00 Abbreviations: ACTH, adrenocorticotrophic hormone; ANS, autonomic nervous system; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; EEG, electroencephalogram; fMRI,
Trang 1j o ur na l h o me p a g e :w w w e l s e v i e r c o m / l o c a t e / b b r
Review
A systems approach to stress, stressors and resilience in humans
Barry S Okena,b,∗, Irina Chaminea, Wayne Wakelandc
Q1
a Department of Neurology, Oregon Health & Science University, CR-120, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
b Department of Behavioral Neuroscience & Biomedical Engineering, Oregon Health & Science University, CR-120, 3181 SW Sam Jackson Park Road,
Portland, OR 97239, USA
c Systems Science, Portland State University, P.O Box 751, Portland, OR 97207, USA
h i g h l i g h t s
•Stressphysiologywasreviewedfromasystemsscienceperspective
•Stressorspushbiologicalsystemsfrombaselinetowardlowerutilitystates
•Thesystemchangeisbasedonobjectiveattributesandperceptionsofthestressor
•Allostaticloadisutilityreductionduetostress-relatedstatechanges
•Resilienceaffectsabilitytoreturntohighutilitystatefollowingperturbations
a r t i c l e i n f o
Article history:
Received 25 November 2014
Received in revised form
18 December 2014
Accepted 21 December 2014
Available online xxx
Keywords:
Psychological stress
Systems science
Allostatic load
Resilience
a b s t r a c t
Thepaperfocusesonthebiologyofstressandresilienceandtheirbiomarkersinhumansfromthesystem scienceperspective.Astressorpushesthephysiologicalsystemawayfromitsbaselinestatetowarda lowerutilitystate.Thephysiologicalsystemmayreturntowardtheoriginalstateinoneattractorbasin butmaybeshiftedtoastateinanother,lowerutilityattractorbasin.Whilesomephysiologicalchanges inducedbystressorsmaybenefithealth,thereisoftenachronicwearandtearcostduetoimplementing changestoenablethereturnofthesystemtoitsbaselinestateandmaintainitselfinthehighutility baselineattractorbasinfollowingrepeatedperturbations.Thiscost,alsocalledallostaticload,istheutility reductionassociatedwithbothachangeinstateandwithalterationsintheattractorbasinthataffect systemresponsesfollowingfutureperturbations.Thisaddedcostcanincreasethetimecourseofthe returntobaselineorthelikelihoodofmovingintoadifferentattractorbasinfollowingaperturbation Oppositetothisisthesystem’sresiliencewhichinfluencesitsabilitytoreturntothehighutilityattractor basinfollowingaperturbationbyincreasingthelikelihoodand/orspeedofreturningtothebaselinestate followingastressor.Thisreviewpaperisaqualitativesystematicreview;itcoversareasmostrelevantfor movingthestressandresiliencefieldforwardfromamorequantitativeandneuroscientificperspective
©2014PublishedbyElsevierB.V
Contents
1 Introduction 00
2 Thehumanphysiologicsystem:brainstructureandnetwork(Fig.3) 00
3 Stressor 00
4 Measurementofstress 00
4.1 Peripheralbiomarkers 00
Abbreviations: ACTH, adrenocorticotrophic hormone; ANS, autonomic nervous system; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; EEG, electroencephalogram; fMRI, functional magnetic resonance imaging; HgbA1c, glycosylated hemoglobin A1c; HPA axis, hypothalamo–pituitary–adrenal axis; HRV, heart rate variability; PET, positron emission tomography; PTSD, post-traumatic stress disorder; SSRI, selective serotonin reuptake inhibitor.
∗ Corresponding author at: Oregon Health & Science University, CR-120, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA Tel.: +1 503 494 8873;
Q2
fax: +1 503 494 9520.
Q3
E-mail addresses: oken@ohsu.edu (B.S Oken), fonareva@ohsu.edu (I Chamine), wakeland@pdx.edu (W Wakeland).
http://dx.doi.org/10.1016/j.bbr.2014.12.047
0166-4328/© 2014 Published by Elsevier B.V.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Trang 24.2 Brainchanges 00
4.2.1 Cognition 00
4.2.2 Structuralbrainchanges 00
4.2.3 Physiologicalbrainchanges:EEG,event-relatedpotential,fMRI 00
4.2.4 Geneticchangesinbrain 00
4.3 Allostaticload 00
4.4 Stressanddisease 00
5 Dynamicsofstresssystem–timecourseofstress-inducedphysiologicalchanges:state/traitandvariables/parameters(Fig.4) 00
6 Resilience 00
7 Environmentanditsperception 00
8 Stressandresiliencybiomarkerchangeswithtreatment 00
9 Utility 00
10 Conclusions 00
Acknowledgements 00
References 00
1 Introduction
Q4
Psychologicalstressis commoninoursociety Arecent
sur-vey indicated that 25% of Americans reported high stress and
50%identified a majorstressfulevent duringthepreviousyear
[1] Chronic psychological stress increases risk of health
prob-lemsandcontributestocardiovascularproblems[2,3],neurologic
andpsychiatricdiseasessuchasepilepsy[4],Parkinson’sdisease
[5],multiplesclerosis[6],eatingdisorders,addictions [7],
post-traumaticstressdisorder(PTSD),andsleepdifficulties.Therefore,
itisimportanttodevelopevidence-basedmethodsthatminimize
stressimpact.Afullerunderstandingofstressphysiologyand
psy-chologycanbeachievedbyapproachingthistopicfromdifferent
angles.Thisworkoffersareviewofstressphysiologyand
psychol-ogyfromasystemsscienceperspective
Systemsscienceisamethodologyusedtounderstandcomplex
systemsfromorganizational,structural,anddynamicperspectives
[8].Fromasystemsscienceviewpoint,stressoftencorrespondstoa
stateawayfromoptimalinadynamicalsystemwheretheoptimal
locationrepresentsahighutilityattractor.Anattractorbasinina
dynamicalsystemcorrespondstotheconceptualspaceoflocations
inwhichthesystemresidesovertime.Thestateofstressresults
fromaperturbationarisingfromtheinternalorexternal
environ-ment(stressor).Thisstressorcouldresultinthesystemreturningto
thebaselineoptimalattractorormovingintoalowerutility
attrac-torbasin.Theattractorbasinistheregionofspacethatsharesthe
sameattractorandthewholespacemayhavemultipleattractors
(Fig.1)
Theattractorinthehumansystemisnotafixedpointattractor
giventhemultidimensionalnatureand,almostinherent,
within-subjecttemporalvariabilityofthephysiologicalmeasuresofstate
Thenoisepresentinthemeasurementofthemanyvariables
con-stitutingthehumansystemimpliestheobservedhumansystem
isstochastic;thus,theattractorsareverydifficulttodescribe.In
addition,given thevaryingtimeframes overwhichthe
compo-nentsofthehumanphysiologicalsystemchange,thetermsstate
andvariabledescribing moreimmediatechangesand theterms
traitor parameter describing longer time framechanges
repre-sentanartificialseparationofthevariousphysiologicalmeasures
thathavedifferentunitsandwidelydistributedhalf-lives
What-evertheattractor,evenifthesystemreturnstothebaselinehigh
utilityattractor,thereisoftensomeunderlyingcost.Thiscostto
thesystemisa changein theunderlyingphysiology that may:
(1)decreasetherateofreturntothehighutilityattractoror(2)
decreasethelikelihoodofreturningtotheoptimalattractor
follow-ingafuturestressorperturbationbecausethesizeoftheattractor
basinissmallerortheattractorhasmovedclosertoaboundary
withanon-optimalattractorbasin.Themovementofthe
dynam-icalsystemintoadifferentattractorbasincouldalsobeduetoa
HEALTHY Aractor Basin (higher ulity than PTSD but less than in (a))
HEALTHY Aractor Basin (higher ulity)
PTSD Aractor Basin (lower ulity)
PTSD Aractor Basin (lower ulity) a) Higher Resilience Case
b) Lower Resilience Case
Fig 1.Attractor basins, utility, and resilience Hypothetical example of space of possible human physiological states with two attractor basins, one being a healthy higher utility condition and one a lower utility condition state of PTSD (in this fig-ure, higher utility is downward) The attractor basins can tolerate movement of the hypothetical person (solid circle) in the horizontal direction from an external stres-sor without leaving its basin of attraction However, with sufficient movement from
a stressor, one may go from a higher utility healthy condition basin to a lower utility PTSD basin The healthy condition in b has lower resilience than in a, with less stress required to shift it to the lower utility basin.
singleseverestressorpotentiallyviaadynamicalsystem catastro-phe,forexample,developmentofPTSDfollowingasingleevent (Fig.2)
Besidesnegativeeffects,thestressorcanalsoinducebeneficial changesleavingthesystemmoreresilienttofutureperturbations,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86 87 88 89 90
Trang 3Fig 2.Cusp catastrophe An example of a cusp catastrophe where the state space
of human physiology has a complex 3-dimensional shape, with no pictorial
repre-sentation of attractors, and there may be an abrupt state change In this example, as
stress increases at higher levels of depression there may be a sudden drop in
loca-tion to a new state, PTSD (marked by a dotted line) Here, utility is up rather than
down as in Fig 1
i.e.,causetheoppositeof (1)and (2)above.Thetermresilience
includesseveralconceptualaspects.Resiliencereferstohow
effec-tivelyandquicklythesystemreturnstobaseline[9].Thisincludes
whetherthehumandynamicalsystemavoidsmovingtoalower
utilitydiseasestatefollowingastressor[10].Arelatedtermis
sta-bilitywhichreferstohowwellthesystemcanmaintainitscurrent
highutilityconditionwithoutbeingpushedaway
Althoughastressormaycauseashort-termdecreaseinsome
measure of utility, sometimes it results in longer-term utility
increase.Inthecaseofhumans,thisisrelatedtolearningas
dis-cussedbelow.Thehumandynamicalsystemmayexperiencesome
low-stressenvironmentalperturbationthatresultsinarelatively
immediategaininrewardorutility,e.g.,obtainingfoodwhen
hun-gryorsomelonger-termgainin utility,e.g.,thebrainacquiring
a betterunderstanding of theenvironment There is an
appar-entinvertedu-shapedeffectofstressonlonger-termutility,such
thatoccasionalsmallamountsofstressmayimproveboth
short-andlong-termutilitybutexperiencingnostressorlargeamounts
ofstressmayhave negativelong-termeffects ontheorganism
Thoughtheterm“human”willbeused,mostofthis discussion
appliestootheranimalsandtosystemsingeneral
2 The human physiologic system: brain structure and
network ( Fig 3 )
Ahumanisadynamicalsystemcomposedofsubsystemsthat
help maximizeutility of theorganism Utility maybe defined:
(1)fromapurelybiologicalperspectivesuchasimmediate
repro-ductive successorobtaining foodor(2) from amore complex,
perhapshedonicorlonger-termperspectivesuchaslonger-term
reproductive success, obtaining more resources, gaining group
supportorenjoyinganamusementparkride.Longer-term
util-itycouldextendbeyondthelifespan,e.g.,survivaloftherelated
socialunitortheentirespecies(seeSection9formore
informa-tionaboututility) Theorganismismaintainedbymanycritical
systemsandsubsystems,suchascardiovascularandrenal,butthis
paperfocusesonthebraindynamicalsystemand its
communi-cationlinkswiththebodyviaautonomicnervoussystem(ANS),
hypothalamo–pituitary–adrenal(HPA)axisandneuroimmune
sys-tem.The limbic system is involved in psychological aspects of
stress, including neocortex activation by emotional states and
memoriesofeventsassociatedwithemotionalvalences.Olderand
morecaudalbrainpartsincludingthebrainstemandspinalcord
aregenerallynotcriticalforthefollowingdiscussionwithsome
MODERATING FACTORS Memory, State, Trait, Genes
Expression
Environmental Smulus
PERCEPTIO N Emoonal Valence:
- posive/ne gave
- degree
STRESS ACTIVATION
ANS
e n v i r o n m e n t a
Emoonal memo ry loud noise
PERCEPTIO N
+
STRESS ACTIVATION
+
e n v i r o n m e n t b
Fig 3.(a) Interpretation of stressors: brain processing and communication The brain’s perception of the emotional valence of an external event as a stressor is dependent on the current environment and modulated by previous experiences (memory), current physiological state, traits (e.g., neuroticism), and genotype The brain generates outputs to the autonomic nervous systems (ANS), the hypotha-lamo–pituitary–adrenal (HPA) axis, the immune system, gene expression and epigenetics (overall increasing time duration of stress activation components from left to right) These responses directly affect the body but also feedback to the brain Learning includes assessment of risks and rewards and it can be clinical designed
to reduce reactivity, e.g., allergy therapy or mindfulness meditation (b) Example of self-reinforcing stress response system that is pathological if in a non-threatening environment Normally, while stress activation from a loud non-threatening noise may initially activate a stress response, response to repeated loud noise will be attenuated through negative feedback (e.g., habituation) In PTSD emotional mem-ories and the stress activation itself may contribute to an auto-reinforcing positive feedback loop As mentioned in the text and Fig 2 , this PTSD attractor basin may be entered secondary to a single severe negative event via a catastrophic dynamical sys-tems event This pathological transition is more likely in those with predispositions, e.g., neurotransmitter alterations such as depression.
exceptionsincludingANScomponents.Thesympatheticportion
oftheANSinvolvingcentralcatecholaminergicsystemsis particu-larlyimportantforcommunicatingthebrainperceptionofstress
tothewholebody bycausing changes suchasincreasedblood pressureandheartrate.Thehypothalamusisanimportant commu-nicationlinksecretingneurohormones,e.g.,adrenocorticotrophic hormone(ACTH).Giventhisbackground,themostcommonly dis-cussedphysiologicresponsestoa stressorinvolvetheHPAaxis, thelocuscoeruleus–norepinephrine–sympatheticnervoussystem pathway,theparasympatheticsystem,theimmune system,and geneexpressionandalterationsincludingepigeneticchanges
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133 134 135 136 137 138 139 140 141 142 143
Trang 4sys-tems (ANS, HPA, and immune) and the brain exist in part to
ensurethestress-relatedsystemsprovidefeedbackforlearningand
helpavoid over-reactivity.Thecommunicationsystembetween
the immune system and the brain constitutes an entire field
itself,psychoneuroimmunology[11].Theimmunesystem–brain
communicationissignificantlymediated bycytokines.Allthese
two-waycommunicationsystemsdirectlyimpactthebrainviaits
receptorsfornorepinephrine,ACTH,cortisol,andcytokines,with
prefrontalcortex,hippocampus,andamygdalabeingmost
promi-nent[12].Feedbackisofteninhibitoryandisnotperfect.Occasional
errorsinthistwo-waycommunicationsystemmayarise.For
exam-ple,amajorincreaseinheartrateinanexercisingolderadultwith
atherosclerosismightbeaccompaniedbyanattempttodecrease
theheartrate,but thisdecrease maybeinsufficienttoprevent
amyocardialinfarctionandevenasuddendeath[13]
Addition-ally,theawarenessofstressmayitselfbeastressor;however,this
typeofstressisdistinctfromexperiencingexternalenvironmental
stressors.Stressawarenessmaybecommonlyrelatedtothe“recall”
orassociationofparticularenvironmentalinputswithpriorstress
3 Stressor
Astressorisanenvironmentaleventthatsignificantlyperturbs
theentirehumandynamicalsystemawayfromtheoptimal
attrac-torresultinginastateoflowerutility.Thestressormaymovethe
physiologicalsystemtoadifferentattractorbasin,movethe
sys-temstateclosertotheedgebetweenitscurrent attractorbasin
andanotherattractorbasinofthephysiologicalsystem
(“precar-iousness”),orslowtherateatwhich thesystemreturnstothe
optimalattractor.Themovementofthesystemisnotdependent
solelyonobjectivemeasuresofthestressorbutalsoonthe
indi-viduals’traitsofdistresspronenessandtheirperceptionsofthe
stressor.Iftheperturbationisperceivedtoimpactanorganism
neg-ativelyorassociatedwithobviousthreats(hunger/visualizationof
aggressor),thereisanimmediateeffecttoreducethelikelihoodof
anegativestressorimpact.Forexample,seeingabearwithher
cubwhile hikingwillgenerate physiologicalchanges important
foraction(elevatedheartrateandbloodpressure)andincreased
attentiontoenvironmentalstimuli, thusimprovingencoding of
thesituationforfuturerecollection.Theseperturbationsincrease
likelihoodofsurvivalovertheshort-termbutifmaintained
long-termmayhavedeleteriouseffects.Forexample,atransientincrease
inbloodpressureistolerableandmaybehelpful,butachronic
increaseinbloodpressureisnothighutility.Stressdosesthatare
nothighenoughtocausesignificanthealthproblemssuchas
dis-easeordeathfromastatechangemayproducehigheraverage
utilitywithinthebasinbyalteringtheshapeofthebasinorby
movingtoadifferent,higherutilitybasin.Inanathleticsexample,
bothshort-termstressatanOlympiccompetitionandlonger-term
stressfromhigheffortathleticactivityoveratrainingperiodmay
improveathleticperformance.However,excessiveorrepeated
per-turbationsmayhaveacosttotheunderlyingsystemthatoutweighs
thebenefit
Stressorsmayincludeexternalenvironmentperturbationssuch
asextreme heat oricy roadswhile driving.Stressors mayalso
includeinternalenvironmentperturbationssuchasinfectionsor
elevatedglucose.Stressorsmaybepredominantlypsychological
andmediatedbybrainperceptionandfutureexpectancy.Stressors
arenotnecessarilyphysicalchangesintheenvironmentbutmay
involvelossofasignificantrelationship,financialstress,negative
neighborhoodcharacteristics,orsocialthreatsincluding
discrimi-nation[14–17]
Formostofthisdiscussion,thestressorreferringto
perturba-tionsundertightphysiologicalcontrolwillbeomitted.Information
