tác giả: Tang, L
Nhà XB: Forum Math.
Năm: 2013
8. Bongioanni, B, Harboure, E, Salinas, O: Weighted inequalities for commutators of Schrửdinger-Riesz transforms. J. Math.Anal. Appl. 392, 6-22 (2012) Sách, tạp chí
Tiêu đề: Weighted inequalities for commutators of Schrửdinger-Riesz transforms
Tác giả: Bongioanni, B, Harboure, E, Salinas, O
Nhà XB: Journal of Mathematical Analysis and Applications
Năm: 2012
1. Tang, L, Dong, JF: Boundedness for some Schrửdinger type operators on Morrey spaces related to certain nonnegative potentials. J. Math. Anal. Appl. 355, 101-109 (2009) Khác
9. Bongioanni, B, Harboure, E, Salinas, O: Commutators of Riesz transforms related to Schrửdinger operators. J. Fourier Anal. Appl. 17, 115-134 (2011) Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm