Guzmánc, Vidadi Yusibovb, Katherina Sewalda, Armin Brauna,d,∗ a Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany, Biomedical
Trang 1Vaccine
jo u rn al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / v a c c i n e
A new adjuvanted nanoparticle-based H1N1 influenza vaccine
induced antigen-specific local mucosal and systemic immune
responses after administration into the lung
Vanessa Neuhausa, Jessica A Chichesterb, Thomas Ebensenc, Katharina Schwarza,
Caitlin E Hartmanb, Yoko Shojib, Carlos A Guzmánc, Vidadi Yusibovb,
Katherina Sewalda, Armin Brauna,d,∗
a Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany, Biomedical Research in Endstage and
Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL)
b Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
c Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
d Institute of Immunology, Hannover Medical School, Hannover, Germany
Article history:
Received 7 November 2013
Received in revised form 31 January 2014
Accepted 1 April 2014
Available online xxx
Keywords:
Influenza vaccine
Plant-based
HAC1
c-di-GMP
Mucosal adjuvant
Silica nanoparticle
a b s t r a c t
(http://creativecommons.org/licenses/by/3.0/)
∗ Corresponding author at: Fraunhofer Institute for Toxicology and
Experimen-tal Medicine, Department of Preclinical Pharmacology and In Vitro Toxicology,
Nikolai-Fuchs-Str 1, 30625 Hannover, Germany Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre
for Lung Research (DZL) Tel.: +49 511 5350 263.
E-mail address: armin.braun@item.fraunhofer.de (A Braun).
1 Introduction
Annual influenza-associated cases of hospitalization and up
to500,000deathsduringfrequentvirusoutbreaksandsporadic pandemicsillustratetheserioushealthburdenofinfluenzavirus infections [1] The high mutational rate of the virus and fre-quencyofinterspeciestransmissionand/orzoonosisleadingtonew
http://dx.doi.org/10.1016/j.vaccine.2014.04.011
0264-410X/© 2014 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/3.0/ ).
Trang 2ARTICLE IN PRESS
G Model
JVAC-15292; No of Pages 7
virussubtypes makes influenza infections highly unpredictable
influenzavaccines
Traditionally, only systemic administration of inactivated
influenzavaccines,mostlyintramuscularly,hasbeenused.In2003
Flumist®,the first nasalinfluenza vaccine withlive attenuated
influenzaviruses,hasbeenapproved in theUS [4],which
pro-tectslocallyatthesiteofvirusentryandinfection.Anadvantage
of delivering vaccines via the respiratory route is, besides the
inductionsoflocalimmuneresponsesatvirussettlement,the
non-invasiveapplicationwhichislikelytoincreasepubliccompliance
However,it has beendescribed that intranasal antigen
admin-istrationinducespoorimmuneresponseswhenappliedwithout
anappropriate mucosaladjuvant[5] Thus,many neweffective
mucosaladjuvantsareinpreclinicaldevelopment(s.review[6])
In2007,bis-(3,5)-cyclicdimericguanosinemonophosphate
(c-di-GMP)wasintroducedasa mucosaladjuvant withpromising
activity[7].Madhunetal.showedthat c-di-GMPimprovedthe
immunogenicityofanintranasallydeliveredsubunitinfluenza
vac-cine,comparedtoantigenonly,byinducingstrongmucosaland
systemicimmuneresponses[8].Additionally,theauthorsshowed
thatintranasaladministrationofthec-di-GMPadjuvantedantigen
inducedprotectiveantibodytitersandcellularimmuneresponses
thatfarexceededtheresponsesinducedbyintramuscular
admin-istrationofthesamevaccine[8].Moreover,Svindlandetal.tested
vaccination with c-di-GMP combined with a second adjuvant,
Chitosan,andshowedthatvaccinationwiththecombination of
thesemolecules can furtherimprove the humoral and cellular
immuneresponsesagainst targetantigens[9].Besides its
adju-vantiveeffects,Chitosanisusedasanintranasaldeliverysystem
Otherdrugdeliverysystemssuchassilicananoparticle(NP)have
alsobeenpreviouslyshowntohaveadjuvantproperties[10,11]
Recently,wehaveshownthatacombinationofaplant-produced
recombinanthemagglutinin(HA)antigenfromtheH1N1influenza
virusA/California/04/09(HAC1)withsilica-NP(SiO2)wasableto
recallapreviouslyestablishedimmuneresponseinhumanlung
tissue[12].Manufacturingofrecombinantproteinsinplantsfor
influenzavaccinedevelopmentevolvedas analternativetothe
conventionalegg-basedvaccineproductiontoovercomethe
lim-itationsinquantityandtime consumption[13].Thisbottleneck
ofegg-produced vaccinescanhaveseriousconsequencesduring
influenzapandemics,whentheproductionofsufficientamounts
ofvaccineinanadequatetimeframetoservetheglobalmarket
couldbedifficult
Regardingtheneedof rapidlyproduced vaccinesin timesof
pandemicsandthetimeconsuminglimitationoftheegg-based
vac-cines,theherepresentedstudytestedtherecombinantantigenof
ahighlyimmunogenicH1N1strainresponsibleforthe2009/2010
pandemic.Furthermore,thestudyextendsthepublishedworkwith
HAC1andSiO2andevaluatestheimmunogenicityofthisvaccine
formulationwhencombinedwithc-di-GMPandadministeredat
thesiteofvirusentry.Overall,itshowedthepotentialofthe
c-di-GMP/SiO2double-adjuvantedvaccinetoinducesystemichumoral
andstrongmucosalimmuneresponses,withIgAintheairways
Furthermore,it presentedevidenceofantigen-primedT-cellsin
thelunginintratracheallyvaccinatedmice
2 Materials and methods
2.1 Animals
Femalewild-typeBALB/cmiceaged6–8weeks(CharlesRiver,
Sulzfeld,Germany) were kept at an animal facility under
con-ventionalhousingconditions(22◦C,55%humidity,12-hday/night
cycle)withfoodandtapwateradlibitum.Therandomizedstudy
was approved by a local agency (Application-No 33.9-42502-04-11/0465) and conducted according to the German Animal Protectionlaw
2.2 Media Reagents were, if not stated otherwise, purchased from Sigma–Aldrich (Munich, Germany) Phosphate buffered saline (PBS)withoutCa2+andMg2+,pH7.4,Dulbecco’sModifiedEagle’s Medium/NutrientMixtureF-12HAM(DMEM)withl-glutamine,
15mMHEPESand7.5%w/vsodiumbicarbonatewithoutphenol red,pH7.2–7.4,RPMI1640andEarle’sBalancedSaltSolution(EBSS) wereobtainedfromGibco(Darmstadt,Germany).Cell/tissue cul-tivationmediumwassupplementedwith100U/mLpenicillinand
100g/mLstreptomycin
2.3 Vaccineandadjuvants HAC1wasproducedaspreviouslydescribed [14].Briefly,the
HAnucleotidesequence,encompassingaminoacids18–530ofthe A/California/04/09influenzastrain(H1N1,NCBIaccessionnumber ACQ76318.1) wereoptimized forexpression in plantsand syn-thesized.TheoptimizedHA sequencecontains a6× Hisaffinity purificationtagandtheERretentionsignalKDELattheC-terminus ThisgenewasinsertedintothepGRD4launchvectorand trans-formedintoAgrobacteriumtumefaciens.Thetransformedbacterium wasintroducedintohydroponicallygrownNicotianabenthamiana
byvacuuminfiltrationandleaftissueswereharvested, homoge-nized,extracted, filteredandchromatographically purifiedafter
aone-weekgrowingperiod[14].AliquotsofpurifiedHAC1were keptinPBSat−80◦Cuntilusage.Forsilica-NP,DMEMandSiO2
nanopowder(HDK200,WackerChemie,Germany)weremixedand dispersedbyultrasonicsonotrode.Theproductionofc-di-GMPhas beendescribedbefore[15,16].Lyophilizedc-di-GMPwasstored
at−20◦C.Immediatelypriortoimmunization,HAC1wasadmixed
withtheadjuvantand/orsilica-NPandswirled≥10minonan over-headshakertoensurecompletemixing
2.4 Vaccinationandsamplecollection Micewereimmunizedondays0and21witheither5gantigen (HAC1),single-or double-adjuvantedvaccine(5gHAC1/10g SiO2; 5gHAC1/7.5g c-di-GMP;5g HAC1/10g SiO2/7.5g c-di-GMP)byintratrachealroute(50l).Forintratracheal immu-nizationmiceweretilted(∼45◦)andthevaccineadministeredinto
thedeeplungwithsubsequentinsufflationwithanairbolus.A sys-temiccontrolgrouptoensuretheeffectivenessofthevaccination protocol,received1gHAC1adsorbedonaluminum hydroxide (Alum)intraperitoneally(200l).Bloodwasobtainedby retrob-ulbarsampling and serawere collectedondays 0, 21, 35, and
49todetermineHA-specificantibodyresponseby hemagglutina-tioninhibition(HAI)andenzyme-linkedimmunosorbent(ELISA) assays.On day49,miceweresacrificedwithanintraperitoneal overdosingofpentobarbital-Na(Merial,Hallbergmoos,Germany) andcuttingtheVenacavainferior.BALfluids,agarose-filledlungs, andspleensweresampledandusedforimmunoglobulin(Ig) mea-surementsandre-stimulationassays
2.5 HAIassay Collectedseraweretreatedwithareceptor-destroyingenzyme (Denka Seiken, Japan) HAI assay was performed using 0.75% turkey erythrocytes and A/California/07/09×179A virus (CDC
#2009713114)withaninitialserumdilutionof1:20asdescribed previously[14].HAIendpointtitersweredeterminedasreciprocal
Trang 3Fig 1. Titers of hemagglutination inhibition (HAI) antibody and antigen-specific IgG in sera of vaccinated mice Mice were vaccinated on days 0 and 21 intratracheally with
5 g HAC1 only, admixed with a single adjuvant (HAC1/SiO2 or HAC1/c-di-GMP), or admixed with two adjuvants (HAC1/SiO2/c-di-GMP) as the double-adjuvanted vaccine The control group received 1 g HAC1 formulated with Alum intraperitoneally (i.p.) On days 0, 21, 35 and 49, blood was drawn retrobulbarly from the vaccinated mice and evaluated for HAI antibody titers (A) as well as HAC1-specific IgG (B) Data are presented as mean ± SEM **p < 0.01 and ***p < 0.001, comparison with vaccination with antigen only; xp < 0.05, comparison of vaccination i.t vs i.p (HAC1/SiO2/c-di-GMP vs HAC1-Alum) using Kruskal–Wallis test and Dunn’s multiple comparison post hoc test (n = 5) HAC1: plant-derived recombinant hemagglutinin protein, SiO2 = silica nanoparticles, c-di-GMP: bis-(3 ,5 )-cyclic dimeric guanosine monophosphate.
ofthehighestserumdilutioncausingcompleteHAI
Seroconver-sioninvaccinatedanimalswasdefinedasanHAIantibodytiterat
aserumdilutionof≥1:40[17,18]
2.6 Antibodymeasurement
HA-specificserumIgGantibodiesandnasalIgGandIgAwere
assessedusingELISAassay,aspreviouslydescribed[19].Briefly,
ELISAplateswerecoatedwithinactivatedA/California/07/09virus
and samplesof BAL or serum weretested in series of two- or
four-fold dilutions Antigen-specificIgG and IgA were detected
usinghorseradishperoxidase-conjugatedgoatanti-mouseIgGor
IgAantibody(JacksonImmunoresearchLaboratoriesInc.,PA,USA),
respectively.Endpointtitersweredeterminedasreciprocalserum
dilutionsthatgavemeanopticaldensity(OD)valuesthreetimes
greaterthanthosefrompre-immuneseraata1:100or1:50dilution
forIgGandIgA,respectively
2.7 Splenocyteproliferationassay
Isolated splenocytes (1×105 cells) of vaccinated micewere
incubated in 96-well round bottom plates with RPMI
supple-mentedwith5%fetalbovineserum,containing10g/mLHAC1
orPBS(negativecontrol)at37◦Cfor72h.Proliferationwas
mea-suredasdescribedbefore[20].Cellswerepulsedwith5Ci/mL
3H-thymidine(AmershamBuchler,Braunschweig,Germany) for
18h and harvested on filter mats (Canberra-Packard, Dreieich,
Germany).ATopcountMicroplateScintillationCounter
(Canberra-Packard, Dreieich, Germany) measured 3H-thymidine-positive
cellsascountsperminute
2.8 Antigenstimulationofprecision-cutlungslices(PCLS)
MurinePCLSwerepreparedasdescribedbefore[21,22].Two
PCLS(approx.300mthick)perwellweretreatedwith10g/mL
HAC1ormedium(non-stimulated)andculturedundercellculture
conditions(37◦C,5%CO2and95%airhumidity)for24h
Super-natantwascollectedandstoredat−80◦Cuntiluse.
2.9 Cytokinemeasurement Cytokines interleukin (IL)-2, interferon-gamma (IFN-␥), IL-5, and IL-10 in thesupernatant of re-stimulated PCLS were mea-suredusingthemurineTh1/Th2tissueculturekitfromMesoScale Discovery(MSD)Assays(Gaithersburg,MD,USA).Theassaywas performedandresultswereanalyzedaccordingtomanufacturer’s specifications using MSD plates, MSD Sector Imager 2400, and Discoveryworkbenchsoftware.Totalproteinconcentrationswere measuredinPCLSlysatesusingtheBCAProteinAssaykit(Pierce, Rockford,IL,USA)[12].Cytokineswerecorrelatedtototalprotein (ng/mg)and compared tothenon-stimulatedcytokinebaseline levelasfoldinduction
2.10 Statisticalanalysis Statistical analyses were performed by either the Kruskal–Wallis test withDunn’s multiple comparison post hoc testsorbytheMann–WhitneytestusingGraphPad4.03(GraphPad, SanDiego,CA,USA).Datawereexpressedasmean±standarderror
of the mean (SEM) or median±quartiles Differences between treatmentgroupsandcontrolswereconsideredstatistically sig-nificantatp<0.05.Thenumberofmiceisindicatedinthefigure legends
3 Results
3.1 Intratrachealadministrationofdouble-adjuvantedHAC1 withSiO2andc-di-GMPinducedrobustsystemicantibody responses
Asmainreadoutparametersforasystemicantibodyresponse HAI and HAC1-specific IgG titers were analyzed in the blood
of vaccinated mice.The non-adjuvantedgroup vaccinated with HAC1 only did not develop detectable HAI or antigen-specific IgG antibodies in the serum (Fig 1) On the contrary, admin-istration of HAC1 intraperitoneally with Alum served as a positive control and induced very robust HAI (4096±627.1;
Fig.1A)andIgG (286,720±75,248; Fig.1B)antibodytitersafter the second vaccination (day 35) Mice vaccinated with either
Trang 4ARTICLE IN PRESS
G Model
JVAC-15292; No of Pages 7
Fig 2. Proliferation index of splenocytes upon re-stimulation with the
recombi-nant HAC1 antigen Spleen cells of vaccinated mice were isolated on day 49 and
re-stimulated with 10 g/mL HAC1 followed by labeling with 3 H-thymidine The
proliferation indexes upon antigen stimulation and in the medium alone were
compared Data are presented as mean ± SEM, **p < 0.01 compared to the
prolifer-ation index of non-stimulated splenocytes from the same animal; Mann–Whitney
test (n = 5) HAC1: plant-derived recombinant hemagglutinin protein, SiO2 = silica
nanoparticles, c-di-GMP: bis-(3,5)-cyclic dimeric guanosine monophosphate,
Alum: Aluminum hydroxide, i.t.: intratracheally, i.p.: intraperitoneally.
HAC1/SiO2 orHAC1/c-di-GMPdeveloped lowtiters ofHAI
anti-bodiesafterthesecondvaccination(43±30and12±7;Fig.1A),
aswell as modestserum IgG titers following the boosterdose
(205±81 and 2980±1419; Fig 1B) The group receiving the
double-adjuvantedvaccine,HAC1/SiO2/c-di-GMP,developedhigh
HAI titers (770±470; Fig 1A) and antigen-specific IgG titers
(43,840±23,923;Fig.1B)
3.2 Additionofc-di-GMPadjuvantwasnecessarytoinduce
antigen-specificsplenocytes
Tofurtherevaluatethesystemicimmune responsefollowing
intratrachealvaccination,theproliferation index of splenocytes
uponantigenicre-stimulationwasassessed(Fig.2).Splenocytes
isolatedfromimmunizedmicewerere-stimulatedinvitrowith
HAC1followed by 3H-thymidinelabeling Thecell proliferation
levelwascomparedtonon-stimulatedsplenocytesfromthesame
animal.Results showednodetectableantigen-induced
prolifer-ationof splenocytes inthe non-adjuvanted,positivecontrol, or
the HAC1/SiO2 groups (HAC1: 1.2±0.1; HAC1-Alum: 1.5±0.2;
HAC1/SiO2:1.2±0.2)
Incontrast,inthesingle-adjuvanted group(HAC1/c-di-GMP)
thelevelofproliferationwastwo-foldcomparedtonon-stimulated
splenocytes(2.2±0.4)andthedouble-adjuvantedvaccineinduced
thehighestlevelofsplenocyteproliferation(4.4±1.7)uponHAC1
re-stimulation
3.3 Thedouble-adjuvantedvaccineinducedlocalIgGandIgA
antibodyresponsesintheBAL
Localimmuneresponsesinthelungwereassessedby
measur-ingHA-specificIgGorIgAtitersinBALsamples(Fig.3AandB).The
non-adjuvantedgroupvaccinatedwithHAC1onlydidnotdevelop
detectableIgGorIgAintheBAL(baselineIgG/IgAlevel25;Fig.3A
andB).Incontrast,thepositivecontrolgroup(HAC1-Alum)showed
antigen-specific IgG titers in the BAL (115±37) comparable to
thedouble-adjuvantedgroup,whileIgAlevelswereundetectable
HAC1/SiO2orHAC1/c-di-GMPdidnotinducedetectableIgGorIgA
intheBALofimmunizedmice.However,additionofc-di-GMPto
HAC1/SiO2didinducedetectablelevelsofIgGin2/5mice(115±73;
Fig.3A)andinonemousedetectablelevelsofIgA(Fig.3B)
Fig 3. Titers of antigen-specific IgG and IgA in the bronchoalveolar lavage (BAL) fluid of vaccinated mice BAL from mice vaccinated with 5 g HAC1 or 10 g HAC1 was collected on day 49 and analyzed for HAC1-specific IgG and IgA (A and B) Data are presented as Boxplot and whiskers median ± quartiles (n = 5) and com-pared using the Kruskal–Wallis test and Dunn’s multiple comparison post-hoc test.
*p < 0.05 and **p < 0.01, comparison to vaccination with antigen only HAC1: plant-derived recombinant hemagglutinin protein, SiO2 = silica nanoparticles, c-di-GMP: bis-(3,5)-cyclic dimeric guanosine monophosphate, Alum: Aluminum hydroxide, i.t.: intratracheally, i.p.: intraperitoneally.
InordertoensurethattheinductionofmucosalIgAinthesingle positivemousewasaresultofvaccination,micewereimmunized withahigherantigenconcentration(10gHAC1)andtheBALwas examinedforthepresenceofHAC1-specificIgGandIgA(Fig.3Aand B).Thenon-adjuvantedgroup(10gHAC1)showednoincreased localIgGorIgAtiters(Fig.3AandB).OnemousegivenHAC1/SiO2 developedmucosalIgGtitersabovebaseline(30±5vs.25)while twomicedevelopeddetectableIgA(titer45±15vs.25) HAC1/c-di-GMPinducedelevatedtitersofmucosalIgG(135±68)andIgA (385±172) withpositive titers in 80% of the vaccinated mice MicereceivingHAC1/SiO2/c-di-GMPdevelopedenhancedlevelsof mucosalIgG(540±271)andIgA(490±283)in100%ofvaccinated mice.Additionally,doublingtheantigendoseincreasedIgGby 4.3-fold(Fig.3A)
3.4 AnimalsimmunizedwithHAC1/SiO2/c-di-GMPshoweda T-cellimmuneresponseuponantigenicre-stimulation
To determine the local antigen-specific T-cell-mediated immune response at the cytokine level, PCLS from vaccinated
Trang 5Fig 4. Secreted cytokine profile by PCLS from different vaccinated mouse groups upon re-stimulation with the recombinant HAC1 antigen PCLS from vaccinated mice were prepared 28 days post the last vaccination, re-stimulated with 10 g/mL HAC1 and cultured for 24 h The secretion of IFN-␥ (A), IL-2 (B), IL-5 (C) and IL-10 (D) was measured upon antigen stimulation Data are presented as mean ± SEM fold induction compared to re-stimulation with medium alone of PCLS from the same animal using the Mann–Whitney test (n = 3) PCLS: precision-cut lung slices, HAC1: plant-derived recombinant hemagglutinin protein, SiO2 = silica nanoparticles, c-di-GMP: bis-(3 ,5 )-cyclic dimeric guanosine monophosphate, Alum: Aluminum hydroxide, i.t.: intratracheally, i.p.: intraperitoneally, IL: Interleukin, IFN-␥: Interferon-gamma.
mice were re-stimulated with HAC1 Cytokine secretion upon
antigen stimulation was compared to the non-stimulated
cytokine baseline level and expressed as fold induction The
non-adjuvanted group (HAC1 only) showed no altered IL-2
or IFN-␥ expression upon antigen-stimulation compared to
non-stimulated PCLS (fold induction≤2; Fig 4A and B) The
positivecontrolmice,however,secretedlowlevelsofIL-2
com-pared with non-stimulated samples (fold induction 37±35)
but showed no increase in IFN-␥ production (27±27) Results
also showed that in contrast to HAC1/SiO2, re-stimulation
with HAC1/c-di-GMP did induce antigen-specific cells
pro-ducing IL-2 and IFN-␥ (155±60 and 244±118, respectively)
Additionally, re-stimulation of PCLS from HAC1/SiO2/c-di-GMP
vaccinatedmicealsoinducedIL-2andIFN-␥(262±132-foldand
275±138-fold)
No induction of IL-5 secretion was detected in the
non-adjuvanted,positivecontrolorHAC1/SiO2vaccinatedgroupsupon
antigenicre-stimulation(foldinduction≤2;Fig.4C).However,the
c-di-GMP-adjuvantedHAC1antigeninducedcellstosecretslightly
elevatedlevelsof IL-5 upon HAC1re-stimulation (2.2±0.1 and
2.4±0.1 for single- and double-adjuvanted, respectively)
com-paredtonon-stimulatedPCLS
Thereleaseoftheanti-inflammatorycytokineIL-10wasat base-linelevelsinPCLSfromthenon-adjuvantedandpositivecontrol groups(foldinduction≤2;Fig.4D)aswellasHAC1/SiO2 immu-nizedmice.Incontrast,IL-10levelswereenhancedinPCLSsamples fromHAC1/c-di-GMPaswellasHAC1/SiO2/c-di-GMPvaccinated mice,when re-stimulated withHAC1(12±4and 7±2, respec-tively)
4 Discussion
Thepresentstudyevaluatedthesystemicandlocal immuno-genicityofadouble-adjuvantedinfluenzavaccine(HAC1/SiO2 /c-di-GMP)deliveredviatherespiratorytract.Thevaccineisintended
tobeusedasaninhalableneedle-freevaccinetargetingtheupper andlowerrespiratorytract.However,fortheworkdescribedhere,
weadministeredthevaccineintratracheally asa practical alter-nativetoevaluateeffectsofthevaccineinthedeeperlungbefore conductinganinhalationstudypriortothechallengeexperiments Minneandcolleaguesdescribedtheimpactofvaccinedeliverysite
ontheimmuneresponsesandconcludedthattargetingthelower lungsforaninhaledinfluenzavaccinationcaninducesystemicand localimmuneresponsesmostefficiently[23]
Trang 6ARTICLE IN PRESS
G Model
JVAC-15292; No of Pages 7
RecentresultswiththeNP-admixedantigeninahumanlung
tis-suemodelshowedthatHAC1/SiO2wasabletore-activateformerly
primedT-cells[12].EventhoughHAC1/SiO2 hada re-activating
potentialinhumanPCLS,vaccinationofmiceintratracheallywas
barelyabletoinduceseroprotection(HAItiter>1:40).Moreover,it
didnotinduceanylocalimmuneresponse,suchasantigen-specific
IgsecretionorT-cellinductionuponre-stimulation,when
admin-isteredatalowerantigendose(5gHAC1).However,additionof
themucosaladjuvantc-di-GMPtoHAC1/SiO2inducedHAIandIgG
antibodiesand T-cellsthatareconsideredpotentialmarkersfor
systemicandlocalprotectiveimmuneresponsesagainstinfluenza
infection.Importantly,noadversesideeffectsorclinicalsignsof
decreased well-being ofthestudy animalswere observedafter
intratracheal administration of the double-adjuvanted vaccine
Theseincreasedantigen-specificimmuneresponsesdemonstrated
thesynergisticeffectofthecombinationofnontoxicconcentrations
ofSiO2 andc-di-GMPandwereinlinewiththeworkof
Svind-landetal.[9].AlthoughmucosalIgGandIgAwereinducedbythe
single-adjuvantedvaccineHAC1/c-di-GMP,ahigherantigendose
wasrequired.Withregardtotheshortageofvaccinesupply
dur-inginfluenzapandemicsandthefocusofnewvaccinestrategies
onantigendose-sparingformulations,thedouble-adjuvanted
vac-cineshowedpromisingresultsasitprovidedadosesparingeffect
However,10gofantigenwererequiredtoinducelocalIgGand
IgAin100%ofthevaccinatedmice.Atafirstview,systemic
vaccina-tionseemedtobemoreeffectivethanlocalvaccinationregarding
theantigendoserequiredtoinducesystemicHAIandIgGtiters
Onthecontrary,1gHAC1givensystemicallywasnotsufficient
toinducelocalIgAtiters.Infact,thisstudywasnotdesignedto
comparedose-sparingeffectsoflocalversussystemicapplications,
butrathertoevaluateanadditiveeffectofcombinedadjuvants
Thesystemicadministrationwasonlyusedasacontrolforthe
vac-cinationprotocolaswellasantigenstabilityandnotmeantasa
comparativegrouptoevaluatesuperiorefficacyoftherespiratory
vaccinationtothesystemicvaccination
TheimportanceofmucosalIgAduringinfluenzainfectionandits
abilitytoneutralizevirusininfectedepithelialcellshaspreviously
beenshown[24,25].AlsotheroleofIgAincross-protectionagainst
driftedvirusstrainshasbeenshowntocontributetoprotection,
albeititisnotessential[26,27].Newinsightsintoimmune
protec-tionhavealteredsecondgenerationinfluenzavaccinesfrombeing
designedtoinducesystemicIgGtowardtheinductionofbroader
cross-protectiveresponsesagainstthevirus,includingother
anti-bodyisotypes,suchasIgA.Thisnewprotectionstrategycombines
theinductionofsystemicandlocalaswellashumoraland
cellu-larimmuneresponses[25].Inthisstudy,thedouble-adjuvanted
vaccinedemonstrated the ability toinduce systemic functional
antibodyresponses as wellas local cellularimmune responses
suggestingtheadvantageofcombiningproperadjuvantsandthe
relevanceofimmunizingatthesiteofinfection
Eventhoughachallengestudywould benecessarytoprove
that the local and systemic immune responses observed here
canprovideprotectionagainstinfluenzavirusinfection,thereis
convincingevidenceintheliteraturethatthemeasuredimmune
responsesdiscussed above have been linked toprotective
ofimmunizationand theireffectonlocaland systemicimmune
responses and combined this with lung protection against an
influenzainfection[29].Theirresultsregardingtheinductionof
mucosal IgA, serum IgG and systemic HAI titers after vaccine
administrationinto thelower airwaysof thelung were inline
withtheresultspresentedabove.Theydetectedonlyintheprimed
intrapulmonaryimmunizationmucosalsIgAinthelung,butnot
theintramuscularadministration.Furthermore,theyobservedthe
highestnasalandlungIgGtitersinmiceprimed(andboosted)via
themucosalroute[29].Ofnote,thechallengestudyperformedby
Liuetal.demonstratedthattheimmuneresponsesinducedbythe adjuvantedintrapulmonaryvaccinationweresufficienttoprotect againstinfluenzavirusinfectionandreducethevirustitersinthe lungpostinfectiontolevelsbelowdetection[29]
It hasbeen shown previouslythat intranasal administration
of c-di-GMP as an adjuvant for influenza vaccines can induce multifunctionalinfluenza-specificCD4+Th1cellsinthespleenof immunizedmice[8,9].Furthermore,multifunctionalTh1cellshave alsobeenshowntobepresentinthebloodofvaccinatedhuman volunteersand in thenon-inflamednormal humanlung tissue,
as determinedby theirpotentialto produceIL-2, IFN-␥and/or TNF-␣ upon re-activation[31,32] Consistentwith thecytokine profileofinfluenza-specificmultifunctional Th1cells,ourstudy showedincreasedIL-2andIFN-␥levelsinantigenre-stimulated PCLSofmicevaccinatedwithHAC1/c-di-GMP.TheinductionofTh1 cytokinesinre-stimulatedPCLSindicatesthattheantigenwas rec-ognizedbyHAC1-specificmemoryT-cells.Theseresultsareinline withthehypothesisbyJul-Larsenandcolleagueswhodiscussed thatadditionofanadjuvantimprovestheefficacyofHAC1toward theinductionofarobustT-cellresponse[32]
Additionally, our results aligned with previous studies on intranasallyadministeredc-di-GMPshowinganinductionofa Th1-biasedcytokineprofileinre-stimulatedsplenocytesagainsttarget antigen[8,9,33].Yet,ourstudyalsoshowedamildinductionofthe Th2cytokineIL-5andtheanti-inflammatorycytokineIL-10in re-stimulatedPCLSofintratracheallyc-di-GMP-vaccinatedmice.The foldinductionoftheTh1cytokinesforthedouble-adjuvanted vac-cinatedmice,however,farexceededthelevelofTh2cytokinesthat wereinduced(IFN-␥:IL-5,about119-fold;IFN-␥:IL-10,about 39-fold).Nevertheless,thedouble-adjuvantedvaccine,aswellasthe c-di-GMPadmixedantigen,inducedIL-10secretioninPCLSupon antigenicre-stimulationwhich exceededthenon-stimulated
IL-10baselinelevel.Amongothercytokines,IL-10canbereleasedby influenza-specificCD4+memoryT-cellsandhasbeendescribedas havingaputativelycrucialroleinregulatinginflammationduring acuteinfluenzainfection[34].Thefactthatthedouble-adjuvanted vaccineinducedIL-10-competentcellsmightalsocontributetoa reducedlevelofinflammationinthelungswithrepeatedexposure
totheviruspostvaccination
Overall,thedatapresentedinthecurrentstudydemonstrate thatthedouble-adjuvantedHAC1vaccineisimmunogenicinthe mousemodelwhenadministeredintratracheally.Eventhoughthe protectiveefficacyofthedouble-adjuvantedHAC1vaccineneeds
tobe evaluated in a relevant animal model, thepresent study demonstratesthatthedouble-adjuvantedHAC1inducessystemic functionalantibodyresponseaswellaslocalhumoraland cellu-larimmuneresponseswhenadministeredviatherespiratorytract, indicatingpotentialforfutureneedle-freevaccineapplications
Acknowledgments
TheauthorswouldliketothankOlafMacke,SabineSchild,Sarah DunkerandOlgaDanovfortheirtechnicalassistance.Theauthors wouldliketothankDr.NatashaKushnirforcriticalreadingofthe manuscript.WearegratefultoDr.R.Kellnerforstatisticaladvice ThestudywaspartoftheFraunhoferGesellschaftPROFIL“Mucosal Nano-VaccineAgainstInfluenza”
References
[1] World health organization website (2009) Influenza (Seasonal); Fact sheet NO 211; 2009 http://www.who.int/mediacentre/factsheets/fs211/en/ [accessed 23.02.13].
[2] Claas EC Pandemic influenza is a zoonosis, as it requires introduction of avian-like gene segments in the human population Vet Microbiol 2000;74(May (1–2)):133–9.
Trang 7[3] Juno J, Fowke KR, Keynan Y Immunogenetic factors associated with severe
respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses Clin
Dev Immunol 2012;2012:797180.
[4] FDA Vaccines, Blood & Biologics: FluMist; 2013 Available: 07/25/2012.
[accessed 9.06.13].
[5] Watanabe I, Ross TM, Tamura S, Ichinohe T, Ito S, Takahashi H, et al
Protec-tion against influenza virus infection by intranasal administration of C3d-fused
hemagglutinin Vaccine 2003;21(November (31)):4532–8.
[6] Chen W, Patel GB, Yan H, Zhang J Recent advances in the development
of novel mucosal adjuvants and antigen delivery systems Hum Vaccine
2010;6(September (9)).
[7] Ebensen T, Schulze K, Riese P, Morr M, Guzman CA The bacterial second
mes-senger cdiGMP exhibits promising activity as a mucosal adjuvant Clin Vaccine
Immunol 2007;14(August (8)):952–8.
[8] Madhun AS, Haaheim LR, Nostbakken JK, Ebensen T, Chichester JA, Yusibov
V, et al Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine
induces multifunctional Th1 CD4 + cells and strong mucosal and systemic
anti-body responses in mice Vaccine 2011;29(July (31)):4973–82.
[9] Svindland SC, Pedersen GK, Pathirana RD, Bredholt G, Nostbakken JK, Jul-Larsen
A, et al A study of Chitosan and c-di-GMP as mucosal adjuvants for intranasal
influenza H5N1 vaccine Influenza Other Respir Viruses 2013;7(6):1181–93,
http://dx.doi.org/10.1111/irv.12056
[10] Mancino D, Bevilacqua N Adjuvant effect of amorphous silica on the immune
response to various antigens in guinea pigs Int Arch Allergy Appl Immunol
1977;53(2):97–103.
[11] Mancino D, Ovary Z Adjuvant effects of amorphous silica and of aluminium
hydroxide on IgE and IgG1 antibody production in different inbred mouse
strains Int Arch Allergy Appl Immunol 1980;61(3):253–8.
[12] Neuhaus V, Schwarz K, Klee A, Seehase S, Foerster C, Pfennig O, et al.
Functional testing of an inhalable nanoparticle based influenza vaccine
using a human precision cut lung slice technique PLoS ONE 2013;8(8):
e71728.
[13] Chichester JA, Haaheim LR, Yusibov V Using plant cells as influenza vaccine
substrates Expert Rev Vaccine 2009;8(April (4)):493–8.
[14] Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V, et al Plant-based
rapid production of recombinant subunit hemagglutinin vaccines targeting
H1N1 and H5N1 influenza Hum Vaccine 2011;7(January (Suppl.)):41–50.
[15] Ebensen T, Schulze K, Riese P, Link C, Morr M, Guzman CA The bacterial
second messenger cyclic diGMP exhibits potent adjuvant properties Vaccine
2007;25(February (8)):1464–9.
[16] Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y, Benziman M, et al The
cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter
xylinum Chemical synthesis and biological activity of cyclic nucleotide dimer,
trimer, and phosphothioate derivatives J Biol Chem 1990;265(November
(31)):18933–43.
[17] Hobson D, Curry RL, Beare AS, Ward-Gardner A The role of serum
haemagglutination-inhibiting antibody in protection against challenge
infec-tion with influenza A2 and B viruses J Hyg (Lond) 1972;70(December
(4)):767–77.
[18] Potter CW, Oxford JS Determinants of immunity to influenza infection in man.
Br Med Bull 1979;35(January (1)):69–75.
[19] Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, et al A plant-based system for rapid production of influenza vaccine antigens Influenza Other Respir Viruses 2012;6(May (3)):204–10.
[20] Knothe S, Mutschler V, Rochlitzer S, Winkler C, Ebensen T, Guzman CA, et al The NKT cell ligand alphagalactosylceramide suppresses allergic airway inflamma-tion by induction of a Th1 response Vaccine 2011;29(June (25)):4249–55.
[21] Henjakovic M, Sewald K, Switalla S, Kaiser D, Muller M, Veres TZ, et al Ex vivo testing of immune responses in precision-cut lung slices Toxicol Appl Pharmacol 2008;231(August (1)):68–76.
[22] Held HD, Martin C, Uhlig S Characterization of airway and vascular responses
in murine lungs Br J Pharmacol 1999;126(March (5)):1191–9.
[23] Minne A, Louahed J, Mehauden S, Baras B, Renauld JC, Vanbever R The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response Immunology 2007;122(November (3)):316–25.
[24] Brandtzaeg P Induction of secretory immunity and memory at mucosal sur-faces Vaccine 2007;25(July (30)):5467–84.
[25] van Riet E, Ainai A, Suzuki T, Hasegawa H Mucosal IgA responses in influenza virus infections; thoughts for vaccine design Vaccine 2012;30(August (40)):5893–900.
[26] Asahi Y, Yoshikawa T, Watanabe I, Iwasaki T, Hasegawa H, Sato Y, et al Pro-tection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines J Immunol 2002;168(March (6)):2930–8.
[27] Tamura S, Funato H, Hirabayashi Y, Suzuki Y, Nagamine T, Aizawa C, et al Cross-protection against influenza A virus infection by passively transferred respiratory tract IgA antibodies to different hemagglutinin molecules Eur J Immunol 1991;21(June (6)):1337–44.
[28] Bungener L, Geeraedts F, Ter VW, Medema J, Wilschut J, Huckriede A Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vac-cine in mice but does not confer superior protection Vaccine 2008;26(May (19)):2350–9.
[29] Liu H, Patil HP, de Vries-Idema J, Wilschut J, Huckriede A Evaluation of mucosal and systemic immune responses elicited by GPI-0100-adjuvanted influenza vaccine delivered by different immunization strategies PLoS ONE 2013;8(7):e69649.
[30] Plante M, Jones T, Allard F, Torossian K, Gauthier J, St-Felix N, et al Nasal immunization with subunit proteosome influenza vaccines induces serum HAI, mucosal IgA and protection against influenza challenge Vaccine 2001;20(October (1–2)):218–25.
[31] Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity PLoS ONE 2011;6(1):e16245.
[32] Jul-Larsen A, Madhun A, Brokstad K, Montomoli E, Yusibov V, Cox R The human potential of a recombinant pandemic influenza vaccine pro-duced in tobacco plants Hum Vaccine Immunother 2012;8(5):653–61,
http://dx.doi.org/10.4161/hv.19503 [33] Chen W, Kuolee R, Yan H The potential of 3 ,5 -cyclic diguanylic acid (c-di-GMP)
as an effective vaccine adjuvant Vaccine 2010;28(April (18)):3080–5.
[34] Sun J, Madan R, Karp CL, Braciale TJ Effector T cells control lung inflam-mation during acute influenza virus infection by producing IL-10 Nat Med 2009;15(March (3)):277–84.