1. Trang chủ
  2. » Giáo án - Bài giảng

an optimization problem for infinite order distributed parabolic systems with multiple time varying lags

16 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 864,54 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bahaa∗ Department of Mathematics, Faculty of Science, Taibah University, Al-madinah Al-munawwarah, P.O.. 30002, Saudi Arabia Abstract Keywords:Boundary control;n×nparabolic systems; Mult

Trang 1

Journal of Taibah University for Science 7 (2013) 146–161

G.M Bahaa∗

Department of Mathematics, Faculty of Science, Taibah University, Al-madinah Al-munawwarah, P.O 30002, Saudi Arabia

Abstract

Keywords:Boundary control;n×nparabolic systems; Multiple time-varying lags; Distributed control problems; Neumann conditions; Existence

1 Introduction

Distributedparameter systems with delays canbe used todescribe many phenomenain the real world Asis wellknown,heatconduction,propertiesofelastic-plasticmaterial,fluiddynamics,diffusion-reactionprocesses,the transmissionofthesignalsatacertaindistancebyusingelectriclonglines,etc.,allliewithinthisarea.Theobjectthat

wearestudying(temperature,displacement,concentration,velocity,etc.)isusuallyreferredtoasthestate

Duringthelasttwentyyears,equationswithdeviatingargumenthavebeenappliednotonlyinappliedmathematics, physicsandautomaticcontrol,butalsoinsomeproblemsofeconomyandbiology.Currently,thetheoryofequations withdeviatingargumentsconstitutesaveryimportantsubfieldofmathematicalcontroltheory

Consequently,equationswithdeviatingargumentsarewidelyappliedinoptimalcontrolproblemsofdistributed parametersystemwithtimedelays[41]

Theoptimalcontrolproblemsofdistributedparabolicsystemswithtime-delayedboundaryconditionshavebeen widelydiscussedinmanypapersandmonographs.Afundamentalstudyofsuchproblemsisgivenby[48]andwasnext developedby[29,49].Itwasalsointensivelyinvestigatedby[7–9,11–13,25,26,30,34–45],inwhichlinearquadratic

E-mail address:Bahaa GM@hotmail.com

http://dx.doi.org/10.1016/j.jtusci.2013.05.004

Trang 2

G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161 147

problemforparabolicsystemswithtimedelaysgiveninthedifferentform(constant,timedelays,time-varyingdelays, timedelaysgivenintheintegralform,etc.)werepresented

The necessaryandsufficient conditionsof optimalityfor systems consistsof onlyoneequation andfor (n×n)

systemsgovernedbydifferenttypesofpartialdifferentialequationsdefinedonspacesoffunctionsofinfinitelymany variablesandalsoforinfinite ordersystems arediscussed forexample in[25–28,42,45]inwhichthe argumentof

[46,47]wereused

Making use of theDubovitskii–Milyutin Theorem in[1–6,10,33,34] the necessaryandsufficient conditions of optimalityfor similarsystemsgovernedbysecondorderoperatorwithaninfinitenumberof variablesandalsofor infiniteordersystemswereinvestigated.Theinterestinthestudyofthisclassofoperatorsisstimulatedbyproblems

inquantumfieldtheory

Inparticular,thepapersof[43,44]presentsnecessaryandsufficientoptimalityconditionsfortheNeumannproblem withquadraticperformancefunctionals,appliedtoasingleoneequationofsecondorderparabolicsystemwithboundary conditionsinvolvingconstanttime-varyinglagandmultipletime-varyinglagsrespectively

Alsoin[42,45]presentstime-optimalboundarycontrolforasingleoneequationdistributedinfiniteorderparabolic andhyperbolicsystemsinwhichconstanttimelagsappearintheintegralformbothinthestateequationandinthe Neumannboundarycondition.Somespecificpropertiesoftheoptimalcontrolarediscussed

In thispaperwe considertheprobleminamoregeneralformulation.Adistributedparameterfor infiniteorder parabolic(n×n)systemswithmultipletime-varyinglagsinboundaryconditionsisconsidered.Suchaninfiniteorder parabolicsystemcanbetreatedasageneralizationofthemathematicalmodelforaplasmacontrolprocess.Aninitial statecontainedinaspecifiedsetisassumed(theinitialvaluesarenotknown).Thequadraticperformancefunctionals definedoverafixedtimehorizonaretakenandsomeconstraintsareimposedontheinitialstate andtheboundary control.Suchasystemmaybeviewedasalinearrepresentationofmanydiffusionprocesses,inwhichtime-delayed signalsareintroducedataspatialboundary,andthereisafreedominchoosingthecontrolledprocessinitialstate FollowingalineoftheLionsscheme,necessaryandsufficientoptimalityconditionsfortheNeumannproblemapplied

totheabovesystemwerederived.Theoptimalcontrolischaracterizedbytheadjointequations

Thispaperisorganizedas follows.In Section1,weintroducespacesoffunctionsof infiniteorder.InSection3,

we formulatethemixedNeumannproblemfor infiniteorderparabolicoperatorandmultipletime-varyinglags.In Section4,theboundaryoptimalcontrolproblemforthiscaseisformulated,thenwegivethenecessaryandsufficient conditionsforthecontroltobeanoptimal.InSection5,wegeneralizedthediscussiontotwocases,thefirstcase:The optimalcontrolfor(2×2)coupledinfiniteorderparabolicsystemsisstudied.Thesecondcase:Theoptimalcontrol for(n×n)coupledinfiniteorderparabolicsystemshavebeenformulated

2 Sobolev spaces with infinite order

Theobjectofthissectionistogivethedefinitionofsomefunctionspacesofinfiniteorder,andthechainsofthe constructedspaceswhichwillbeusedlater

LetΩbeaboundedopensetofRnwithasmoothboundary Γ,whichisaC∞-manifoldofdimension(n−1) Locally,ΩistotallyononesideofΓ.WedefinetheinfiniteorderSobolevspaceW{a α,2}(Ω)ofinfiniteorderof periodicfunctionsφ (x)definedonΩ[22–24]asfollows:

W{a α ,2}(Ω)=

φ (x)C(Ω):



|α|=0

a α ||D α φ||2

,

whereC(Ω)isthespaceofinfinitedifferentiablefunctions,a

α≥0isanumericalsequenceand||·||2isthecanonical norminthespaceL2(Ω),and

D α= ∂ |α|

(∂x1)α1 (∂x n)αn ,

α=1, .,α n)beingamulti-indexfordifferentiation,|α|= n

i=1α i

Trang 3

148 G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161

ThespaceW−∞{a α,2}(Ω)isdefinedastheformalconjugatespacetothespaceW{a α,2}(Ω),namely:

W−∞{a α ,2}(Ω)=

ψ (x):ψ (x)=



|α|=0

(−1)|α| a α D α ψ α (x)

, whereψ αL2(Ω)and ∞

ThedualitypairingofthespacesW{a α,2}(Ω)andW−∞{a α,2}(Ω)ispostulatedbytheformula

(φ, ψ)=



|α|=0

a α Ω

ψ α (x)D α φ (x)dx,

where

φW{a α ,2}(Ω), ψW−∞{a α ,2}(Ω)

Fromabove,W{a α,2}(Ω)iseverywheredenseinL2(Ω)withtopologicalinclusionsandW−∞{a α,2}(Ω)denotes thetopologicaldualspacewithrespecttoL2(Ω),sowehavethefollowingchainofinclusions:

W{a α ,2}(Ω)⊆L2(Ω)W−∞{a α ,2}(Ω)

Wenow introduce L2(0, T;L2(Ω)) whichwe shall denoted byL2(Q), whereQ=Ω×]0,T[, denotesthe space of measurablefunctionstφ (t)suchthat

||φ|| L2(Q)= T

0

||φ(t)||2

1/2

< ∞,

endowedwiththescalarproduct(f, g)= T

0 (f (t), g (t)) L2(Ω) dt,L2(Q)isaHilbertspace

InthesamemannerwedefinethespacesL2(0,T;W{a α,2}(Ω)),andL2(0,T;W−∞{a α,2}(Ω)),asitsformal conjugate

Also,wehavethefollowingchainofinclusions:

L2(0, T;W{a α ,2}(Ω))⊆L2(Q)L2(0, T;W−∞{a α ,2}(Ω)),

TheconstructionoftheCartesianproductofn-timestotheaboveHilbertspacescanbeconstruct,forexample

(W{a α ,2}(Ω)) n=W ∞{a α ,2}(Ω)×W{a α ,2}(Ω)×···×W{a α ,2}(Ω)

=

n



i=1

(W{a α ,2}(Ω)) i

,

withnormdefinedby:

||φ|| (W{a α ,2}(Ω)) n =

n



i=1

||φ i||W{a α ,2}(Ω) ,

whereφ=1, φ2, , φ n)=(φ i)n i=1isavectorfunctionandφ iW{a α,2}(Ω).

Finally,wehavethefollowingchainofinclusions:

(L2(0, T;W{a α ,2}(Ω)))n(L2(Q)) n(L2(0, T;W−∞{a α ,2}(Ω)))n ,

where(L2(0, T;W−∞{a α ,2}(Ω)))n

arethedualspacesof(L2(0, T;W{a α ,2}(Ω)))n

.Thespacesconsideredinthis paperareassumedtobereal

Trang 4

G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161 149

3 Mixed Neumann problem for infinite order parabolic system with multiple time-varying lags

TheobjectofthissectionistoformulatethefollowingmixedinitialboundaryvalueNeumannproblemforinfinite orderparabolicsystemwithmultipletime-varyinglagswhichdefinesthestateofthesystemmodel[3,5,6,27,35–45]

∂y

∂t +A(t)y(x, t)=u, xΩ, t(0, T ), (1)

∂y

∂ν A =

m



s=1

whereΩhasthesamepropertiesasinSection1.Wehave

yy (x, t;u ), y(0)≡y (x,0;u ), y (T)≡y (x, T;u ), uu (x, t ), vv (x, t ),

Q=Ω×(0, T ), Q=Ω×[0, T ], Q0=Ω×[−Δ(0),0), Σ=Γ ×(0, T ), Σ0=Γ ×[−Δ(0),0),

Tisaspecifiedpositivenumberrepresentingafinitetimehorizon,

k s (t), s=1,2, .,standforfunctionsrepresentingmultipletime-varyinglags,

c s (t), s=1,2, .arerealC∞functiondefinedonΣ,

Kisaclosed,convexsubsetinthespaceW1/2(Ω, R∞),

Δ(0)=max{k1(0),k2(0), .,k m(0)},

yisafunctiondefinedonQsuchthatΩ×(0,T) (x, t)y(x, t)R,

u, varefunctionsdefinedonQandΣsuchthatΩ×(0,T) (x, t)u(x, t)RandΓ ×(0, T) (x, t)→v (x, t)∈R,

Φ0isaninitialfunctiondefinedonΣ0suchthatΓ×[−Δ(0),0) (x, t)→Φ0(x, t)∈R.

Theparabolicoperator∂/∂t+A(t)inthestateequation(1)isaninfiniteorderparabolicoperatorandA(t)[24]and (GaliandEl-Saify,1982,1983)and[34]isgivenby:

Ay= ∞

|α|=0

(−1)|α| a

α D2|α| y (x, t ),

and

A= ∞

|α|=0

(−1)|α| a

α D2|α|

isaninfiniteorderself-adjointellipticpartialdifferentialoperatorthatmapsW{a α,2}(Ω)ontoW−∞{a α,2}(Ω).

Forthisoperatorwedefinethebilinearformasfollows:

Definition 3.1. Foreacht∈(0,T),wedefineafamilyofbilinearformsonW{a α,2}(Ω)by:

π (t; y, φ)=(A(t)y, φ)L2(Ω) , y, φW{a α ,2}(Ω),

whereA(t)mapsW{a α,2}(Ω)ontoW−∞{a α,2}(Ω)andtakestheaboveform.Then

π (t; y, φ)=(A(t)y, φ)L2(Ω)=

⎝∞

|α|=0

(−1)|α| a

α D2|α| y (x, t ), φ (x)

2

=

Ω



|α|=0

a α D |α| y (x)D |α| φ (x)dx.

Trang 5

150 G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161

Lemma 3.1. The bilinear form π (t;y, φ)is coercive on W{a α,2}(Ω) that is

π (t; y, y)≥λ ||y||2

Proof. ItiswellknownthattheellipticityofA(t)issufficientforthecoercivenessofπ (t;y, φ)onW{a α,2}(Ω).

π (t; φ, ψ)=

Ω



|α|=0

a α D |α| φD |α| ψdx.

Then

π (t; y, y)=

Ω



|α|=0

a α D |α| yD |α| ydx≥ ∞

|α|=0

a α ||D2|α| y (x)||2L2(Ω)λ ||y||2

W{a α,2}(Ω) , λ > 0.

Alsowehave:



∀y, φW{a α ,2}(Ω)thefunctiontπ (t; y, φ)

iscontinuouslydifferentiablein(0, T)andπ (t; y, φ)=π (t; φ, y ). (6)

Eqs.(1)–(4)constituteaNeumannproblem.Thentheleft-handsideoftheboundarycondition(2)maybewritten

inthefollowingform:

∂y (u)

∂ν A = ∞

|ω|=0

where∂/∂ν AisanormalderivativeatΓ,directedtowardstheexteriorofΩ,andcos(n, x k)isthekthdirectioncosine

ofn,withnbeingthenormalatΓ exteriortoΩ

Then(2)canbewrittenas:

q (x, t)=

m



s=1

c s (x, t )y(x, tk s (t))+v (x, t ), xΓ, t(0, T ). (8)

Letttk s (t)beastrictlyincreasingfunctionon[0,T], k s (t)beingnon-negativein[0,T]andalsobeingaC1

function.Then,thereexisttheinversefunctionsofttk s (t).

Letusdenoter s (t) =tˆ −k s (t),thentheinversefunctionsofr s (t)havetheformt=f s (r s)=r s+q s (r s),whereq s (r s)are time-varyingpredictions.Letf s (t)betheinversefunctionsofttk s (t).Thus,wedefinethefollowingiterations:

ˆt0=0

ˆt1=min{f1(0), f2(0), , f m(0)}

ˆt2=min{f1(ˆt1), f2(ˆt1), , f m (ˆt1)}

ˆt j=min{f1(ˆt j−1), f2(ˆt j−1), , f m (ˆt j−1)}.

Remark 3.1. Weshallapplytheindicationq(x, t)appearingin(8)toprovetheexistenceofauniquesolutionfor

(1)–(4)

Weshallformulatesufficientconditionsfortheexistenceofauniquesolutionofthemixedinitial-boundaryvalue problem(1)–(4)forthecasewheretheboundarycontrolvL2(Σ).

Forthispurpose,weintroducetheSobolevspaceW∞,1(Q)([47],vol.2,p.6)definedby:

whichisaHilbertspacenormedby

Trang 6

G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161 151

||y|| W ∞,1 (Q) = T

0

||y||2

W{a α,2}(Ω) dt+||y||2

W1(0,T ;L2(Ω))

1/2

=

Q

⎝∞

|α|=0

a α |D α y|2+

∂y

∂t



2

⎠ dxdt

1/2

=

Q

⎝a0|y|2+



|α|=1

a α |D α y|2+

∂y ∂t2

⎠ dxdt

1/2

wherethespaceW1(0,T;L2(Ω))denotestheSobolevspaceoforder1offunctionsdefinedon(0,T)andtakingvalues

inL2(Ω).([47],vol.1)

Theexistenceofauniquesolutionforthemixedinitial-boundaryvalueproblem(1)–(4)onthecylinderQcanbe provedusingaconstructivemethod,i.e.,solvingatfirstEqs.(1)–(4)onthesub-cylinderQ1andinturnonQ2etc., untiltheprocedurecoversthewholecylinderQ.Inthisway,thesolutioninthepreviousstepdeterminesthenextone Forsimplicity,weintroducethefollowingnotation:

E j =(ˆtˆ j−1, ˆt j ), Q j=Ω×E j , Σ j=Γ ×E j

Q0=Ω×[−Δ(0),0), Σ0=Γ ×[−Δ(0),0) forj=1, 2, 3,

Itcanbeproved,usingTheorem3.1of[47],and[40],thatiftheinitialstatey(x,0)isanarbitraryfixedfunction, thenthefollowingresultholds

Theorem 3.1. Let y(0), Φ0,v and u be given with y(0)W{a α,2}(Ω), Φ0∈L20),vL2(Σ) and u(W ∞,1 (Q)).

Then, there exists a unique solution yW∞,1(Q) for the mixed initial-boundary value problem(1)–(4). Moreover,

y (., ˆt j)∈W{a α ,2}(Ω)forj=1, 2, 3,

4 Problem formulation-optimization theorems

Now,weformulatetheoptimalcontrolproblemfor(1)–(4)inthecontextofTheorem3.1,thatisvL2(Σ).

LetusdenotebyU=L2(Σ)thespaceofcontrols.ThetimehorizonTisfixedinourproblem

Theperformancefunctionalisgivenby

I (v)=λ1

Q

[y(x, t;v)−z d]2dxdt+λ2

Σ

whereλ i≥0,andλ1+λ2>0,z disagivenelementinŁ2(Q); NisapositivelinearoperatoronL2(Σ)intoL2(Σ).

Control constraints:WedefinethesetofadmissiblecontrolsU adsuchthat

Lety (x, t;v)denotethesolutionofthemixedinitial-boundaryvalueproblem(1)–(4)at(x, t)correspondingtoa givencontrolvU ad.Wenotefromtheorem3.1thatforanyvU adtheperformancefunctional(11)iswell-defined sincey (v)W ∞,1 (Q)L2(Q).

Making useof theLoins’sschemewe shallderivethe necessaryandsufficientconditionsof optimality forthe optimization problem(1)–(4), (11),(12) The solvingof the formulatedoptimalcontrol problem is equivalentto seekingav∗∈U ad suchthat

I (v∗)≤I (v), ∀vU ad

FromtheLion’sscheme(Theorem1.3of[46],p.10),itfollowsthatforλ2>0auniqueoptimalcontrolv∗exists.

Moreover,v∗ischaracterizedbythefollowingcondition:

Fortheperformancefunctionalofform(11)therelation(13)canbeexpressedas

λ1 (y(v∗)−z d )[y(v)y (v)]dxdt+λ2 Nv(vv)dΓ dt0, ∀vU ad (14)

Trang 7

152 G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161

Inordertosimplify(14),weintroducetheadjointequation,andforeveryvU ad,wedefinetheadjointvariable

p=p (v)p (x, t;v)asthesolutionoftheequations:

∂p (v)

∂p (v)

∂ν A(x, t)=0, xΓ, t(TΔ (T ), T ), (16)

∂p (v)

∂ν A(x, t)=

m



s=1

c s (x, t+q s (t))p(x, t+q s (t); v)(1+q

s (t)), xΓ, t(0, TΔ (T )), (17)

where

Δ (T)=max{k1(T ), k2(T ), , k m (T)},

∂p (v)

∂ν A(x, t)= ∞

|ω|=0

(D ω p (v)) cos(n, x ω ),

A(t)p(v)=



|α|=0

Asintheabovesectionwithchangeofvariables,i.e.withreversedsenseoftime,i.e.,t=Tt,forgivenz dL2(Q)

andanyvL2(Σ),thereexistsauniquesolutionp (v)W ∞,1 (Q)forproblem(15)–(18).

Theexistenceof auniquesolution fortheproblem(15)–(18) onthecylinderΩ×(0,T) canbeprovedusinga constructivemethod.Itiseasytonoticethatforgivenz dandu,theproblem(15)–(18)canbesolvedbackwardsintime startingfromt=T,i.e.firstsolving(15)–(18)onthesub-cylinderQ KandinturnonQ K−1,etc.untiltheprocedurecovers thewholecylinderΩ×(0,T).Forthispurpose,wemayapplyTheorem3.1(withanobviouschangeofvariables) Hence,usingTheorem3.1,thefollowingresultcanbeproved

Lemma 4.1. Let the hypothesis of Theorem3.1be satisfied Then for given z dL2(Ω, R∞)and any vL2(Σ), there exists a unique solution p (v)W ∞,1 (Q) for the adjoint problem(15)–(18).

Wesimplify (14)using the adjointEq (15)–(18).For thispurpose denoting byp(0)≡p (x,0;v)and p (T)≡

p (x, T;v)respectively,settingv=v∗in(15)–(18),multiplyingbothsidesof(15)byy (v)y (v∗),thenintegrating

overQ,andthenaddingbothsidesof(15)–(18),weget

λ1

Q

(y(T;v∗)−z d )[y(T;v)−y (T;v)]dxdt= T

∂p (v∗)

∂t +A(t)p(v∗)

×[y(v)y (v)]dxdt

=−

Ω

p (x, T;v)[y(x, T;v)−y (x, T;v)]dx

+

Ω

p (x,0;v)[y(x,0;v)−y (x,0;v)]dx

p (v∗)

∂t [y(v)y (v)]dxdt

+ T A(t)p(v)[y(v)y (v)]dxdt. (20)

Trang 8

G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161 153

UsingGreen’sformula,thelastcomponentin(20)canbewrittenas

T

A(t)p(v)[y(v)y (v)]dxdt= T

p (v∗)A(t)[y(v)y (v)]dxdt

p (v∗)

∂y (v)

∂ν A∂y (v∗)

∂ν A

dΓ dt

∂p (v∗)

Usingtheboundarycondition(2),onecantransformthesecondintegralontheright-handsideof(21)intotheform:

T

p (v∗)

∂y (v)

∂ν A∂y (v∗)

∂ν A

dΓ dt

=

m



s=1

T

p (x, t;v)c

s (x, t[y(x, t −k s (t); v)−y(x,t −k s (t); v)]dΓ dt+ T

p (x, t;v)(vv)dΓ dt

=

m



s=1

T −k s (T)

p (x, t+g s (t s);v)c

s (x, t+g s (t s))(1+g

s (t s))×[y(x, t s;v)−y (x, t s;v)]dΓ dt

Thelastcomponentin(21)canberewrittenas

T

∂p (v∗)

∂ν A[y(v)y (v)]dΓ dt

= T −Δ(T)

∂p (v∗)

∂ν A[y(v)y (v)]dΓ dt+ T

T −Δ(T) Γ

∂p (v∗)

∂ν A[y(v)y (v)]dΓ dt. (23)

Substituting(22)and(23)into(21),andthentheresultsinto(20),weobtain

λ1

Ω

(y(T;v∗)−z d )[y(T;v)−y (T;v)]dx

=−

Ω

p (x, T;v)[y(x, T;v)−y (x, T;v)]dx+

Ω

p (x,0;v)[y(x,0;v)−y (x,0;v)]dx

p (v∗)

∂t +A (t)

[y(v)y (v)]dxdt+ T

p (x, t;v)(vv)dΓ dt

+

m



s=1

0

p (x, t+q s (t); v)c

s (x, t+q s (t))(1+q

s (t))×[y(x, t;v)−y (x, t;v)]dΓ dt

+

m



s=1

T −k s (T)

p (x, t+q s (t); v)c

s (x, t+q s (t))(1+q

s (t))×[y(x, t;v)−y (x, t;v)]dΓ dt

T −Δ(T)

∂p (v∗)

∂ν A[y(v)y (v)]dΓ dtT

T −Δ(T) Γ

∂p (v∗)

∂ν A[y(v)y (v)]dΓ dt

Trang 9

154 G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161

=

Ω

p (x,0;v)[y(x,0;v)−y (x,0;v)]dx+ T

p (x, t;v)(vv)dΓ dt

=

Ω

p o (0)[y(0)y o (0)]dx+ T

p (v)(vv)dΓ dt. (24)

Substituting(24)into(14)gives

Ω

p o (0)[y(0)y o (0)]dx+ T

(p(v∗)+λ2Nv)(vv)dΓ dt≥0∀v∈U ad (25) Theforegoingresultisnowsummarized

Theorem 4.1. For the problem(1)–(4), with the performance functional(11)with z dL2(Q) and λ2>0and with conditions(4),(12), there exists a unique optimal control vwhich satisfies the maximum condition(25).

Wecanalsoconsiderananalogousoptimalcontrolproblemwheretheperformancefunctionalisgivenby

ˆI(v)=λ1

Σ

[y(x, t;v)|Σz d]2dΓ dt+λ2

Σ

wherez dL2(Σ).

Fromtheorem3.1andtheTraceTheorem([47],vol.2,p.9),foreach vL2(Σ),thereexistsauniquesolution

y (v)W ∞,1 (Q)withy| ΣL2(Σ) Thus, ˆI(v)iswelldefined.Then,theoptimalcontrolv∗ischaracterizedby

λ1

Σ

(y(v∗)|Σz d )[y(v)| Σy (v∗)|Σ ]dΓ dt+λ2

Σ

Nv(vv)dΓ dt≥0 ∀vU ad (27)

Wedefinetheadjointvariablep=p (v∗)=p (x, t;v∗)asthesolutionoftheequations:

∂p (v∗)

∂p (v∗)

∂ν A(x, t)=λ1(y(v∗)|Σ (x, t)−z Σd ), xΓ, t(TΔT, T ), (29)

∂p (v∗)

∂ν A(x, t)=

m



s=1

c s (x, t +q s (t))p(x, t+q s (t); v∗)(1+q

s (t))+λ1(y(v∗)|Σ (x, t)−z Σd ), xΓ, t(0, T −ΔT ),

(30)

Asintheabovesection,wehavethefollowingresult

Lemma 4.2. Let the hypothesis of Theorem3.1be satisfied Then, for given z ΣdL2(Σ) and any vL2(Σ), there exists a unique solution p (v∗)∈W ∞,1 (Q) to the adjoint problem(28)–(31).

UsingtheadjointEqs.(28)–(31)inthiscase,thecondition(27)canalsobewritteninthefollowingform

Ω

p o (0)[y(0)y o (0)]dx+ T

(p(v∗)+λ2Nv)(vv)dΓ dt≥0 ∀vU ad (32) Thefollowingresultisnowsummarized

Theorem 4.2. For the problem(1)–(4)with the performance function(26)with z ΣdL2(Σ) and λ2>0, and with constraint(12), and with adjoint Eqs.(28)–(31), there exists a unique optimal control vwhich satisfies the maximum

condition(32).

Trang 10

G.M Bahaa / Journal of Taibah University for Science 7 (2013) 146–161 155

Example 4.1 Case: uL2(Q).Wecanalsoconsiderananalogousoptimalcontrolproblemwheretheperformance functionalisgivenby

ˆˆI(u)=λ1

Q

[y(x, t;u)−z d]2dxdt+λ2

Q

wherez dL2(Q).

FromTheorem3.1andtheTraceTheorem([47],vol.2,p.9), foreach uL2(Q), thereexistsauniquesolution

y(u)W∞,1(Q). Thus, ˆˆI iswelldefined.Then,theoptimalcontrolu*ischaracterizedby

λ1

Q

(y(u∗)−z d )[y(u)y (u)]dxdt+λ2

Q

Wedefinetheadjointvariablep=p(u*)=p(x, t;u*)asthesolutionoftheequations:

∂p (u∗)

∂t +A(t)p(u∗)=λ1(y(u)(x, t)−z d ), xΩ, t(0, T ), (35)

∂p (u∗)

∂ν A(x, t)=0, xΓ, t(TΔT, T ), (36)

∂p (u∗)

∂ν A(x, t)=

m



s=1

c s (x, t+q s (t))p(x, t+q s (t); u∗)(1+q

s (t)), xΓ, t(0, TΔT ), (37)

Asintheabovesection,wehavethefollowingresult

Lemma 4.3. Let the hypothesis of Theorem3.1be satisfied Then, for given z dL2(Q) and any uL2(Q), there exists

a unique solution p(u*)∈W∞,1(Q) to the adjoint problem(35)–(38).

UsingtheadjointEqs.(35)–(38)inthiscase,thecondition(34)canalsobewritteninthefollowingform

Ω

p o (0)[y(0)y o (0)]dx+ T

(p(u∗)+λ2Nu)(uu)dxdt≥0 ∀uU ad (39) Thefollowingresultisnowsummarized

Theorem 4.3. For the problem (1)–(4) with the performance function(33) with z dL2(Q) and λ2>0, and with constraint(12), and with adjoint Eqs.(35)–(38), there exists a unique optimal control u*which satisfies the maximum condition(39).

5 Generalization

Theoptimalcontrolproblemspresentedhercanbeextendedtocertaindifferenttwocases.Case1:Optimalcontrol for2×2coupledinfiniteorderparabolicsystemswithmultipletime-varyinglags.Case2:Optimalcontrolforn×n

coupledinfinite orderparabolicsystems withmultipletime-varyinglags.Suchextensioncanbeappliedtosolving manycontrolproblemsinmechanicalengineering

5.1 Case 1: Optimal control for 2×2 coupled infinite order parabolic systems with multiple time-varying lags

Wecanextendthediscussionstostudytheoptimalcontrolfor2×2coupledinfiniteorderparabolicsystemswith multipletime-varyinglags.Weconsiderthecasewherev=(v1, v2)∈L2(Σ)×L2(Σ),theperformancefunctionalis givenby:[25,26]

I (v)=

2



i=1

λ1

Q

[y i (x, t;v)−z id]2dxdt+λ2

Σ (N i v i )v i dxdt

wherez =(z , z )∈(L2(Q))2

... infinite order parabolic systems with multiple time- varying lags< /i>

Wecanextendthediscussionstostudytheoptimalcontrolfor2×2coupledinfiniteorderparabolicsystemswith multipletime-varyinglags.Weconsiderthecasewherev=(v1,... Neumann problem for infinite order parabolic system with multiple time- varying lags< /b>

TheobjectofthissectionistoformulatethefollowingmixedinitialboundaryvalueNeumannproblemforinfinite orderparabolicsystemwithmultipletime-varyinglagswhichdefinesthestateofthesystemmodel[3,5,6,27,35–45]...

coupledinfinite orderparabolicsystems withmultipletime-varyinglags.Suchextensioncanbeappliedtosolving manycontrolproblemsinmechanicalengineering

5.1 Case 1: Optimal control for 2×2

Ngày đăng: 01/11/2022, 08:31

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[3] G.M. Bahaa, Time-optimal control problem for infinite order parabolic equation with control constraints, Differential Equation Control Process Electronic Journal 4 (2005) 64–81 http://www.neva.ru/journal Sách, tạp chí
Tiêu đề: Time-optimal control problem for infinite order parabolic equation with control constraints
Tác giả: G.M. Bahaa
Nhà XB: Differential Equation Control Process Electronic Journal
Năm: 2005
[4] G.M. Bahaa, Optimal control for cooperative parabolic systems governed by Schrửdinger operator with control constraints, IMA Journal of Mathematical Control and Information 24 (2007) 1–12 Sách, tạp chí
Tiêu đề: Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints
Tác giả: G.M. Bahaa
Nhà XB: IMA Journal of Mathematical Control and Information
Năm: 2007
[5] G.M. Bahaa, Quadratic Pareto optimal control for boundary infinite order parabolic equation with state-control constraints, AMO-Advanced Modeling and Optimization 9 (2007) 37–51 Sách, tạp chí
Tiêu đề: Quadratic Pareto optimal control for boundary infinite order parabolic equation with state-control constraints
Tác giả: G.M. Bahaa
Nhà XB: AMO-Advanced Modeling and Optimization
Năm: 2007
[6] G.M. Bahaa, Optimal control problems of parabolic equations with an infinite number of variables and with equality constraints, IMA Journal of Mathematical Control and Information 25 (2008) 37–48 Sách, tạp chí
Tiêu đề: Optimal control problems of parabolic equations with an infinite number of variables and with equality constraints
Tác giả: G.M. Bahaa
Nhà XB: IMA Journal of Mathematical Control and Information
Năm: 2008
[7] G.M. Bahaa, Boundary control problem of infinite order distributed hyperbolic systems involving time lags, Intelligent Control and Automation 3 (3) (2012) 211–221, http://dx.doi.org/10.4236/ica.2012.33024 Sách, tạp chí
Tiêu đề: Boundary control problem of infinite order distributed hyperbolic systems involving time lags
Tác giả: G.M. Bahaa
Nhà XB: Intelligent Control and Automation
Năm: 2012
[8] G.M. Bahaa, Optimality conditions for infinite order distributed parabolic systems with multiple time delays given in integral form, Journal of Applied Mathematics (2012), http://dx.doi.org/10.1155/2012/672947(ArticleID672947,25pages) Sách, tạp chí
Tiêu đề: Optimality conditions for infinite order distributed parabolic systems with multiple time delays given in integral form
Tác giả: G.M. Bahaa
Nhà XB: Journal of Applied Mathematics
Năm: 2012
[9] G.M. Bahaa, Optimality conditions for infinite order parabolic control problem involving time lags, International Journal of Mathematical Sciences (IJMS) 12 (1–2) (2013) 55–73 Sách, tạp chí
Tiêu đề: Optimality conditions for infinite order parabolic control problem involving time lags
Tác giả: G.M. Bahaa
Nhà XB: International Journal of Mathematical Sciences (IJMS)
Năm: 2013
[10] G.M. Bahaa, W. Kotarski, Optimality conditions for n × n infinite order parabolic coupled systems with control constraints and general performance index, IMA Journal of Mathematical Control and Information 25 (2008) 49–57 Sách, tạp chí
Tiêu đề: Optimality conditions for n × n infinite order parabolic coupled systems with control constraints and general performance index
Tác giả: G.M. Bahaa, W. Kotarski
Nhà XB: IMA Journal of Mathematical Control and Information
Năm: 2008
[11] G.M. Bahaa, M.M. Tharwat, Optimal control problem for infinite variables hyperbolic systems with time lags, Archives of Control Sciences, ACS 21 (4) (2011) 373–393 Sách, tạp chí
Tiêu đề: Optimal control problem for infinite variables hyperbolic systems with time lags
Tác giả: G.M. Bahaa, M.M. Tharwat
Nhà XB: Archives of Control Sciences
Năm: 2011
[12] G.M. Bahaa, M.M. Tharwat, Time-optimal control of infinite order parabolic system with time lags given in integral form, Journal of Information and Optimization Sciences 33 (2/3) (2012) 233–258 Sách, tạp chí
Tiêu đề: Time-optimal control of infinite order parabolic system with time lags given in integral form
Tác giả: G.M. Bahaa, M.M. Tharwat
Nhà XB: Journal of Information and Optimization Sciences
Năm: 2012
[13] G.M. Bahaa, M.M. Tharwat, Optimal boundary control for infinite variables parabolic systems with time lags given in integral form, Iranian Journal of Science and Technology, IJST A3 (2012) 277–291 Sách, tạp chí
Tiêu đề: Optimal boundary control for infinite variables parabolic systems with time lags given in integral form
Tác giả: G.M. Bahaa, M.M. Tharwat
Nhà XB: Iranian Journal of Science and Technology (IJST)
Năm: 2012
[16] G.M. Bahaa, Fatemah El-Shatery, Optimal control for n × n coupled parabolic systems with control-constrained and infinite number of variables, International Journal of Mathematics and Computation 19 (2) (2013) 106–118 Sách, tạp chí
Tiêu đề: Optimal control for n × n coupled parabolic systems with control-constrained and infinite number of variables
Tác giả: G.M. Bahaa, Fatemah El-Shatery
Nhà XB: International Journal of Mathematics and Computation
Năm: 2013
[18] G.M. Bahaa, Eman El-Gohany, Optimal control problems for infinite order parabolic systems with control constraints, International Journal of functional analysis, Operator Theory and Application 4 (2) (2012) 145–164 Sách, tạp chí
Tiêu đề: Optimal control problems for infinite order parabolic systems with control constraints
Tác giả: G.M. Bahaa, Eman El-Gohany
Nhà XB: International Journal of Functional Analysis, Operator Theory and Applications
Năm: 2012
[20] G.M. Bahaa, Eman El-Gohany, Optimal control problem for n × n infinite order parabolic systems, International Journal of Applied Mathematics and Statistics 36 (6) (2013) 26–41 Sách, tạp chí
Tiêu đề: Optimal control problem for n × n infinite order parabolic systems
Tác giả: G.M. Bahaa, Eman El-Gohany
Nhà XB: International Journal of Applied Mathematics and Statistics
Năm: 2013
[21] G.M. Bahaa, Eman El-Gohany, Optimal control problem for n × n infinite order elliptic systems, International Journal of Applied Mathematics and Statistics 39 (9) (2013) 24–34 Sách, tạp chí
Tiêu đề: Optimal control problem for n × n infinite order elliptic systems
Tác giả: G.M. Bahaa, Eman El-Gohany
Nhà XB: International Journal of Applied Mathematics and Statistics
Năm: 2013
[22] J.A. Dubinskii, Sobolev spaces of infinite order and behavior of solution of some boundary value problems with unbounded increase of the order of the equation, Mathematics of the USSR-Sbornik 98 (1975) 163–184 (in Russian) Sách, tạp chí
Tiêu đề: Sobolev spaces of infinite order and behavior of solution of some boundary value problems with unbounded increase of the order of the equation
Tác giả: J.A. Dubinskii
Nhà XB: Mathematics of the USSR-Sbornik
Năm: 1975
[23] J.A. Dubinskii, Non-triviality of Sobolev spaces of infinite order for a full Euclidean space and a torus, Mathematics of the USSR-Sbornik 100 (1976) 436–446 (in Russian) Sách, tạp chí
Tiêu đề: Non-triviality of Sobolev spaces of infinite order for a full Euclidean space and a torus
Tác giả: J.A. Dubinskii
Nhà XB: Mathematics of the USSR-Sbornik
Năm: 1976
[25] H.A. El-Saify, Optimal control for n × n parabolic system involving time lag, IMA Journal of Mathematical Control and Information 22 (3) (2005) 240–250 Sách, tạp chí
Tiêu đề: n"×"n
[26] H.A. El-Saify, Optimal boundary control problem for n × n infinite order parabolic lag system, IMA Journal of Mathematical Control and Information 23 (4) (2006) 433–445 Sách, tạp chí
Tiêu đề: Optimal boundary control problem for n × n infinite order parabolic lag system
Tác giả: H.A. El-Saify
Nhà XB: IMA Journal of Mathematical Control and Information
Năm: 2006
[27] H.A. El-Saify, G.M. Bahaa, Optimal control for n × n hyperbolic systems involving operators of infinite order, Mathematica Slovaca 52 (2002) 409–424 Sách, tạp chí
Tiêu đề: Optimal control for n × n hyperbolic systems involving operators of infinite order
Tác giả: H.A. El-Saify, G.M. Bahaa
Nhà XB: Mathematica Slovaca
Năm: 2002

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN