The User-Phrase portion of L D C resembles familiar natural language database query systems such as INTELLECT, JETS.. For example, students w h o take a certain course are precisely tho
Trang 1IN A
T R A N S P O R T A B L E N A T U R A L L A N G U A G E P R O C E S S O R
B r u c e W Ballard Dept of C o m p u t e r Science
D u k e University
D u r h a m , N.C 27708
A B S T R A C T
The Layered D o m a i n Class system (LDC) is an
experimental natural language processor being
developed at D u k e University which reached the
prototype stage in M a y of 1983 Its primary goals are
(I) to provide English-language retrieval capabilities
for structured but u n n o r m a U z e d data files created b y
the user, (2) to allow very c o m p l e x semantics, in terms
of the information directly available f r o m the physical
data file; a n d (3) to enable users to customize the
system to operate with n e w types of data In this paper
w e shall discuss (a) the types of modifiers L D C provides
for; (b) h o w information about the syntax a n d
semantics of modifmrs is obtained f r o m users; a n d (c)
h o w this information is used to process English inputs
I I N T R O D U C T I O N
The Layered D o m a i n Class s y s t e m (LDC) is an
experimental natural language processor being
developed at D u k e .University In this paper w e
concentrate on the typ.~s of modifiers provided by L D C
a n d the m e t h o d s by which the system acquires
information about the syntax a n d semantics of user-
defined modifiers A m o r e complete description is
available in [4,5], a n d further details on matters not
discussed in this paper can be found in [1,2,6,8,9]
The L D C system is m a d e up of two primary
c o m p o n e n t s First, t h e Ic'nowledge aeTui.~i2ion
c o m p o n e n t , w h o s e job is to find o u t a b o u t t h e
v o c a b u l a r y a n d s e m a n t i c s of t h e l a n g u a g e to be u s e d
f o r a n e w d o m a i n , t h e n i n q u i r e a b o u t t h e c o m p o s i t i o n
of t h e u n d e r l y i n g i n p u t file S e c o n d , t h e U s e r - P h a s e
Processor, w h i c h e n a b l e s a u s e r to o b t a i n s t a t i s t i c a l
reductions on his or her data by typed English inputs
The top-level design of the User-Phase processor
involves a linear sequence of modules for scavtvtir~g the
input a n d looking up each token in the dictionary;
pars/rig the s c a n n e d input to determine its syntactic
structure; translatiort of the parsed input into an
appropriate formal query; and finally query processing
This research has b e e n supported in part by the
National Science Foundation, Grants MCS-81-16607 a n d
IST-83-01994; in part by the National Library of
Medicine, Grant LM-07003; and in part by the Air Force
Office of S c i e n t i f i c R e s e a r c h , G r a n t 81-0221
The User-Phrase portion of L D C resembles familiar natural language database query systems such as INTELLECT, JETS L A D D E R , L U N A R PHLIQA, PLANES, REL,
R E N D E Z V O U S , TQA, a n d U S L (see [10-23]) while the overall L D C s y s t e m is similar in its objectives to m o r e recent systems s u c h as ASK, C O N S U L , IRUS, a n d T E A M (see [24-319
At the time of this writing, L D C has been
c o m p l e t e l y c u s t o m i z e d f o r two f a i r l y c o m p l e x d o m a i n s
f r o m w h i c h e x a m p l e s a r e d r a w n in t h e r e m a i n d e r of t h e
p a p e r , a n d s e v e r a l s i m p l e r o n e s T h e c o m p l e x d o m a i n s
a r e a 2 ~ a l gTz, d e s d o m a i n , giving c o u r s e g r a d e s for
s t u d e n t s in a n a c a d e m i c d e p a r t m e n t , a n d a bu~di~tg
~rgsvtizatiovt d o m a i n , c o n t a i n i n g i n f o r m a t i o n o n t h e floors, wings, c o r r i d o r s , o c c u p a n t s , a n d so f o r t h f o r o n e
o r m o r e b u i l d i n g s A m o n g t h e s i m p l e r d o m a i n s LDC h a s
b e e n c u s t o m i z e d f o r a r e files giving e m p l o y e e
i n f o r m a t i o n a n d s t o c k m a r k e t q u o t a t i o n s
II M O D I F I E R T Y P E S P R O V I D E D F O R
As s h o w n in [4] L D C handles inputs about as complicated as
students w h o were given a passing grade by an instructor Jim took a graduate course f r o m
As suggested here, m o s t of the syntactic a n d semantic sophistication of inputs to L D C are due to n o u n phrase modifiers, including a fairly broad coverage of relative clauses For example, if L D C is told that "students take courses from instructors", it will accept such relative clause forms as
students w h o took a graduate course from Trivedi courses Sarah took f r o m Rogers
instructors Jim took a graduate course f r o m courses that were taken by Jim
students w h o did not take a course from Rosenberg
W e s u m m a r i z e the modifier types distinguished by L D C
in Table i which is divided into four parts roughly corresponding to pre-norninal, nominal, post-nominal,
a n d negating modifiers W e have included several modifier types, m o s t of t h e m anaphorie, which are processed syntactically, a n d m e t h o d s for w h o s e semantic processing are being implemented along the lines suggested in [7]
Trang 2e x p l a n a t o r y , b u t t h e r e a d e r will n o t i c e t h a t we h a v e
c h o s e n t o c a t e g o r i z e v e r b s , b a s e d u p o n t h e i r
semantics, as tr~Isial verbs, irrtplied p a r a ~ t e r verbs;
a n d operational verbs "Trivial" verbs, which involve n o
semantics to speak of, c a n be roughly p a r a p h r a s e d as
"be associated with" For example, students w h o take a
certain course are precisely those students associated
~ith the database records related to the course
"Implied parameter" verbs can be p a r a p h r a s e d as a
longer "trivial" verb phrase by adding a p a r a m e t e r a n d
requisite noise words for syntactic acceptability For
example, students w h o fai/a course are those students
w h o rrmlce a grade of F in the course Finally,
"operational" verbs require an operation to be performed on one or m o r e of its n o u n phrase arguments, rather than simply asking for a c o m p a r i s o n
of its n o u n phrase referent(s) against values in specified fields of the physical data file For example, the students w h o oz~tscure Jim are precisely those students w h o Trtake a grade h~gher than the grade of
Jirm At present, prepositions are treated semantically
as trivial verbs, so that "students in AI" is interpreted
as "students associated with records related to the AI course"
T a b l e 1 - M o d i f i e r T y p e s A v a i l a b l e in LDC
M o d i f i e r T y p e E x a m p l e Usage
Syntax
I m p l e m e n t e d
Semantics
I m p l e m e n t e d
Anaphoric
Anaphoric
Argument-Taking N o u n classmates of Jim
Anaphoric
Implied-Parameter
Operational
(of m a n y sorts) offices not adjacent to X-23B
etc
Trang 3The job of t h e k n o w l e d g e a c q u i s i t i o n m o d u l e
of LDC, c a l l e d " P r e p " in F i g u r e 1, is t o ' f i n d o u t a b o u t
(a) t h e v o c a b u l a r y of t h e n e w d o m a i n a n d (b) t h e
c o m p o s i t i o n of t h e p h y s i c a l d a t a file T h i s p a p e r is
c o n c e r n e d o n l y with v o c a b u l a r y a c q u i s i t i o n , w h i c h
o c c u r s in t h r e e s t a g e s In S t a g e 1, P r e p a s k s t h e u s e r
to n a m e e a c h ent~.ty, o r c o n c e p t u a l d a t a i t e m , of t h e
d o m a i n As e a c h e n t i t y n a m e is g i v e n , P r e p a s k s f o r
s e v e r a l s i m p l e k i n d s of i n f o r m a t i o n , a s in
E N T I T Y N A M E ? section
S Y N O N Y M S : class
T Y P E (PERSON, N U M B E R , LIST, P A T T E R N , N O N E ) ?
p a t t e r n
GIVE 2 OR 3 EXAMPLE NAMES: e p s S l 1 2 , e e 3 4 1
NOUN SUBTYPES: n o n e
ADJECTIVES: l a r g e , s m a l l
NOUN MODIFIERS: n o n e
HIGHER LEVEL ENTITIES: c l a s s
LOWER LEVEL ENTITIES: s t u d e n t , i n s t r u c t o r
MULTIPLE ENTITY? y e s
O R D E R E D ENTITY? yes
P r e p n e x t d e t e r m i n e s t h e c a s e s t r u c t u r e of v e r b s
h a v i n g t h e given e n t i t y a s s u r f a c e s u b j e c t , a s in
A C Q U I R I N G V E R B S F O R S T U D E N T :
A S T U D E N T C A N pass a course
fail a course take a course f r o m a n instructor
m a k e a grade f r o m a n instructor
m a k e a grade in a course
In Stage 2, Prep learns the rnorhological variants of
words not k n o w n to it, e.g plurals for nouns,
comparative a n d superlative forms for adjectives, a n d
past tense a n d participle forms for verbs For example,
P A S T - T E N S E V E R B ACQUISITION
P L E A S E GIVE C O R R E C T E D F O R M S , O R HIT R E T U R N
FAIL FAILED >
BITE BITED > bit
T R Y TRIED >
In S t a g e 3, P r e p a c q u i r e s t h e semantics of a d j e c t i v e s ,
v e r b s , a n d o t h e r m o d i f i e r t y p e s , b a s e d u p o n t h e
following p r i n c i p l e s
1 S y s t e m s w h i c h a t t e m p t to a c q u i r e complex
s e m a n t i c s f r o m relatively untrained u s e r s h a d
b e t t e r r e s t r i c t t h e c l a s s of t h e d o m a i n s t h e y s e e k
to p r o v i d e a n i n t e r f a c e to
F o r t h i s r e a s o n , LDC r e s t r i c t s i t s e l f to a c l a s s of
d o m a i n s [1] in w h i c h t h e i m p o r t a n t r e l a t i o n s h i p s
a m o n g d o m a i n e n t i t i e s involve h i e r a r c h i c a l
d e c o m p o s i t i o n s
2 T h e r e n e e d n o t be a n y c o r r e l a t i o n b e t w e e n t h e type
of m o d i f i e r b e i n g d e f i n e d a n d t h e way in w h i c h its
rr~eaTt/rtg r e l a t e s to t h e u n d e r l y i n g d a t a file
For t h i s r e a s o n , P r e p a c q u i r e s t h e m e a n i n g s of all
u s e r - d e f i n e d m o d i f i e r s in t h e s a m e m a n n e r b y
p r o v i d i n g s u c h p r i m i t i v e s as id, t h e i d e n t i t y f u n c t i o n ;
w h i c h r e t u r n s t h e size of i t s a r g u m e n t , w h i c h is
a s s u m e d to be a set; s u m , w h i c h r e t u r n s t h e s u m of '.'-s list of i n p u t s ; aug, w h i c h r e t u r n s t h e a v e r a g e of i t s list
of i n p u t s ; a n d pct, w h i c h r e t u r n s t h e p e r c e n t a g e of its list of b o o l e a n a r g u m e n t s w h i c h a r e t r u e O t h e r u s e r -
d e f i n e d a d j e c t i v e s m a y also be u s e d T h u s , a " d e s i r a b l e
i n s t r u c t o r " m i g h t be d e f i n e d a s a n i n s t r u c t o r w h o g a v e
a g o o d g r a d e to m o r e t h a n h a l f h i s s t u d e n t s , w h e r e a
" g o o d g r a d e " is d e f i n e d a s a g r a d e of B o r a b o v e T h e s e two a d j e c t i v e s m a y b e s p e c i f i e d a s s h o w n below
A C Q U I R I N G S E M A N T I C S F O R D E S I R A B L E I N S T R U C T O R
P R I M A R Y ? section
T A R G E T ? grade
P A T H IS: G R A D E / S T U D E N T / S E C T I O N -
F U N C T I O N S ? g o o d /id /pet
P R E D I C A T E ? > 50
A C Q U I R I N G S E M A N T I C S F O R G O O D G R A D E
P R I M A R Y ? grade
T A R G E T ? grade
P A T H IS: G R A D E
F U N C T I O N S ? val
P R E D I C A T E ? > = B
As s h o w n h e r e , P r e p r e q u e s t s t h r e e p i e c e s of
i n f o r m a t i o n for e a c h a d j e c t i v e - e n t i t y pair, n a m e l y (1)
t h e pv-/.rn.ary ( h i g h e s t - l e v e l ) a n d ~c~rget [ l o w e s t - l e v e l )
e n t i t i e s n e e d e d t o s p e c i f y t h e d e s i r e d a d j e c t i v e
m e a n i n g ; (2) a list of furtcticvts c o r r e s p o n d i n g to t h e
a r c s on t h e p a t h f r o m t h e p r i m a r y to t h e t a r g e t n o d e s ;
a n d f i n a l l y (3) a p r e d / c a t e to be a p p l i e d to t h e
n u m e r i c a l v a l u e o b t a i n e d f r o m t h e s e r i e s of f u n c t i o n
c a l l s j u s t a c q u i r e d
IV UTILIZATION O F T H E I N F O R M A T I O N A C Q U I R E D
D U R I N G P R E P R O C E S S I N G
As s h o w n in Figure i, the English-language processor of L D C achieves d o m a i n i n d e p e n d e n c e b y restricting itself to (a) a domain-independent linguistically-motivated phrase-structure g r a m m a r [6]
a n d (b) a n d the domain-specific files p r o d u c e d by the
k n o w l e d g e acquisition module
T h e simplest file is the pattern file, which captures the m o r p h o l o g y of domain-specific proper nouns, e.g the entity type "room" m a y have values
s u c h as X-238 a n d A-22, or "letter, dash digits" This information frees us f r o m having to store all possible field values in the dictionary, as s o m e systems do, or to
m a k e reference to the physical data file w h e n n e w data values are typed by the user, as other systems do
T h e domain-specific d/ctlon~ry file contains
s o m e standard terms (articles, ordinals, etc.) a n d also both root words a n d inflections for terms acquired
f r o m the user T h e sample dictionary entry ( l o n g e s t S u p e r l long ( n t m e e t i n g week)) says that " l o n g e s t " is the s u p e r l a t i v e f o r m of the adjective "long", a n d m a y occur in n o u n phrases w h o s e ' h e a d n o u n refers to entities of type meeting or week
B y having this information in the dictionary, the parser can p e r f o r m "local" compatibility checks to assure the
Trang 4I User
U s e r ., > P R E P
/ /
S C A N N E R ~I P A R S E R
F i l e
f
-*1 TRANSLATOR
Augmented Phrase-Structured Grammar
Macro File
\
) RETRIEVAL i
T
Text-Edited Data
File
Figure 1 - Overview of LDC
i n t e g r i t y of a n o u n p h r a s e being built up, i.e to a s s u r e
all w o r d s in t h e p h r a s e c a n go t o g e t h e r on n o n -
s y n t a c t i c g r o u n d s This aids in d i s a m b i g u a t i o n , y e t
avoids e x p e n s i v e i n t e r a c t i o n with a s u b s e q u e n t
s e m a n t i c s module
r e l a t e d to n e g a t i o n I n t e r e s t i n g l y , m o s t m e a n i n g f u l
i n t e r p r e t a t i o n s of p h r a s e s c o n t a i n i n g " n o n " or "not"
c a n be o b t a i n e d b y i n s e r t i n g t h e r e t r i e v a l r2.odule's Not
c o m m a n d a t a n a p p r o p r i a t e p o i n t in t h e m a c r o b o d y
f o r t h e m o d i f i e r in q u e s t i o n For e x a m p l e ,
An o p p o r t u n i t y to p e r f o r m " n o n - l o c a l "
c o m p a t i b i l i t y c h e c k i n g is p r o v i d e d for by t h e eompat
file, w h i c h tells (a) t h e c a s e s t r u c t u r e of e a c h verb, i.e
which p r e p o s i t i o n s may o c c u r a n d which e n t i t y t y p e s
may fill e a c h n o u n p h r a s e "slot", a n d (b) which p a i r s of
e n t i t y t y p e s m a y be linked by e a c h p r e p o s i t i o n The
f o r m e r i n f o r m a t i o n will have b e e n a c q u i r e d d i r e c t l y
f r o m t h e u s e r , while t h e l a t t e r is p r e d i c t e d by
h e u r i s t i c s b a s e d u p o n t h e s o r t s of c o n c e p t u a l
r e l a t i o n s h i p s t h a t c a n o c c u r in t h e " l a y e r e d " d o m a i n s
of i n t e r e s t [1]
Finally, t h e m a c r o file c o n t a i n s t h e m e a n i n g s
of modifiers, r o u g h l y in t h e f o r m in which t h e y w e r e
a c q u i r e d using t h e s p e c i f i c a t i o n l a n g u a g e d i s c u s s e d in
t h e p r e v i o u s s e c t i o n Although t h i s r e q u i r e d u s to
f o r m u l a t e o u r own r e t r i e v a l q u e r y l a n g u a g e [3], having
c o m p l e x m o d i f i e r m e a n i n g s d i r e c t l y e x c e u t a b l e by t h e
r e t r i e v a l m o d u l e e n a b l e s us to avoid m a n y of t h e
p r o b l e m s t y p i c a l l y arising in t h e t r a n s l a t i o n f r o m p a r s e
s t r u c t u r e s to f o r m a l r e t r i e v a l queries• F u r t h e r m o r e ,
s o m e m o d i f i e r m e a n i n g s c a n b e derived by t h e s y s t e m
f r o m t h e m e a n i n g s of o t h e r modifiers, r a t h e r t h a n
s e p a r a t e l y a c q u i r e d f r o m t h e user• For example, if t h e
m e a n i n g of t h e a d j e c t i v e "large" h a s b e e n given by t h e
u s e r , t h e s y s t e m a u t o m a t i c a l l y p r o c e s s e s " l a r g e s t " a n d
" l a r g e r t h a n ." by a p p r o p r i a t e l y i n t e r p r e t i n g t h e
m a c r o b o d y for "large"
A p a r t i a l l y u n s o l v e d p r o b l e m in m a c r o
p r o c e s s i n g involves t h e r e s o l u t i o n of s c o p e ambiguities
s t u d e n t s who w e r e n o t failed b y R o s e n b e r g
m i g h t or m i g h t n o t be i n t e n d e d to i n c l u d e s t u d e n t s who did n o t t a k e a c o u r s e f r o m R o s e n b e r g The
r e t r i e v a l q u e r y c o m m a n d s g e n e r a t e d by t h e positive
u s a g e of "fail", as in students that R o s e n b e r g failed
w o u l d be the s e q u e n c e
i n s t r u c t o r R o s e n b e r g ;
s t u d e n t -> fail
so t h e q u e s t i o n is w h e t h e r to i n t r o d u c e "not" a t t h e
p h r a s e level
n o t i i n s t r u c t o r = R o s e n b e r g ;
s t u d e n t -> fail~
or instead at the verb level instructor = Rosenberg;
not ~student -> fail]
Our c u r r e n t s y s t e m t a k e s t h e l i t e r a l r e a d i n g , a n d t h u s
g e n e r a t e s t h e f i r s t i n t e r p r e t a t i o n given• The e x a m p l e
p o i n t s o u t t h e c l o s e r e l a t i o n s h i p b e t w e e n n e g a t i o n
s c o p e a n d t h e i m p o r t a n t p r o b l e m of " p r e s u p p o s i t i o n " ,
in t h a t t h e u s e r m a y be i n t e r e s t e d only in s t u d e n t s who
h a d a c h a n c e t o b e failed•
Trang 5I BaUard, B A "Domain Class" approach to transportable
natural language processing Cogn~tio~ g~td /Yrczin
Theory, 5 (1982), 3, pp 269-287
Ballard, B a n d Lusth, J An E n g l i s h - l a n g u a g e p r o c e s s i n g
system that "learns" about n e w domains AF~PS N¢~on~
Gomputer Conference, 1983 pp 39-46
Ballard, B and Lusth, J The design of DOMINO: a
knowledge-based information retrieval processor for
office enviroments Tech Report CS-1984-2, Dept of
Computer Science, Duke University, February 1984
Ballard, B., Lusth, J and Tinkham, N LDC-I: a
transportable, knowledge-based natural language
processor for office environments A C M Tt'~ns o~ Off~ce
/ ~ - m a h ~ ~ystoma, 2 (1984), 1, pp 1-25
BaUard, B., Lusth, J and Tinkham, N Transportable
English language processing for office environments
A F ~ ' Nat~mw~ O~m~uter Conference, 1984, to appear in
the proceedings
Ballard, B and Tinkham, N A phrase-structured
grammatical formalism for transportable natural
language processing, llm~r J Cow~p~t~zt~na~ L~n~ist~cs,
to appear
Biermann, A and Ballard, B Toward natural language
computation Am~r ~ Com~ut=~mu=l ~g=iet~cs, 6
(1980), 2, pp 71-86
Lusth, J Conceptual Information Retrieval for Improved
Natural Language Processing (Master's Thesis) Dept of
Computer Science, Duke University, February 1984
Lusth, J and Ballard, B Knowledge acquisition for a
natural language processor Cue,'ere*we o~ 4~t~-ieJ
.~tetH@e~ws, Oakland University, Rochester, Michigan,
April 1983, to appear in the proceedings
I0 Bronnenberg, W., Landsbergen, S., Scha, R.,
Schoenmakers, W and van Utteren, E pHLIQA-1, a
question-answering system for data-base consultation in
natural English / W t ~ s tecA, Roy 38 (1978-79), pp
229-239 a n d 269-284
11 Codd, T Seven s t e p s to RENDEZVOUS with t h e c a s u a l
user [n Do2~ Base M¢m,o, gem, en¢, J Kimbie a n d K
Koffeman (Eds.), North-Holland, 1974
12 Codd, T R E N D E Z V O U S Version I: Aa experimental
English-language query formulation system for casual
users of relational data bases IBM Research Report
RJ2144, San Jose, Ca., 1978
13 Finin, T., Goodman, B and Tennant, H JETS: achieving
completeness through coverage and closure Int J Conf
on A r t ~ j ~ / n ~ e / ~ i g e n c e , 1979, pp 275-281
14 Harris, L U s e r - o r i e n t e d d a t a b a s e q u e r y w i t h t h e Robot
natural language system Int J M~n-M~ch~ne ~ d i e s , 9
(1977), pp 697-713
15 Harris, L The R O B O T system: natural language
processing applied to data base query A C M Nct~ion~t
C~rnference, 1978, pp 165-172
16 Hendrix, G H u m a n engineering for applied natural
language processing /n~ $ Co~f o~ 4~t~j~c~a~
~¢tott@jev~e, 1977, pp 183-191
2
3
4
5
8
7
8
9
Developing a natural language interface to complex data
ACM Tr(uts on D=t~bsse ~l/stsrrts, 3 (1978), 2, pp 105-147
18 Lehmann, H Interpretation of natural language in an
information system I B M $ _N~s Des 22 (1978), 5, pp
560-571
19 Plath, W R E Q U E S T : a natural language question-
answering system I B M J: ~ s Deo., 20 (1976), 4, pp 326-
335
20 Thompson, F and Thompson, B Practical natural language processing: the g E L system as prototype In
A d ~ v t c e s ~t C o m ~ t e r s , Vol 3, M Rubinoff a n d M Yovits, Eds., A c a d e m i c P r e s s , 1975
21 Waltz, D A n English language question answering system
for a large relational database Cowzm A C M 21 (1978), 7,
pp 526-539
22 Woods, W Semantics and quantification in natural language question answering In Advances ~,n Computers,
Vol 17, M Yovits, Ed., Academic Press, 1978
23 Woods, W., Kaplan, R and Nash-Webber, B The Lunar 3L'iencos Natural Lar~w, ge ~tfov~rn~t~n ~Jstsm:
]~¢rrt Report 2378, Bolt, Beranek and N e w m a n , Cambridge, Mass., 1972
24 Ginsparg, J A robust portable natural language data
b a s e i n t e r f a c e Cmlf on Ap'1)lied Nc~t~ral L~znguage
P r o c e s s i n g , S a n t a Munica, Ca., 1983, pp 25-30
25 Grosz, B TEAM: A transportable natural language interface system Omf o~ ~ p l i e d Nut, rat L~-tLags
Processiz~, Santa Monica, Ca., 1983, pp 39-45
28 Haas, N a n d Hendrix, G A n approach to acquiring and applying knowledge .~rst N;t Cor~ o~
.~tell~qTence, Stanford univ., Palo Alto, Ca., 1980, pp 235-
239
27 Hendrix, G a n d Lewis, W Transportable natural-language
interfaces to databases Proc 19th A ~ z ~ t M e e t ~ w of the
ACL, S t a n f o r d Univ., 1981, pp 159-165
28 Mark, W Representation and inference in the Consul system ~ t Jo'i, nt Conf on ~ct#,f~c'i~l [nteU{gence, 1981
29 Thompson, B a n d Thompson, F Introducing ASK, a
simple knowledgeable system Co~I on AppLied Natu~zt
L~tg1~zge i~rocsssing, Santa Monica, Ca., 1983, pp 17-24
30 Thompson, F and Thompson, B Shifting to a higher gear
in a natural language system Na~-na~ CornF~ter Coexistence, 1981, 657-662
31 WUczynski, D Knowledge acquisition in the Consul system Int Jo~,nt Conf on 4rt~f~c~ /ntsUwence, 1981