signals from these perturbations such as alterations in serum sodium do not need to reach the brain level to be regulated Homeostasisreferstothedynamiccontrolofthesestatevariables maintainedwithinanarrowwindowforhumanstosuccessfully function.The dynamicalsystemrepresenting thewholeperson
isregularlyexposedtomoreheterogeneousstressorsthanserum sodiumchanges,includingpotentialstressorsthatareanticipated Allostasishasbeenusedtodescribe“activelymaintaining homeo-stasis”[18],butthepracticalityofthisdistinctionfromhomeostasis
isuncertain[19] Some stressors represent state perturbations to which the person may respond without any obvious long-term negative ramifications Some stressors, in part related to their chronic-ity,mayhavenegativelong-termramifications.Theperturbation may induce changes in several systems For example, as time passesfromthepreviousmeal,ahuman’sstomachisgrowlingand bloodsugarisgettinglower;thebrainsenseshungerand mobi-lizesto address theperturbation stressor.Part of the response
toa stressorwillbemediated directlybytheinternal environ-mentwithoutrequiringanymediationbythebrain,e.g.,hunger causing the release of hormonesto break downglycogen Part
oftheresponseisdirectlymediatedbythebrainresponsiblefor planninghowtointeractwiththeexternalenvironment,e.g., walk-ing into thekitchen to get food.The perturbation may induce changes in physiological parameters, e.g., DNA transcription or epigeneticmodificationstoalterneurotransmitterreceptor sen-sitivity.Respondingtothesestressperturbationsmayinducesome costtothesystem.Thiscostmayinvolvethemovementofthe systemintoanotherbasinofattractionoranincreaseinthe proba-bilitythatthesystemwillmoveintoanotherbasinfollowingfuture perturbations
Thoughthestressorhassomeobjectivequalities,itcanbe dif-ficulttoquantifybecausephysiological stresseffects arehighly dependent on the subjective perception Quantifying an indi-vidual’s stressors has been attempted [20] Some examples of stressorsincludeeventsthathavenovelty,unpredictability(any information-richinputbeyondthebrainprocessingability),threat
toone’sego,orsenseoflossofcontrol(NUTS)[21].Short-term lab-oratoryexperimentalstressorsarerelatedtotheseNUTSconcepts includingtheTrierSocialStressTest[22],theMontrealImaging StressTask[23],titratedStroopcolor-wordinterferencetask[24], physical (e.g., putting a hand in ice water) [25], or perceptual stressors(e.g.,thedisturbingpictures oftheInternational Affec-tivePictureScale[26]).Stressresponsescanalsobeconditioned [27]allowingforcomparisonbetweenhumansandotheranimals
Itismorechallengingtostudylong-termstressorsexperimentally butoccasionalmisfortunessuchaswarsandotherdisastershave generatedinformativeepidemiologicaldata,e.g.,theWorldTrade Centerdisaster.Stressorsmayinvolveawarenessofastressor,even
ifitiserroneous,e.g.,misperceptionofanenvironmentalchange Relevantexamplesincludeerroneousstressassociationswith ordi-naryloudsoundsthathavedevelopedfromexplosion-relatedPTSD
orapheochromocytomaproducingasurgeofcatecholamines per-ceivedasastressstatebecauseofdiaphoresisandafastheartrate
Ingeneral,frequentperturbations intoastressedstateaway fromthehighutilityattractorhaveacosttothesystem.Thecost
ofgoingtotherefrigeratorwhenfeelinghungryislow.However,
arelatedperturbation,thebloodsugarincreaseandtheneedto secreteinsulinduetoovereatinghigh-sugaritemsmayeventually causelong-termnegativeeffects.Ifrepeatedenough,itmay dimin-ishthehuman’sabilitytostayinapositivefunctionalattractor, andthelackofresponsivenesstoinsulinatthecellularlevel(i.e., insulinresistance)maycauseadulttype2diabetes.Thiscommon stress-relatedchangehasresultedinacommondiabetesmeasure, glycosylated hemoglobin HgbA1c, frequently used as a chronic stressbiomarker.Inhumans,allostaticloadisthecosttothesystem
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
Trang 5execut-ingthephysiological changesandthepotentialcostsofmaking
thechangesinarchitectureofthebasinsofattraction(theirsize,
depth,etc.)followingastressoraswellastheeventualimpacts
of thearchitecturechange.Allostasishasbeen usedtodescribe
thedynamicalcontroloverthesevariableperturbationsfor
main-tainingafunctionalstate.Thoughthereissomecontroversyover
whetherallostasisistrulydifferentfromhomeostasis[19],theterm
allostaticloadhasbeenusedasaconceptualmeasureofthe
phys-iologicalcostduetochronicstressors[28]andbewillbeusedin
thispaper.Attemptstodefineametricofallostaticloadfor
exper-imentalusearediscussedbelow
4 Measurement of stress
Thetermstressdescribesastateofphysiologicandbehavioral
responsestoastressorwiththebrainbeingthecriticalinterpreter
ofwhatisstressful.Thoughinconsistentlyused,thestressedstate
inhumansforthepurposesofthisdiscussionislinkedtodynamical
physiologicalchange.Thestressedstatealsoinvolvestheconscious
andunconsciousstressorinterpretationbythebrainincludingthe
consciousperceptionof thestressorsand theperceptionofthe
physiologicresponsegeneratedbythestressor[29–31].Stressors
resultinchangesinstatevariablesandparametersandhavebeen
measuredusingvariousbiomarkers
There are many objective ways to measure human
stress responses other than commonly used self-rated
scales As previously noted, physiologic responses to stress
include activation of the HPA axis, activation of the locus
coeruleus–norepinephrine–sympathetic nervous system
path-way, the parasympathetic system, immune system, and genes
[29,31–35].Importantly,thetimingofthesechangesisvariable
Whenmeasuredasstatevariables,theymayormaynotshedlight
onthedynamicalnatureofthephysiologicsystem,resilience,or
allostatic load Dynamical aspects of stress and resilience may
beestimated withrepeatedmeasurements over longerperiods
duringdailyroutinesorfollowingaknownexperimentalstressor
4.1 Peripheralbiomarkers
Eachbiological assessmenthasasamplingtimewindow.For
example,aperipheralblooddrawtoassesscortisolreflects
cumu-lativechanges over minutes, cortisolovernighturine collection
measurereflectscumulativechangesoverhours,andahairsample
mayreflectcumulativechangesovermonths
HPA axis activity biomarkers include glucocorticoids: free
cortisol(orcorticosterone in experimentalanimals), ACTH, and
corticotropin releasing hormone [36,37] In addition to acute
stressor-inducedchangesinthesebiomarkers,therearealterations
indiurnalfluctuationswithchronicstress,e.g.,incortisol
awak-eningresponse[38,39].Dehydroepiandrosterone(DHEA)andits
sulfate(DHEAS)acttocounter-regulatecortisol[40].DHEAisused
asastressmarkerbyitself[41]orasaratiotocortisolandhasbeen
affectedbydepression[42].Mineralocorticoidsmayalsobestress
biomarkers[43]
Severalautonomicactivitymeasuresareassociatedwithacute
orchronicstressincludingbloodpressure,electrodermalresponse,
skintemperature,respiratoryrate,heartrateandheartrate
vari-ability (HRV) [44] A variety of HRV measuresin the time and
frequencydomainshavebeenevaluated[45,46].WhileHRVmay
lookatdynamicalchangesoverlongperiods,e.g.,24hormore,
longer-termHRVrequiresmoresophisticateddataprocessingto
correctforexerciseandunrelatedtostressactivitiesmodifyingthe
heartrate
Many measures correlated withstress have beentreated as relativelystaticmeasures.Thereare alterationsinimmunologic functionincludingcytokines;geneand epigeneticmodifications involvingtelomerechanges;and metabolicactivityfluctuations resultingin generationof reactiveoxygenand nitrogenspecies damagingtocellularstructures[29,33,35,47–49]
Thereareotherbiomarkersnotdirectlyrelatedtothecurrently discussedphysiologicalstresspathways.Toassessstressresponses researchershaveusedmeasuresofmuscleactivitye.g.,using elec-tromyographic activity for biofeedback in treatment of muscle contractionand othertypesofheadaches.Biofeedbackhasbeen usedonmanyphysiologicalmeasureswithonlyfew(peripheral temperatureandelectrodermalactivity)beingclosely relatedto ANSactivation[50].Additionally,asmanyhavecasuallyobserved, stressaltersvoicecharacteristics[51]andpostureinachair[52] Otherbiomarkersarelistedbelowunderallostaticload
4.2 Brainchanges 4.2.1 Cognition Cognitive function including memoryis significantly altered
bystressinhumansandnon-humananimals[53–55].Cognitive declineassociatedwithstress(andthecloselyrelated construct depression)mayaffect speed,attention,and executivefunction [54,56].Prefrontalcorticaldysfunctionisparticularlyimpactedby stress[57].Thispathologicalrelationshipbecomesmoreevident withage[58],andhighlystressedelderssuchasdementia care-giversmaybeparticularlyatrisk[48]
4.2.2 Structuralbrainchanges Stress-related states suchasPTSD and fear conditioningare linkedtodecreasedhippocampalsize,declineinprefrontalcortex, increasedsizeofportionsoftheamygdala,anddecreased inhibi-tionoftheamygdalaandrelatedbrainregionsbythefrontallobes [55,57,59,60] Thebrain changesare atleast partiallymediated
bycortisolwithincreasedcortisolrelatedtosmallerhippocampi [61] Thetime courseofstructural changeismuch longerthan thehalf-lifeofcortisol;cortisolelevationneedstobesustainedto causelonger-lastingbrainchanges.Smallerhippocampiare com-monamongpeoplewithPTSDortraumaexposure[62,63]andthey alsoarelinkedtoincreasedriskforPTSDdevelopment[64]sothe causativerelationshipisuncertain.Further,PTSDsufferersareat higherriskofdementia[65]andthosewithsmallerhippocampi haveincreasedtheriskofdementia[66].Therefore,definingthe causativeaspectsoftheserelationshipsiscritical andcanaffect otherimportanthealthconcerns.Fromtheperspectiveof bene-ficialeffects,researchshowsincreasedhippocampalvolumeand improvedverbaldeclarativememoryinPTSDpatientsafterusing
aselectiveserotoninreuptakeinhibitor(SSRI)antidepressantfor 9–12months[67].ThisislikelyrelatedtoSSRI-related neurogene-sisincrease[68]
4.2.3 Physiologicalbrainchanges:EEG,event-relatedpotential, fMRI
EEG stress-related changes, particularly frontalasymmetries [69,70],andalterationsinevent-relatedpotentials[71]havebeen noted,but thesechanges havenot beenconsistent,inpartdue
tolackofdistinctionbetweenstateandtraitmarkersand limita-tionsinsignalprocessing[72].Chronicpsychologicalstressimpairs sleepandtheresultantsleepdeprivationmayimpactEEG.PETand fMRIdetectbrainactivationchangesduetoexperimentalstressors [73–75]
4.2.4 Geneticchangesinbrain Thereare differentfunctional gene classesthat underlie the diverseeffects of glucocorticoidsonbrainfunction, e.g.,energy
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
349
350 351 352 353 354 355 356 357 358
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
381 382 383 384 385 386 387 388 389 390
391 392 393
Trang 6metabolism,signaltransduction,neuronalstructure, and
neuro-transmittercatabolism[32].Stresseffectsontelomereshavebeen
mentionedbutassessmentsofhumantelomeresaregenerally
per-formedonperipheralbloodlimitingtheirdirectbrainassociation
4.3 Allostaticload
Theunderlyingbiologicaldefinition ofallostaticloadis very
broadsincethephysiologicalsystemrepresentsahighly
multidi-mensionalstatespacewithmanyparameters.Potentialexamples
ofunderlyingloadincludethecostofgenetranscription,metabolic
activity,andalterationincellreceptorsensitivity.FrequentDNA
processingmayproducechangesintelomerelength
Allostaticloadwasoriginallydevelopedasacompositemarker
ofchronicstress-related disequilibrium generatedfrom a
num-berofphysiologicalmeasures.Theoriginallydescribedallostatic
loadscorewasacompositeof10measures(systolicanddiastolic
bloodpressure;waist–hipratio;ratiooftotalcholesteroltohigh
densitylipoproteins;highdensitylipoproteincholesterol;
glyco-sylatedhemoglobin;overnight12-hurinarycortisol,epinephrine
and norepinephrine; and DHEA-S [76]) The score obtained by
summingthetenmeasures(0ifnormal,1if75thpercentileor
worse)wasassociatedwithmortality.Relatedcompositeallostatic
loadmeasureshavebeencorrelatedtochildhoodpoverty[77]and
measuresofworkexhaustion[78].Thelatterstudyaddedseveral
measures(tissuenecrosisfactor-alpha,C-reactiveprotein,
fibrino-gen,andD-dimer)andothermeasureshavealsobeenadded,e.g.,
pro-coagulantactivity.Despitethewidespreadinterestinallostatic
load,theoptimummeasurehasnotbeendefined;themeasures
currentlyusedarebasedonnon-experimentalapproaches(e.g.,
simpleavailabilityandapriorirationales).Asaresultthereismuch
varietyinthedefinitionofa compositemeasure[79],but there
needstobeimprovementinitsdefinitiontoadvancethefieldof
biomarkersforchronicpsychologicalstress.Thiscouldpotentially
resultfrombetteranalytictechniques
Allostaticloadmeasureshavehighlyvariabletimeframes.Some
maychangerelativelyquickly,e.g.,fibrinogen,someareintegrated
oversometimeperiod(e.g.,12-hurinarycortisol),andsomechange
muchmoreslowlyorareintegratedoverlongertimeframes(e.g.,
waist–hipratioorHgbA1c).Mostphysiologicalparametersarenot
onlystressindicatorsbutalsochangewithotherbiorhythms,e.g.,
circadianorprandial
Anotherrationale forallostaticloadasa composite measure
ofstresseffectsisthatdifferentpeoplelikelyhavedifferent
sub-systemsaffectedbystress.Somepeopleexperiencinghighstress
developheadaches,whileothersdevelopgastrointestinalorother
disorders.The particularorgan systemsaffectedby stressis an
interactionbetweenthesesystemsandthebrain.Theindividual
reactionstostressaredependentonanindividual’sgenes,
learn-ingandenvironment.Thus,itislikelythatdifferentpeoplehave
differentpatternsofalterationinstress-relatedbiomarkersor
allo-staticloadcomponentmeasuresthatmaypotentiallybediscerned
bybetteranalytictechniques,e.g.,structuralequationmodelingor
machinelearning.Itmayultimatelybeimportanttounderstand
theindividualrelationships,butatthisstateoftheresearchitmay
behelpfultohaveacombinedmeasure
4.4 Stressanddisease
Acutestressmayhavesomemetabolic,immunologicand
cog-nitivebenefits.Forexample,alterationsinsystempropertiesmay
produceahighertransientutility,decreasethelikelihoodthata
stressorwill movethestate of thesystemaway froman
opti-mal attractor (robustness), or increase the size of an attractor
basin(seehormesisbelow).Ahelpfulexampleistheimmune
sys-temwhichlearnstoreacttoforeignsubstanceswhenexposedto
non-virulentonesthatdonotresultindeath.Iftheimmunesystem
isnotexposedtosufficientforeignsubstances,theresultcouldbe over-reactivitytoforeignsubstancesorallergies[80].However,as statedintheintroduction,moreoftenimpairmentsinhealthand
abroadrangeofdiseasesareproducedbychronicpsychological stress
Chronicstressmaycausecognitivedecline,adverseeffectsin thehippocampus,andcontributetoneurodegenerativediseases eitherdirectlyorthroughstressmediatorsincludingallostaticload [3,18,81–83].Thenegativeeffectof psychologicalstresson cog-nitive functionmay be greater withaging [58,84,85] Stressors includinganesthesia,drugs,depressionmaybemorelikelytoresult
inastateofimpairedcognitivefunctionwithincreasedage Cog-nitivereserve,ameasureofhowwellthebrainworks[86],maybe oneaspectofresiliencetotheeffectsofstressoncognition
5 Dynamics of stress system – time course of stress-induced physiological changes: state/trait and variables/parameters ( Fig 4 )
Stress can cause a perturbation of state but the associated changestophysiologicalmeasuresoccuratvaryingtime scales Thetimecoursesofmarkerchangesinpsychologyaresometimes groupedinto fairly mobile,shorter-term changes reflecting the person’scurrentstateandlonger-term,morestablechanges reflect-ingtraits.Standardmeasuresofpsychologicalstressaspects,such
asanxiety,areoftenmeasuredbyawidelyusedinventory,e.g., theState-TraitAnxiety Inventory[87].However,evenrelatively stabletraits,suchasthepersonalitytraitneuroticism,often con-sideredstableoveralifespan,canbemalleablethuslimitingthe clear distinction between stateand trait Systems science uses termsanalogoustostateandtrait:variablesreflectingcurrentstate measuresandparametersreflectingmorestableattributesofthe system.Thechangeinparametersmaydecreasethelikelihoodof thesystemstayingintheoptimalattractorbasininthefaceof typ-icalenvironmentalfluctuations,butthedistinctionfromvariables
issimplythetimescaleandthusissomewhatartificial.This sec-tionisfocusedonthevaryingtimecoursesofphysiologicalmakers whichareonlymoderatelycorrelatedwithcommonlyused self-ratedmarkers.Allbiomarkermeasurements,includingcommon physiologicalmeasurements(e.g.,cortisol)andmanyanatomicand experimentalphysiologicalmeasurements(e.g.,hippocampalsize
orneuronalreceptorsensitivity)changeovertime,butthetime coursesdiffer
ThesympatheticbranchoftheANSisthequickesttorespond Stressresponse canbemeasuredbyheartrate,blood pressure, electrodermalactivity,orcatecholaminerelease[88].Epinephrine andnorepinephrinereleaseoccurinseconds.Thetwo-minute half-lifeofepinephrinehighlights thegenerallyshorttimecourseof thisresponse.ThisANSresponseispresumablygearedto short-actingflight-or-fightchangessuchasmetabolicneeds,bloodflow, andnon-specificalerting ofthebrain[89],withnorepinephrine projectingthroughoutthebraincontributingtobothphasicand tonic alertness [90,91] HPA activity has a slower time course andisactivatedbythreatsandnegativeconsequencesevenwhen onlyanticipated.Cortisolhaseffectsthroughoutthebodyandis impactedbymanyfactorsotherthanstress.Cortisolalsodirectly affectsthebrainviacortisolreceptorspresentinthepituitary, cere-bellum,hypothalamusparaventricularnucleusandinneocortex Thecortisolpeakonsetoccurs15–30minafterastressor[73,92] Stressoreffectsontheimmunesystemhavealong-timecourse, andeffectsonlearningandDNAhaveevenalonger-timeframe andareimportantforsustainedstresseffects.Somepersonality traitshavebeenlinkedtospecificgenotypes,e.g.,singlenucleotide polymorphisms For example, a specific genotype (5HTTLPR)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
471 472 473
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
Trang 7a d
f e
g
h
STATE EXAMPL ES
due to inaenon, trait, etc
(0, 0, 0) Duraon
Fig 4. A three-dimensional model of stress-related states A rough schematic of
three dimensions related to stress Physiological activation can be low or high and
sustained for a short or long period of time The response can be to a stressor that is
relatively low from an objective or population perspective or relatively high Normal
function usually goes from relaxation state (a) to short duration high physiological
activation when exposed to a stressor (f) If the stressor response is too sustained or
occurs too frequently, there is some cost to the system.
relevantforstressaffectsserotonintransportandhasbeenrelated
tostressreactivity[93]andthepersonalitytraitofneuroticism
Particularlyrelevantforourdiscussioninvolvingtimecoursesin
humanstressarethebrainnetworkchangesalteringperception
of thestressfulness of anenvironmentalstimulus; this maybe
relatedtosuddenawareness(consciousness)ofthestressororof
theinducedphysiologicalstatechange.Asystemthatreacts
differ-entlyifconsciousnessisachievedandrespondsbasedonconscious
perceptionsandconcepts,suchastheperceptionofcausality,is
inherentlybiased
Therearedifferentapproachestomeasurestressandresilience
dynamically.One canmeasure themagnitude of thechangeat
sometimepointfollowingastressor,e.g.,thecortisolincreasefrom
baselineto15minafteranexperimentalstressor.Onecan
incor-porateamoresophisticatedtemporalmeasureestimatingthearea
underthecurveorhalf-lifeofabiomarkerstressresponseifenough
assessmentsareavailable.Anothermeasureisthetimeittakesto
returntobaselinefollowinganexperimentalstressor,e.g.,fMRI
changes2hafterastressor[74].Intheeventonedoesnotusean
experimentalstressor,onecanobserveresponsefollowinga
signif-icantenvironmentalstressor,asinepidemiologicalstudiesrelated
towarinjuriesorcatastrophes.Ifenoughmeasurementsover
suf-ficientnumberofdaysareavailableitispossibletocalculatethe
variabilityofthephysiologicalsystem.Thisvariabilityofthe
sys-temrelatestostressresponsesbutothervariables(e.g.,age)enter
aswell.Forexample,agingisassociatedwithincreased
variabil-ityofmeasuresofperformance,andthisvariabilitycanserveasa
markerforinsipientdementiaamongelders[94]
Ingeneral,theslowlychangingtraitsorparametersare
poten-tially harder if not impossible to measure empirically Given
thevariabletimeframeofthebiomarkers,assessmentbymany
repeatedmeasurementsovera prolongedperiodmayprovidea
betterrepresentationofthedynamicalstresssystemresponseto
psychologicalstressthan singletime-pointassessments Thisis
especiallytruebecauseeachbiomarkeralreadycapturesthe
phys-iologicalsystemoversomecumulativetimewindow.Themany
physiologicalmeasurementsneededoveraprolongedtimecanbe
obtainedoverdaysorweeksusingcontinuousrecordinginalab
orrepeatedassessmentsusingecologicalmomentaryassessment
[95,96].Lookingatreactivitytoanexperimentallaboratorystressor
mayalsoprovidegoodmarkersofthedynamicnatureofthe
phys-iologicalsystemrelatedtostress.Epidemiologicalstudiescanuse
dataacquiredfollowingpopulationexposuretoacommon stres-sor.Fig.4offersaschematicrepresentationoftheconditionsrelated
toshorter-andlonger-termstressorsandphysiologicalresponses Therearemanysystemssciencemethodologiesthatcouldbeused
toanalyzethemultidimensionalnatureofstressphysiology includ-ingsystemdynamicsmodeling,agent-based modeling,network analysis,discrete event analysis,Markov modeling,and control systemsengineering[8]
6 Resilience
Asdiscussedintheintroduction,thetermresiliencehasbeen usedindifferentways.Resilienceaffectshoweffectivelyandquickly thesystemreturnstoahighutilityattractorbasin[9].Despitethe neuroscientificinterestinresilience[10,97],itsdefinitionsremain variable.Resilienceorrobustnessisthecapacityofthesystemto returntoahighutilityattractorfollowingperturbation,the sys-tem’sabilitytoavoidshiftingtoanotherattractorbasinpresented
inthispaperasadysfunctionalordiseasedcondition,ormoving morequicklytoitsoptimallocationwithinitsoriginalattractor basin(Fig.1).Specificexamplesofresiliencefromasystems per-spectiveinclude:(1)thedistanceofalocationinoneattractorbasin
totheboundaryofanadjacentbasinofinferiorutility,i.e.,greater resiliencemeanstheattractorisfurtherawayfromboundarieswith lowutilityneighboringregions;and(2)thestrengthofthevector fieldinthebasin,whereresiliencemightmeanmorerapidreturn
totheattractor,soarepeatofastateperturbationbeforefullreturn willmakeleavingthebasinlesslikely.Fromabiological perspec-tive,resiliencemayrefersimplytotheabilityofapersontocope withasignificantexternalstressororinsult.Relatedtermsinclude: stability or resistance, indicating thedifficulty moving a system awayfromitsbaseline“optimal’region;precariousnesssuggesting systemproximitytosomethresholdofmovingintoanother attrac-torbasin,andlatituderelatedtothemaximumamountofchange thesystemundergoesbeforelosingitsabilitytoremainwithinits highutilityattractorbasin.Theresilienceofadynamicalsystemto maintainitselfwithinafunctionalhighutilityattractorbasinisvery importanttothelong-termhealthofthesystem.Resilienceisnot simplytheoppositeofallostaticload.Allostaticloadisameasure
ofphysiologicalsystemparametersthatmayimpactresiliencebut
italsohasothereffectsonlong-termhealthordiseaserisk
It isknownthat manyhumanstressorsarebest remediated
by significantbehavior changeaffectingstressor exposure(e.g., ingesting less glucose ifpre-diabetic or decreasingwork hours
inastressfuljobifhypertensive);somestressorsinhumansare relatedtotheperceptionofthestressormore thanthestressor itself.Forexample,someonewithPTSDisinapathologicallower utilityattractorthatcouldrelatetothebrainmisperceivingthe environmentinawayharmfultotheperson’shealth(e.g.,atruck backfirecausingaveterantoengageinrecollectionsandemotions associatedwithwar)
Resiliencetopsychologicalstressisevidentwhensomepeople avoidsignificantpsychopathology,suchasPTSD anddepression whenexposedtoastressor[10].IntheWorldTradeCenter disas-terresilience,measuredbyalikelihoodofdevelopingPTSD,was relatedtoage(olderdidbetter),gender(malesdidbetter),social support(moredidbetter),self-esteem(higherdidbetter)and life-timehistoryofdepression(worsewithapositivehistory),butwas notrelatedtoeducation[98]
Someamountofstressintheenvironmentmaybeusefulfor maximizing thesystem’s ability to respondto future stressors Humanslivingwithnostressorsmaylosetheabilitytorespondto futurestressors.Fromthebrainperspective,someamountofstress
isusefulformaximizinglearningandmaintainingcognitive func-tion.Systemsthatlearntocopewithsomeamountofstressmay
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561 562 563 564 565 566 567 568
569
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
Trang 8responsetoastressor,“aprocessinwhichexposuretoalowdose
of environmentalfactorthatisdamagingathigherdosesinduces
anadaptivebeneficial effectonthecellororganism” [99].This
adaptationcouldbetoenvironmentalstressorssuchascoldand
exercise[100].Astressorcancausethesystemtobenon-optimal
for a shorttime but still result in returning to baseline.While
theremaybesomeallostaticloadcost,thestressormayinduce
changesinsystemphysiological parametersthatstrengthenthe
futureabilitytoreturntoitsgreaterutilitylocations,i.e.,increase
resilience.Thislowlevelofstressexposureoccursinsome
clini-caltreatments,e.g.,allergytherapyandexposuretherapyinPTSD
Insomesensesuchexposurestoalow-levelstressorisawayto
exercisetheresilienceaspectsofthesystem.Ingeneral,repeated
externalstimulielicitlessofaphysiologicalresponsebecauseof
habituationthatcanbemeasuredbyfMRI,event-related
poten-tialsorelectrodermalresponse[101,102].However,insomecases
repeatedexternalstressorsresultintheexcessiveresponse,asin
PTSD(e.g.,hyperarousaltoloudnoises)andbecomeself-reinforced
ratherthanextinguished
Thisdecreasedefficiencyandabilityofthehumandynamical
physiologicalsystemtostayinorgetbacktoafunctionallypositive
attractorbasinisthenegativeeffectofchronicstressorallostatic
load.Changingtheparametersofthehumansystemtobringthe
systembacktotheoptimalstate orhighutility attractoroften
entailsacosttothebasichumanconstituentsbutthechangescan
beusedtosimplyindicatepreviousstressexposure.Thiscouldbe
DNAmodification,receptorsensitivitychanges,orchangestoblood
vesselsfromhighbloodpressure.Anotherexampleofchangesto
theunderlyingsystemis aging,whichcanmakea personmore
likelytoexistinanon-optimalstateorattractorbasin.Itcouldbe
thattheattractorbasinbecomessmallerorlesssteep.Thechangeof
thestatespaceattractorbasinthatdecreasesthesystem’sabilityto
stayinitshigherutilitystateswithoutmovingtolowerutilitystates
initscurrentattractorbasinortoaloweraverageutilityattractor
basinrepresentsthechronicstresseffectorallostaticload.These
changesovertimecanbedefinedmathematically.Thesuboptimal
attractorbasinsdonotbecomenecessarilylarger;rather,thehigh
utilityattractorsbecomesmallerwithshallowersides.Thus,the
timerequiredforreturntothebaselinestatetendstoincrease
Froma probabilisticperspective,theresilienceofthesystem
couldbeconsideredtheprobabilitythat anenvironmental
per-turbationresultsinreturning tothehighutilityattractorbasin,
asopposed toending up in anattractor basin withlower
util-ity Thecapacity ofa systemto stay in a highutility attractor
basincouldbedefinedstochastically:thelikelihoodthat
follow-ingaparticularperturbationthepersonreturnstothehighutility
attractorbasin.Thecapacitytostayinthishighutilityattractor
basinisespeciallyrelevantwhen,following astressor,thestate
maybeclosertothebasinboundaryandbemorelikelytoshifttoa
non-optimalattractorbasinshouldanotherstressormanifest.Even
withoutchangingthespecificattractorbasinbutsimplytheshape
ofthebasin,resiliencecouldbedefinedbasedonthe
probabilisti-callyweightedaverageutilityinasingleattractorbasinfollowing
expectedstressors
PTSDisausefulexampleofstatespaceandattractorssincesome
ofthephysiologicresponsesmayinitiallyhavebeenanadaptive
responseduringspecifictimeandenvironmentbutwhenthey
per-sistinotherenvironments,theresultismovingtoalowerutility
attractorwheretheabnormalresponseisself-reinforcing.Ahigh
stressphysiologicalstatemaybehighutilityduringawarbutif
thatstatepersistsafterreturninghomeitcanbelowerutility.The
transitiontoPTSDisnotreversedimmediatelyassoonascauses
arereversedordisappear.Reversalmightrequiregoingalltheway
backtoanearlierstateinasystemwhichinducesthepossibility
foracuspcatastrophe(Fig.2)
7 Environment and its perception
Inadditiontoknowingthephysiological stateoftheperson, oneshouldalsoknowthestateoftheirenvironmentbecause cer-tainphysiologicalmeasuresmaybeareactiontotheenvironment
Itmustbereiteratedthatalthoughsomeenvironmentalstressors haveadirecteffectonstressresponses,e.g.,extremecold,stress responsesaresignificantlyrelatedtotheperson’sperceptionofthe stressor.Theperceptionoftheenvironment(Fig.3)isaffectedby
aperson’spriorexperiencesthroughattentionandmemory.Many environmentalstressorsarestressfulbecauseofthewaytheyare perceivedandprocessed.Apersonfocusedonanimportantphone callmaynotrealizeit’shailingoutsidebecauseoftheirattentionon call.Asaresult,onemaynotbeworryingaboutwhetherthecarwas leftoutsidethegarage.Attentionreferstosystemsinthebrainthat allowsomeinformationtobeprocessedmorethanother informa-tion[103].Memoryisabroadtermwithmanysubsystemsloosely dividedintodeclarativeandnon-declarativememory[104] Emo-tionalmemoryhascriticalbrainhubsnotrelevantforothertypesof memory.Theamygdalaratherthanthehippocampusiscriticalfor registeringtheemotionalvalenceofanevent[105].Beta-blockers thatblockaspectsoftheANScanhaveanimpactonemotional memorywithoutanyimpactonepisodicmemory[105,106].The memory-inducedchangesinneuralconnectivitythatresultfrom gene expressionandprotein synthesisrequire hourstodays.A personwithamemoryofapreviousenvironmentalstressorwill perceivetheperturbationdifferentlyfromthepersonwithnoprior associationstoit.Forexample,aphysicallyabusedwifemight asso-ciatethenoiseofherhusbandreturninghomewiththephysical abusethatoftenfollows.Thesoundofanopeningdoorwillhave differentneuralassociationstoherthanhernon-abusedneighbor High reactivity to negative events produces physiological changes[107].Infact,negativereactionstoeventsaremore predic-tiveofemotionalwell-beingthantheeventitself[108].Reactivity
tostress can beexamined thoughneuroticism, one of thefive factorsinthewidelyusedfive-factorpersonalityinventory[109] Neuroticismhasgenetic,neurobiological,andenvironmental con-tributions [85,110,111] High neuroticism contributes to many healthdisorders[112]andrelatestoincreasedage-related cogni-tivechangeandclinicalAlzheimer’sdiseaseinlongitudinalstudies [113–115] The cognitive deficits related to distress proneness arenotspecificandmostconsistentlyincludedfrontal-executive functionand perceptual speed [113,115],notdissimilar to cog-nitivechanges associatedwithaffectivedisorders suchasPTSD anddepression[116,117].Neuroticismwithitsnegativeeffectson cognitionisamodifiableriskfactor[118]withapotentiallylarge impactonpopulationhealth[119]
The internal physical componentsof the humanare partof thebrain environment, consideredtheinternal environment in contrasttotheexternalenvironmentlocatedoutsidethephysical body.Thebrainhaspartialawarenessoftheinternal (interocep-tion)andexternal(exteroception)environment.Interoceptionand exteroceptionmayproducebrainandotherphysiologicalchanges withoutawareness,buthumanscanbecomeawareoftheir inter-nalstatessuchasanxietyorstress.Interoceptionmaybetaught
asawareness and controlover internalorgans (e.g.,learningto modulateone’sbloodpressurethroughbiofeedbackormind–body practices)
Aspreviouslymentioned,theeffectofanenvironmentalstressor
onhealthmaybemodifiedbyhowthebrainperceivesthe envi-ronment.Thisperceptioncanbealteredbyhigherlevelconcepts beyondattentionand memoryashighlightedbytheconceptof hope.Fromahealthperspective,optimistsfarebetterthan pes-simists [120]and those withhigher religious involvement and spiritualitydobetterthanthosewithlowerinvolvement[121].The beneficialplaceboresponse,i.e.,theimprovementsinphysiological
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
Trang 9measuresorperceptions ofhealthfollowingadministrationofa
treatmentwithoutanydirectbiologicalaffect,canbeelicitedby
merelytellingsomeonethatatreatmentmaywork(evenifthere
isnodirectlyactivecomponentsinthetreatment) [122,123].It
islikelythatsomemechanismsofplaceboorexpectancyeffects
overlapwithsomeofthemechanismsunderlyingperceptionof
stress[124].Themajorstresshormonecortisolcanbealteredby
experimentalmanipulationofexpectancyinplaceboeffectstudies
[125,126]
8 Stress and resiliency biomarker changes with treatment
Therearephysiological and geneticmarkersassociated with
improved resilience to stress-induced physiological changes
[117,127,128],andtherearealsopsychologicaltoolstoincrease
resilience,ortheabilitytotoleratestressperturbationswithout
decreasingutility.Exposuretherapyhasbeenusedtoreducethe
person’sreactivitytostressors,e.g.,anallergenoranenvironmental
stimulusprecipitatingPTSDsymptoms.Mind–bodytechniquesand
biofeedbackprovidecognitivestrategiestodecreaseemotionally
activatedresponses,avoidunnecessarynegativeinternal
associ-ations(i.e.,senseof stress)tocurrent events, andto maximize
capacitytoreturntoapositivestateattractorfollowingastressor
A key facet of many mind–body therapies is mindfulness,
attendingtothepresentmomentinanon-judgmentalway.With
several ways to measure mindfulness, the judging and
nega-tiveappraisalofthoughts,emotions,andbehaviorfactormaybe
particularlyimportantforstressmanagement.The
mindfulness-non-judgmentalscore,i.e.,beingawareoftheenvironmentwithout
attachingan emotional tag[129],is diminishedby thechronic
stressindementiacaregiversandinveteranswithpost-traumatic
stressdisorder[85,130]
Mind–bodystudieshavesuggestedbiomarkerchangesrelated
tomindfulnessormindfulnesstrainingpartiallyoverlapwiththe
allostatic load biomarkers but in the opposite direction These
includetelomerase[131],immunefunction[132,133], cognitive
function [133,134], catecholamines [135], HRV [136], cortisol
[133,137–139],EEG[140],structuralMRI[141,142]andfMRI[143]
Meditationaltersphysiologicalresponsestoanexperimental
stres-sor[144].However,thepreferredorcompositebiomarkersrelating
tobenefitsofmind–bodymedicinehavenotbeenidentified
9 Utility
Utility is essentially the same as success of the organism
(e.g.,life,procreationor,inthecaseofhumans,earningmoney)
Long-termhealthisanimportantfocusoftheutilitydefinition
con-cerningstress-relatedimpactonhumanhealth.Whileutilityisthe
benefittotheperson(orgenes),thebenefitalsodependsonthe
environment,i.e.,thespecificcalculationofutilityvarieswiththe
environmentandthetimecourseoverwhichitiscalculated
Dur-ingwar,utilityismoreimmediate,perhapssimplysurvivingtothe
nextdaywithaveryhighdiscountforfuturesituations.Therefore,
utilityofaresponsetoastressordependsontheenvironmentand
onaperson’sdegreeofdiscountingfutureevents.Thus,the
calcu-lationofutilityindifferentenvironmentswillbedependentonthe
rewardsandpenaltiesinthecurrentenvironmentandonthetime
durationanddifferentialweightingusedforcalculatingtheutility
10 Conclusions
Thispaperhasdescribedhumanstressphysiologyand
psychol-ogyfromthesystemsscienceperspective.Specificallywefocused
onenvironmentalperturbationstressorsthatproducesignificant
long-termchangesinthehumandynamicalsystem.Acutestressors
usuallydonotproducelong-termnegativeeffectsalthougha
sig-nificantlypowerfulacutestressormaypushthebraindynamical
systemintoa new,functionalattractorbasinwithlowerutility
Ingeneral,chronicpsychologicalstressproduces changesinthe system,suchasaslowerresponsetoafuturestressororahigher potentialfor movingtoa newlowerutilityattractorbasin Ifa humanisexposedtoa“tolerable”doseofastressorthatresults
inreturntotheoriginalhighutilityattractorbasin,theoutcome maybeimprovedresilience.Fromasystemsscienceperspective, behavioralandphysiologicalmeasurementsattemptingtocapture thedegreeofstressofasystemshouldincorporatethedynamicsof thephysiologicalstressresponsesystemaswellassomemeasures
oftheenvironmentalstressorsandtheirperception.Understanding stresswillrequirealloftheinteractingcomponentsfromFig.3tobe measuredanddescribed,atleastpartially.Ingeneral,thesystems dynamicsofstressphysiologyhasmuchlesstemporalempirical datatoinformthemodelthan,forexample,meteorologicaldata becauseofthedifficultyacquiringthehumandata.Nevertheless, analyzingdynamicaldatawillbeimportanttobetterunderstand stressphysiologysincethetimingandstrengthoffeedbackloops likelycontributestodisordersofstressandresiliencetostress.In additiontomeasuringstressresponsesovertime,itmaybeuseful
torepeatadministrationofexperimentalstressorstounderstand self-reinforcingloops.Thesesystemsscienceconceptsandbetter measurementtechniqueswillleadtobetterunderstandingofthe stresssystemthatultimatelycanbeusedtoimprovetheresilience
ofthehumansystemandtherebyimprovelong-termhealth
Acknowledgements
FundedinpartbyagrantfromtheNationalInstitutesofHealth Q5
(AT005121).WeacknowledgeMartinZwick,PhDforreviewingan earlierversionofthepaper,ElenaGoodrichforhelpwithfigures, anddiscussionsaboutsometopicswithHelanéWahbeh,ND,MCR andothercolleagues
References
[1] NPR, Foundation RWJ, Health HSoP The burden of stress in America;
rwjf414295
[2] Bairey Merz CN, Dwyer J, Nordstrom CK, Walton KG, Salerno JW, Schneider
RH Psychosocial stress and cardiovascular disease: pathophysiological links Behav Med 2002;27:141–7.
[3] Lupien SL, McEwen BS, Gunnar MR, Heim C Effects of stress throughout the lifespan on the brain, behavior and cognition Nat Rev Neurosci 2009 [advance online].
[4] Novakova B, Harris PR, Ponnusamy A, Reuber M The role of stress as a trigger for epileptic seizures: a narrative review of evidence from human and animal studies Epilepsia 2013;54:1866–76.
[5] Hemmerle AM, Herman JP, Seroogy KB Stress, depression and Parkinson’s disease Exp Nephrol 2012;233:79–86.
[6] Burns MN, Nawacki E, Kwasny MJ, Pelletier D, Mohr DC Do positive or nega-tive stressful events predict the development of new brain lesions in people with multiple sclerosis Psychol Med 2014;44:349–59.
[7] Cleck JN, Blendy JA Making a bad thing worse: adverse effects of stress on drug addiction J Clin Invest 2008;118:454–61.
[8] Mobus GE, Kalton MC Principles of systems science New York: Springer; 2015.
[9] Holling CS Resilience and stability of ecological systems Annu Rev Ecol Syst 1973;4:1–23.
[10] Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ Neurobiology of resilience Nat Neurosci 2012;15:1475–84.
[11] Ader R Psychoneuroimmunology 4th ed San Diego: Elsevier Academic Press; 2007.
[12] McEwen BS Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders Ann N Y Acad Sci 2004;1032:1–7.
[13] Vaseghi M, Shivkumar K The role of the autonomic nervous system in sudden cardiac death Prog Cardiovasc Dis 2008;50:404–19.
[14] Johns LE, Aiello AE, Cheng C, Galea S, Koenen KC, Uddin M Neighborhood social cohesion and posttraumatic stress disorder in a community-based sam-ple: findings from the Detroit Neighborhood Health Study Soc Psychiatry Psychiatr Epidemiol 2012;47:1899–906.
[15] Kemeny ME Psychobiological responses to social threat: evolution of
a psychological model in psychoneuroimmunology Brain Behav Immun 2009;23:1–9.
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
840
841 842 843 844 845
846
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
Trang 10[16] Young M, Schieman S When hard times take a toll: the distressing
con-sequences of economic hardship and life events within the family–work
interface J Health Soc Behav 2012;53:84–98.
[17] Harrell JP, Hall S, Taliaferro J Physiological responses to racism and
discrim-ination: an assessment of the evidence Am J Public Health 2003;93:243–8.
[18] McEwen BS, Wingfield JC The concept of allostasis in biology and
biomedicine Horm Behav 2003;43:2–15.
[19] Day TA Defining stress as a prelude to mapping its neurocircuitry:
no help from allostasis Prog Neuropsychopharmacol Biol Psychiatry
2005;29:1195–200.
[20] Dohrenwend BP Inventorying stressful life events as risk factors for
psy-chopathology: toward resolution of the problem of intracategory variability.
Psychol Bull 2006;132:477–95.
[21] Lupien S Well stressed: how you can manage stress before it turns toxic.
Mississauga, Ontario: Wiley; 2012.
[22] Kirschbaum C, Pirke KM, Hellhammer DH The ‘Trier Social Stress Test’—a tool
for investigating psychobiological stress responses in a laboratory setting.
Neuropsychobiology 1993;28:76–81.
[23] Dedovic K, Renwick R, Mahani NK, Engert V, Lupien SJ, Pruessner JC The
Montreal Imaging Stress Task: using functional imaging to investigate the
effects of perceiving and processing psychosocial stress in the human brain.
J Psychiatry Neurosci 2005;30:319–25.
[24] Gianaros PJ, Derbyshire SW, May JC, Siegle GJ, Gamalo MA, Jennings JR.
Anterior cingulate activity correlates with blood pressure during stress
Psy-chophysiology 2005;42:627–35.
[25] Lovallo W The cold pressor test and autonomic function: a review and
inte-gration Psychophysiology 1975;12:268–82.
[26] Lang PJ, Bradley MM, Cuthbert BN International affective picture system
(IAPS): technical manual and affective ratings Gainesville: University of
Florida, Center for Research in Psychophysiology; 1999.
[27] Berretta S Cortico-amygdala circuits: role in the conditioned stress response.
Stress 2005;8:221–32.
[28] McEwen BS, Lasley EN Allostatic load: when protection gives way to damage.
Adv Mind Body Med 2003;19:28–33.
[29] McEwen BS The neurobiology of stress: from serendipity to clinical relevance.
Brain Res 2000;886:172–89.
[30] McEwen BS Physiology and neurobiology of stress and adaptation: central
role of the brain Physiol Rev 2007;87:873–904.
[31] Joels M, Baram TZ The neuro-symphony of stress Nat Rev Neurosci
2009;10:459–66.
[32] Datson NA, Morsink MC, Meijer OC, de Kloet ER Central corticosteroid actions:
search for gene targets Eur J Pharmacol 2008;583:272–89.
[33] Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD Accelerated
telomere shortening in response to life stress PNAS 2004;101:17312–5.
[34] Bernston GG, Caciollo JT, Quigley KS Autonomic determinism The modes of
autonomic control, the doctrine of autonomic space, and the laws of
auto-nomic constraint Psychol Rev 1991;98:459–87.
[35] Kiecolt-Glaser JK, McGuire L, Robles TF, Glaser R
Psychoneuroimmunol-ogy and psychosomatic medicine back to the future Psychosom Med
2002;64:15–28.
[36] Habib KE, Gold PW, Chrousos GP Neuroendocrinology of stress Endocrinol
Metab Clin North Am 2001;30:695–728, vii–viii.
[37] Charmandari E, Kino T, Souvatzoglou E, Chrousos GP Pediatric stress:
hor-monal mediators and human development Horm Res 2003;59:161–79.
[38] Pruessner M, Hellhammer DH, Pruessner JC, Lupien SJ Self-reported
depres-sive symptoms and stress levels in healthy young men: associations with the
cortisol response to awakening Psychosom Med 2002;65:92–9.
[39] Wahbeh H, Kishiyama S, Zajdel D, Oken B Salivary cortisol
awaken-ing response in mild Alzheimer’s disease, caregivers, and non-caregivers.
Alzheimer’s Dis Relat Disord 2008;22:181–3.
[40] Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH Neurobiological
and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA
sulfate (DHEAS) Front Neuroendocrinol 2009;30:65–91.
[41] Noto Y, Sato T, Kudo M, Kurata K, Hirota K The relationship between salivary
biomarkers and state-trait anxiety inventory score under mental arithmetic
stress: a pilot study Anesth Analg 2005;101:1873–6.
[42] Young AH, Gallagher P, Porter RJ Elevation of the
cortisol-dehydroepiandrosterone ratio in drug-free depressed patients Am J
Psychiatry 2002;159:1237–9.
[43] de Kloet ER From vasotocin to stress and cognition Eur J Pharmacol
2010;626:18–26.
[44] Cacioppo JT, Tassinary LG, Bernston GG 3rd ed New York: Cambridge
University Press; 2007 p 898.
Q6
[45] Pumprla J, Howorka K, Groves D, Nolan MCJ Functional assessment of heart
rate variability: physiological basis and practical applications Int J Cardiol
2002;84:1–14.
[46] Mukherjee S, Yadav R, Yung I, Zajdel DBSO Sensitivity to mental effort and
test–retest reliability of heart rate variability measures in healthy seniors.
Clin Neurophysiol 2011;122:2059–66.
[47] Glaser R, Kiecolt-Glaser JK Stress-induced immune dysfunction: implications
for health Nat Rev Immunol 2005;5:243–51.
[48] Fonareva I, Oken BS Physiological and functional consequences of caregiving
for relatives with dementia International Psychogeriatrics 2014;26:725–47.
[49] Tomiyama AJ, O’Donovan A, Lin J, Puterman E, Lazaro A, Chan J, et al Does
cel-lular aging relate to patterns of allostasis? An examination of basal and stress
reactive HPA axis activity and telomere length Physiol Behav 2012;106:40–5.
[50] Schwartz MS, Andrasik F Biofeedback a practitioner’s guide 3rd ed New York: Guilford Press; 2003 p 930.
[51] Dietrich M, Verdolini Abbott K Vocal function in introverts and extraverts during a psychological stress reactivity protocol J Speech Lang Hear Res 2012;55:973–87.
[52] Arnrich B, Setz C, La Marca R, Troster G, Ehlert U What does your chair know about your stress level IEEE Trans Inf Technol Biomed 2010;14: 207–14.
[53] McEwen BS, Sapolsky RM Stress and cognitive function Curr Opin Neurobiol 1995;5:205–16.
[54] Lupien SJ, McEwen BS, Gunnar MR, Heim C Effects of stress through-out the lifespan on the brain, behaviour and cognition Nat Rev Neurosci 2009;10:434–45.
[55] Bremner JD Does stress damage the brain Biol Psychiatry 1999;45:797–805 [56] Gotlib IH, Joormann J Cognition and depression: current status and future directions Annu Rev Clin Psychol 2010;6:285–312.
[57] Arnsten AF Stress signalling pathways that impair prefrontal cortex structure and function Nat Rev Neurosci 2009;10:410–22.
[58] Stawski RS, Sliwinski MJ, Smyth JM Stress-related cognitive interference pre-dicts cognitive function in old age Psychol Aging 2006;21:535–44.
[59] Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, et al Regional cerebral blood flow in the amygdala and medial prefrontal cortex during trau-matic imagery in male and female Vietnam veterans with PTSD Arch Gen Psychiatry 2004;61:168–76.
[60] Garcia R, Vouimba RM, Baudry M, Thompson RF The amygdala mod-ulates prefrontal cortex activity relative to conditioned fear Nature 1999;402:294–6.
[61] Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al Cortisol levels during human aging predict hippocampal atrophy and memory deficits Nat Neurosci 1998;1:69–73.
[62] Childress JE, McDowell EJ, Dalai VV, Bogale SR, Ramamurthy C, Jawaid A,
et al Hippocampal volumes in patients with chronic combat-related posttrau-matic stress disorder: a systematic review J Neuropsychiatry Clin Neurosci 2013;25:12–25.
[63] Woon FL, Sood S, Hedges DW Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disor-der in adults: a meta-analysis Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1181–8.
[64] Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al Smaller hippocampal volume predicts pathologic vulnerability to psycholog-ical trauma Nat Neurosci 2002;5:1242–7.
[65] Yaffe K, Vittinghoff E, Lindquist K, Barnes D, Covinsky KE, Neylan T, et al Posttraumatic stress disorder and risk of dementia among US veterans Arch Gen Psychiatry 2010;67:608–13.
[66] Kaye J, Swihart T, Howieson D, Dame A, Moore M, Karnos T, et al Volume loss
of the hippocampus and temporal lobe in healthy elderly destined to develop dementia Neurology 1997;48:1297–2134.
[67] Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder Biol Psychiatry 2003;54:693–702.
[68] Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S,
et al Antidepressants increase human hippocampal neurogenesis by activat-ing the glucocorticoid receptor Mol Psychiatry 2011;16:738–50.
[69] Perez-Edgar K, Kujawa A, Nelson SK, Cole C, Zapp DJ The relation between electroencephalogram asymmetry and attention biases to threat at baseline and under stress Brain Cogn 2013;82:337–43.
[70] Anokhin AP, Heath AC, Myers E Genetic and environmental influ-ences on frontal EEG asymmetry: a twin study Biol Psychol 2006;71: 289–95.
[71] Ceballos NA, Giuliano RJ, Wicha NY, Graham R Acute stress and event-related potential correlates of attention to alcohol images in social drinkers J Stud Alcohol Drugs 2012;73:761–71.
[72] Davidson RJ What does the prefrontal cortex do in affect: perspectives on frontal EEG asymmetry research Biol Psychol 2004;67:219–33.
[73] Dedovic K, Duchesne A, Andrews J, Engert V, Pruessner JC The brain and the stress axis: the neural correlates of cortisol regulation in response to stress Neuroimage 2009;47:864–71.
[74] Vaisvaser S, Lin T, Admon R, Podlipsky I, Greenman Y, Stern N, et al Neural traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity Front Hum Neurosci 2013;7:313.
[75] Pruessner JC, Dedovic K, Khalili-Mahani N, Engert V, Pruessner M, Buss C,
et al Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic reso-nance imaging studies Biol Psychiatry 2008;63:234–40.
[76] Seeman TE, McEwen BS, Rowe JW, Singer BH Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging Proc Natl Acad Sci U S A 2001;98:4770–5.
[77] Evans GW, Schamberg MA Childhood poverty, chronic stress, and adult work-ing memory Proc Natl Acad Sci U S A 2009;106:6545–9.
[78] Bellingrath S, Weigl T, Kudielka BM Chronic work stress and exhaustion
is associated with higher alostatic load in female school teachers Stress 2009;12:37–48.
[79] Juster RP, McEwen BS, Lupien SJ Allostatic load biomarkers of chronic stress and impact on health and cognition Neurosci Biobehav Rev 2009,
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057