1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo '''' A review on the visible light active titanium dioxide photocatalysts for environmental applications " docx

19 578 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 1,8 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Dionysioua,∗ a Environmental Engineering and Science Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, U

Trang 1

Miguel Pelaeza, Nicholas T Nolanb, Suresh C Pillaib, Michael K Seeryc, Polycarpos Falarasd,

Athanassios G Kontosd, Patrick S.M Dunlope, Jeremy W.J Hamiltone, J.Anthony Byrnee,

Kevin O’Sheaf, Mohammad H Entezarig, Dionysios D Dionysioua,∗

a Environmental Engineering and Science Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA

b Center for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin St, Dublin 8, Ireland

c School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin 8, Ireland

d Institute of Physical Chemistry, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece

e Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Northern Ireland, BT37 0QB, United Kingdom

f Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 3319, USA

g Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91775, Iran

a r t i c l e i n f o

Article history:

Received 28 March 2012

Received in revised form 21 May 2012

Accepted 25 May 2012

Available online 5 June 2012

Keywords:

TiO 2

Visible

Solar

Water

Treatment

Air purification

Disinfection

Non-metal doping

Anatase

Rutile

N–TiO 2

Metal doping

Environmental application

Reactive oxygen species

Photocatalysis

Photocatalytic

EDCs

Cyanotoxins

Emerging pollutants

a b s t r a c t

FujishimaandHonda(1972)demonstratedthepotentialoftitaniumdioxide(TiO2)semiconductor mate-rialstosplitwaterintohydrogenandoxygeninaphoto-electrochemicalcell.Theirworktriggeredthe developmentofsemiconductorphotocatalysisforawiderangeofenvironmentalandenergy applica-tions.Oneofthemostsignificantscientificandcommercialadvancestodatehasbeenthedevelopment

ofvisiblelightactive(VLA)TiO2photocatalyticmaterials.Inthisreview,abackgroundonTiO2 struc-ture,propertiesandelectronicpropertiesinphotocatalysisispresented.Thedevelopmentofdifferent strategiestomodifyTiO2fortheutilizationofvisiblelight,includingnonmetaland/ormetaldoping, dyesensitizationandcouplingsemiconductorsarediscussed.Emphasisisgiventotheoriginofvisible lightabsorptionandthereactiveoxygenspeciesgenerated,deducedbyphysicochemicaland photo-electrochemicalmethods.VariousapplicationsofVLATiO2,intermsofenvironmentalremediationand

inparticularwatertreatment,disinfectionandairpurification,areillustrated.Comprehensivestudies

onthephotocatalyticdegradationofcontaminantsofemergingconcern,includingendocrinedisrupting compounds,pharmaceuticals,pesticides,cyanotoxinsandvolatileorganiccompounds,withVLATiO2

arediscussedandcomparedtoconventionalUV-activatedTiO2nanomaterials.Recentadvancesin bac-terialdisinfectionusingVLATiO2arealsoreviewed.Issuesconcerningtestprotocolsforrealvisiblelight activityandphotocatalyticefficiencieswithdifferentlightsourceshavebeenhighlighted

© 2012 Elsevier B.V All rights reserved

Contents

1 Titaniumdioxide–anintroduction 332

1.1 TiO2structuresandproperties 332

1.2 ElectronicprocessesinTiO2photocatalysis 332

1.3 Recombination 333

1.4 StrategiesforimprovingTiO2photoactivity 334

夽 All authors have contributed equally to this review.

∗ Corresponding author Tel.: +1 513 556 0724; fax: +1 513 556 2599.

E-mail address: dionysios.d.dionysiou@uc.edu (D.D Dionysiou).

0926-3373/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

2 Developmentofvisiblelightactive(VLA)titaniaphotocatalysts 334

2.1 Nonmetaldoping 334

2.1.1 Nitrogendoping 334

2.1.2 Othernon-metaldoping(F,C,S) 336

2.1.3 Non-metalco-doping 336

2.1.4 OxygenrichTiO2modification 336

2.2 Metaldeposition 336

2.2.1 Noblemetalandtransitionmetaldeposition 336

2.3 Dyesensitizationinphotocatalysis 337

2.4 Coupledsemiconductors 337

2.5 DefectinducedVLAphotocatalysis 339

3 Oxidationchemistry,thereactiveoxygenspeciesgeneratedandtheirsubsequentreactionpathways 339

3.1 ReactiveoxygenspeciesandreactionpathwaysinVLATiO2photocatalysis 339

3.2 Photoelectrochemicalmethodsfordeterminingvisiblelightactivity 340

4 EnvironmentalapplicationsofVLATiO2 342

4.1 WatertreatmentandairpurificationwithVLAphotocatalysis 342

4.2 WaterdisinfectionwithVLAphotocatalysis 343

5 AssessmentofVLAphotocatalystmaterials 344

5.1 Standardizationoftestmethods 344

5.2 ChallengesincommercializingVLAphotocatalysts 346

6 Conclusions 346

Acknowledgments 346

References 346

1 Titanium dioxide – an introduction

1.1 TiO2structuresandproperties

Titaniumdioxide(TiO2)existsasthreedifferentpolymorphs;

anatase,rutileandbrookite[1].Theprimarysourceandthemost

stableformofTiO2isrutile.Allthreepolymorphscanbereadily

synthesisedinthelaboratoryandtypicallythemetastableanatase

andbrookitewilltransformtothethermodynamicallystablerutile

uponcalcinationattemperaturesexceeding∼600◦C[2].Inallthree

forms,titanium(Ti4+)atomsareco-ordinatedtosixoxygen(O2 −)

atoms,forming TiO6 octahedra [3].Anatase is made upof

cor-ner(vertice)sharingoctahedrawhichform(001)planes(Fig.1a)

resultinginatetragonalstructure.In rutiletheoctahedrashare

edgesat(001)planestogiveatetragonalstructure(Fig.1b),andin

brookitebothedgesandcornersaresharedtogiveanorthorhombic

structure(Fig.1c)[2,4–7]

Titaniumdioxideistypicallyann-typesemiconductordueto

oxygendeficiency[8].Thebandgapis3.2eVfor anatase,3.0eV

forrutile,and∼3.2eVforbrookite[9–11].Anataseandrutileare

themainpolymorphsandtheirkeypropertiesaresummarizedin

Table1[12,5,13].TiO2isthemostwidelyinvestigatedphotocatalyst

duetohighphoto-activity,lowcost,lowtoxicityandgoodchemical

andthermalstability[12,14,15].Inthepastfewdecadestherehave

beenseveralexcitingbreakthroughswithrespecttotitanium

diox-ide.Thefirstmajoradvancewasin1972whenFujishimaandHonda

reportedthephotoelectrochemicalsplittingofwaterusingaTiO2

anodeandaPtcounterelectrode[16].Titaniumdioxide

photocatal-ysiswasfirstusedfortheremediationofenvironmentalpollutants

in1977whenFrankandBard reportedthereductionofCN− in

water[17,18].Thisledtoadramaticincreaseintheresearchinthis

areabecauseofthepotentialforwaterandairpurificationthrough

utilizationof“free”solarenergy[12,13,19].Othersignificant

break-throughsincludedWangetal.(1997),whoreportedTiO2surfaces

withexcellentanti-foggingandself-cleaningabilities,attributedto

thesuperhydrophilicpropertiesofthephotoexcitedTiO2surfaces

[20]anduseofnanotitaniumdioxideinanefficientdyesensitized

solarcell(DSSC),reportedbyGraetzelandO’Reganin1991[21]

1.2 ElectronicprocessesinTiO2photocatalysis

Photocatalysisiswidelyusedtodescribetheprocessinwhich

theaccelerationofa reactionoccurswhenamaterial,usually a

semiconductor,interactswithlightofsufficientenergy(orofa cer-tainwavelength)toproducereactiveoxidizingspecies(ROS)which canleadtothephotocatalytictransformationofapollutant.Itmust

benotedthatduringthephotocatalyticreaction,atleasttwoevents mustoccursimultaneouslyinorderforthesuccessfulproduction

ofreactiveoxidizingspeciestooccur.Typically,thefirstinvolves theoxidation ofdissociativelyadsorbedH2Obyphotogenerated holes,thesecondinvolvesreductionofanelectronacceptor (typi-callydissolvedoxygen)byphotoexcitedelectrons;thesereactions leadtotheproductionofahydroxylandsuperoxideradicalanion, respectively[22]

Itisclearthatphotocatalysisimpliesphoton-assisted genera-tionofcatalyticallyactivespeciesratherthattheactionoflight

asacatalystinareaction[23,24].Iftheinitialphotoexcitation pro-cessoccursinanadsorbatemolecule,whichtheninteractswiththe groundstateofthecatalystsubstrate,theprocessisreferredtoasa

“catalyzedphotoreaction”,if,ontheotherhand,theinitial photoex-citationtakesplaceinthecatalystsubstrateandthephotoexcited catalysttheninteractswiththegroundstateadsorbatemolecule, theprocessisa“sensitizedphotoreaction”.Inmostcases, hetero-geneousphotocatalysisreferstosemiconductorphotocatalysisor semiconductor-sensitizedphotoreactions[22]

Inphotocatalysis,lightofenergygreaterthanthebandgapof thesemiconductor,excitesanelectronfromthevalencebandto theconductionband(seeFig.2).InthecaseofanataseTiO2,the bandgapis3.2eV,thereforeUVlight(≤387nm)isrequired.The absorptionofaphotonexcitesanelectrontotheconductionband (eCB−)generatingapositiveholeinthevalenceband(hVB+)(Eq (1.1))

ChargecarrierscanbetrappedasTi3+andO−defectsitesinthe TiO2lattice,ortheycanrecombine,dissipatingenergy[25] Alter-natively,thechargecarrierscanmigratetothecatalystsurfaceand initiateredoxreactionswithadsorbates[26].Positiveholescan oxi-dizeOH−orwateratthesurfacetoproduce•OHradicals(Eq.(1.2)) which,areextremelypowerfuloxidants(Table2).Thehydroxyl radicalscansubsequentlyoxidizeorganicspecieswith mineraliza-tionproducingmineralsalts,CO2andH2O(Eq.(1.5))[27]

Trang 3

Fig 1.Crystalline structures of titanium dioxide (a) anatase, (b) rutile, (c) brookite (Reprinted with permission from Katsuhiro Nomura ( nomura-k@aist.go.jp ; http://staff.aist.go.jp/nomura-k/english/itscgallary-e.htm ) Copyright (2002)).

Electronsin the conductionband canberapidly trappedby

molecularoxygenadsorbedonthetitaniaparticle,whichisreduced

toformsuperoxideradicalanion(O2•−)(Eq.(1.4))thatmay

fur-therreactwithH+ togeneratehydroperoxylradical(•OOH)(Eq

(1.6))andfurtherelectrochemicalreductionyieldsH2O2(Eq.(1.7))

[28,29].Thesereactiveoxygenspeciesmayalsocontributetothe

oxidativepathwayssuchasthedegradationofapollutant(Eqs.(1.8)

and(1.9))[25,27,28]

1.3 Recombination

Recombinationofphotogeneratedchargecarriersisthemajor

limitationinsemiconductorphotocatalysisasitreducesthe

over-all quantum efficiency [29] When recombination occurs, the

Table 1

Physical and structural properties of anatase and rutile TiO 2

Molecular weight (g/mol) 79.88 79.88

Boiling point ( ◦ C) 2500–3000 2500–3000

Light absorption (nm) <390 <415

Crystal structure Tetragonal Tetragonal

Lattice constants ( ˚A) a=3.78 a=4.59

c = 9.52 c = 2.96

Ti O bond length ( ˚A) 1.94 (4) 1.95 (4)

1.97 (2) 1.98 (2)

dis-sipatingtheenergyaslightorheat[6,31] Recombinationmayoccureitheronthesurfaceorinthebulk and isingeneralfacilitatedbyimpurities, defects,or allfactors which introduce bulk or surface imperfections into the crystal [29,32].Serponeetal.foundthattrappingexcitedelectronsasTi3+ species occurredona time scale of∼30psand that about90%

ormoreofthephotogeneratedelectronsrecombinewithin10ns

Fig 2.Schematic of TiO 2 photocatalytic mechanism.

Table 2

Standard electrochemical reduction potentials of common oxidants.

potential (V)

• OH (Hydroxyl radical) • OH + H + + e − → H 2 O 2.80

O 3 (Ozone) O 3 (g) + 2H + + 2e − → O 2 (g) + H 2 O 2.07

H 2 O 2 (Hydrogen peroxide) H 2 O 2 + 2H + + 2e − → 2H 2 O 1.77 HClO (Hypochlorous acid) Cl 2 (g) + 2e − → 2Cl − 1.49

Cl − (Chlorine) 2HClO + 2H + + 2e − → Cl + 2H O 1.36

Trang 4

andnanosizedcrystals[40,41]haveallbeenreportedtopromote

separationoftheelectron–holepair,reducingrecombinationand

therefore improvethe photocatalytic activity.For example, the

TiO2 crystallites ofEvonik(Degussa)P25containa combination

ofanatase(∼80%)andrutile(∼20%).Theconductionband

poten-tialofrutileis morepositivethanthatofanatasewhichmeans

thattherutilephase mayactasanelectronsinkfor

photogen-eratedelectronsfromtheconductionbandoftheanatasephase

Manyresearchersattributethehighphotocatalyticactivityofthis

preparationtotheintimatecontactbetweentwophases,

enhanc-ingseparationofphotogeneratedelectronsandholes,andresulting

inreducedrecombination[42]

1.4 StrategiesforimprovingTiO2photoactivity

Variousstrategieshavebeenadoptedforimprovingthe

pho-tocatalyticefficiencyofTiO2.Theycanbesummarizedaseither

morphologicalmodifications,suchasincreasingsurfaceareaand

porosity,oraschemicalmodifications,byincorporationof

addi-tionalcomponents in theTiO2 structure Although visible light

active(VLA)TiO2 photocatalystsrequirechemicalmodifications,

whichwillbereviewedinthenextsection,theiroverallefficiencies

havebeensignificantlyenhancedbycontrollingthesemiconductor

morphology

ThemostcommonlyusedTiO2morphologyisthatof

monodis-persednanoparticleswhereinthediameteriscontrolledtogive

benefitsfromthesmallcrystallitesize(highsurfacearea,reduced

bulk recombination)withoutthe detrimentaleffects associated

withverysmallparticles(surfacerecombination,lowcrystallinity)

[43] One dimensional (1D) titania nanostructures (nanotubes,

nanorods, nanowires, nanobelts, nanoneedles) have been also

formedbyhydrothermalsynthesisbuthighemphasiswasgivenin

titaniaself-assemblednanotubularfilmsgrownbyelectrochemical

anodizationon titanium metalfoils Advantages of such

struc-turesistheirtailoredmorphology,controlledporosity,vectorial

chargetransfer[44,45]andlowrecombinationatgrainboundaries

thatresultinenhancedperformanceinphotoinducedapplications,

mainlyin photocatalysis[44,46,47] An interesting use of TiO2

nanotubesinphotocatalyticapplicationsisthegrowthof

freestand-ingflow-throughmembranes[44]

2 Development of visible light active (VLA) titania

photocatalysts

2.1 Nonmetaldoping

2.1.1 Nitrogendoping

Ultravioletlight makes up only4–5% of thesolar spectrum,

whereas approximately40% of solar photonsare in the visible

region A major drawback of pure TiO2 is the large band gap

meaningitcanonlybeactivateduponirradiationwithphotons

oflightintheUVdomain(≤387nmforanatase),limitingthe

practical efficiency for solar applications [48–50] Therefore, in

ordertoenhancethesolarefficiencyofTiO2undersolarirradiation,

itisnecessarytomodifythenanomaterialtofacilitatevisiblelight

absorption.Non-metaldopingofTiO2 hasshown greatpromise

in achieving VLA photocatalysis, with nitrogen beingthe most

promisingdopant[51,52]

NitrogencanbeeasilyintroducedintheTiO2structure,duetoits

comparableatomicsizewithoxygen,smallionizationenergyand

highstability.Itwasin1986whenSatodiscoveredthataddition

ofNH4OHinatitaniasol,followedbycalcinationofthe

precipi-tatedpowder,resultedinamaterialthatexhibitedavisiblelight

response[53,54].Lateron,Asahiandco-workersexploredforfirst

timethevisiblelightactivityofN-dopedTiO2producedbysputter depositionofTiO2underanN2/Aratmosphere,followedby anneal-ingunderN2[55].Sincethen,therehavebeenmanyreportsdealing withnitrogendopingofTiO2.Significanteffortsarebeingdevoted

toinvestigating thestructural,electronicand opticalproperties

ofN-dopedTiO2,understandingtheunderlyingmechanismsand improvingthephotocatalytic and self-cleaning efficiencyunder visibleandsolarlight[56–58].Comprehensivereviewshavebeen publishedwhichsummarizerepresentativeresultsofthesestudies [59,60].Modelpollutantsthathavebeenreportedtobeeffectively degradedbyVLAphotocatalystincludephenols,methyleneblue, methylorange(althoughdyeshavestrongabsorptioninthevisible range)andrhodamineB,aswellasseveralgaseouspollutants(e.g., volatileorganiccompounds,nitrogenoxides)

FortheefficientincorporationofnitrogenintoTiO2 eitherin thebulk or asa surfacedopant, both dry and wet preparation methods havebeen adopted.Physicaltechniquessuchas sput-tering [61–65] and ion implantation [66,67],rely onthe direct treatmentofTiO2 withenergetic nitrogenions.Gasphase reac-tionmethods[68–70],atomiclayerdeposition[71]andpulsedlaser deposition[72]havebeensuccessfullyappliedtoprepareN–TiO2,

aswell However,themost versatiletechnique for the synthe-sisofN–TiO2nanoparticlesisthesol–gelmethod,whichrequires relativelysimpleequipmentandpermitsfinecontrolofthe mate-rial’snanostructure,morphologyandporosity.SimultaneousTiO2 growthandNdopingisachievedbyhydrolysisoftitanium alkox-ideprecursorsinthepresenceofnitrogensources.Typicaltitanium salts (titanium tetrachloride) and alkoxide precursors (includ-ing titanium tetra-isopropoxide, tetrabutyl orthotitanate) have beenused.Nitrogencontainingprecursorsusedincludealiphatic amines, nitrates, ammonium salts,ammonia and urea[73–75] The synthesis root involves several steps; however, the main characteristic is that precursor hydrolysis is usually performed

at room temperature The precipitate is then dried to remove solvents, pulverized and calcined at temperaturesfrom 200to

600◦C

One promising way to increase the nitrogencontent in the TiO2latticeistocombinethetitaniumprecursorswitha nitrogen-containingligand,suchasTi4+-bipyridineorTi4+-aminecomplexes [76,77].Analternativesoftchemicalrouteisbasedontheaddition

ofureaduringthecondensationofanalkoxideacidifiedsolution, leadingtointerstitialsurfacedopingandshiftoftheabsorption edgewellintothevisiblespectralrange(from3.2to2.3eV)[78]

An innovative sol–gelrelated technique for thepreparation of efficientvisible-lightactivenanostructuredTiO2 isthe templat-ingsol–gelmethod,utilizingtitaniumprecursorscombinedwith nitrogen-containingsurfactants.Specifically,successfulsynthesis

ofvisiblelight activatedN–TiO2 hasbeenachievedbya simple sol–gelmethodemployingdodecylammoniumchloride(DDAC)as surfactant[79].TheDDACsurfactantactssimultaneouslyasapore templatingmaterialtotailor-design thestructural propertiesof TiO2(seeFig.3)aswellasanitrogendopanttoinducevisible-light photoactivityanduniquereactivityandfunctionalityfor environ-mentalapplications[80,81]

InadifferentapproachN–TiO2,wassynthesizedviatwo succes-sivesteps:synthesisofTiO2andthennitrogendopingusingvarious nitrogen-containing chemicals (e.g urea, ethylamine, NH3 or gaseousnitrogen)athightemperatures[52,82–84]orinductively coupledplasmacontaininga widerange ofnitrogenprecursors [85].Inthatcase,thenitrogenatomspredominantlyresidedonthe TiO2surface.Theoriginofthevisible-lightphotocatalyticactivity

inthesemethodsmayarisefromcondensedaromatics-triazine compoundscontainingmelemandmelonunits[73]

AlthoughmostreportsonN–TiO2concerntheanatase polymor-phicphase,visiblelightactiveN–TiO2withanatase-rutilemixed phase(Fig.4)hasalsobeenpreparedbytuningtheparametersof

Trang 5

Fig 3.Templating sol–gel method utilizing nitrogen containing surfactants as both nitrogen source and pore template material (Reprinted with permission from H Choi,

M G Antoniou, M Pelaez, A A de la Cruz, J A Shoemaker, D D Dionysiou, Environ Sci Technol 41 (2007) 7530–7535 Copyright (2007) American Chemical Society).

thesol–gelsynthesis.Suchheterojunctionphotocatalystsseemto

effectivelytransferphoto-excitedelectronsfromtheconduction

bandof anatasetothatofrutile,favoring electron–hole

separa-tionandenhancingthevisiblelightphotocatalyticactivity.[86,87]

Etacherietal.havesuccessfullydevelopednitrogendoped

anatase-rutileheterojunctionswhichwerefoundtobeninetimesmore

photocatalyticallyactiveatwavelengthshigherthan450nm(blue

filter)incomparisonwithEvonikP25

Mostoftheabovemethodshavealsobeensuccessfullyapplied

for the doping of 1D titania nanostructures with nitrogen In

this way,N-doped anatasetitania nanobeltswere preparedvia

hydrothermalprocessingandsubsequentheattreatmentinNH3

[88].Similarpost-treatmentwasemployedfordopinganodized

titaniananotubes[89],whilehighenergyion implantationwas

foundto bemore efficient in introducingN atoms in theTiO2

lattice[90].Nitrogenlocalizedstateshave alsobeenintroduced

into highly ordered TiO2 nanotubes via nitrogen plasma [91]

Visiblelight-activeN–TiO2 nanoarray filmshave alsobeen

pre-pared on sacrificial anodized alumina liquid phase deposition

withureamixedwith(NH4)2TiF6aqueoussolution[92].Recently,

surfaceN-doping ontitaniananowires,theirlateraldimensions

reaching the atomic scale, was achieved by the introduction

of amines duringthe condensation stageof the titania

precur-sor[93].Otherapproaches forpreparingdopedTiO2 nanotubes

includeemploymentofnitrogensourcesintheelectrolyte solu-tionsofelectrochemicalanodization[94]orintheinitialsolution

ofhydrothermalgrowth[95,96] Manyresults,uptonow,describenitrogendopingas substitu-tionalelementontheoxygenlatticesitesoratinterstitiallattice sites.ThetwositescanbeinprinciplediscriminatedbyX-ray pho-toelectronspectroscopy(XPS)relyingonthedistinctN1sbinding energiesat396and400eV,respectively[51,69,97–99].XPSpeak assignmentforN-dopedvisiblelightactivatedtitaniaisstillunder debate[57,100].ManyresearchersreportedthatN1speaksaround

397eVarerepresentativeofsubstitutionalnitrogen[57,100,101] whilepeaksatbindingenergies>400eVareassignedtoNO(401eV)

orNO2 (406eV)indicatinginterstitialnitrogen[101].DiValentin

etal [57]employeddensity functionaltheory(DFT)to demon-strateinterstitialnitrogenas␲characterNOwithinanataseTiO2

Itwasalsofoundthatthereisnosignificantshiftintheconduction

orvalencebandsof theTiO2.Theenergybondingstates associ-atedbelowthevalencebandandanti-bondingstatespresentabove thevalenceband.Theanti-bonding*N Oorbitalsbetweenthe TiO2 valencebandand conductionbandisbelieved tofacilitate visiblelightabsorptionbyactingasasteppingstoneforexcited electronsbetweenconductionandvalencebands.Nspecies dif-ferentfromthephotoactiveonesinNdopedTiO2caninterferein spectroscopicmeasurementssincetheyhavepeaksaround400eV

Fig 4. Electron transfer mechanism in N-doped anatase rutile heterojunction (Reprinted with permission from V Etacheri, M K Seery, S J Hinder, S C Pillai, Chem Mater.

Trang 6

thatNphotoactivespeciescorrespondingtointerstitialnitrogen

withbindingenergyinthe400–401eVregion,preparedfromglove

dischargeinmolecularnitrogeninthepresenceofpureanatase,

havebeenprovidedbyNapolietal.[102].Moreover,Livraghietal

showedthat, bycoupling XPSand solid stateNMR, the 400eV

peakfromammoniumionsreducesitsintensityuponwashingthe

solid[103].ComparedwiththeUVactivityofundopedTiO2,the

visiblelightactivityof N–TiO2 is ratherlow.Thereisalsosome

conflictintheliteratureconcerningthepreferredNsites,

substitu-tionalorinterstitial,whichinducethehighestphotocatalyticaction

[69,83,99,104].Independentlyoftheoriginofvisiblelight

absorp-tioninsubstitutionalorinterstitialnitrogendiscreteenergystates,

thelowphotocatalyticefficiencyismainlyattributedtothelimited

photo-excitationofelectronsinsuchnarrowstates,theverylow

mobilityofthecorrespondingphoto-generatedholes[105]andthe

concomitantincreaseoftherecombinationrateduetothecreation

ofoxygenvacanciesbydoping[106]

2.1.2 Othernon-metaldoping(F,C,S)

FluorinedopingdoesnotshifttheTiO2 bandgap;howeverit

improvesthesurfaceacidityandcausesformationofreducedTi3+

ionsduetothechargecompensationbetweenF−andTi4+

. Thus, chargeseparationispromotedandtheefficiencyofphotoinduced

processesis improved[107] Insertionoffluorine intotheTiO2

crystal latticehasalsobeen reportedto elevate theanataseto

rutilephasetransformationtemperature.Padmanabhanetal

suc-cessfullymodifiedtitaniumisopropoxidewithtrifluoroaceticacid

carryingoutasol–gelsynthesis.Theresultingmaterialprovedtobe

morephotocatalyticallyactivethanEvonikP25whilealsoretaining

anataseattemperaturesofupto900◦C[108]

Carbon,phosphorousandsulphurasdopantshavealsoshown

positiveresultsforvisiblelightactivityinTiO2 [48,49].The

non-metaldopantseffectivelynarrowthebandgapofTiO2 (<3.2eV)

[50,109,110].Thechangeoflatticeparameters,andthepresence

oftrapstateswithintheconductionandvalencebandsfrom

elec-tronicperturbations,givesrisetobandgapnarrowing[111].Not

onlydoesthisallowforvisiblelightabsorptionbutthepresence

oftrapsiteswithintheTiO2bandsincreasesthelifetimeof

photo-generatedchargecarriers

SuccessfulinsertionofsulfurintotheTiO2 latticeisfarmore

difficulttoachievethan nitrogen,duetoitslargerionicradius

Insertionofcationicsulfur(S6+)ischemicallyfavourableoverthe

ionicform(S2−)lattice.Cationic(sulfur)andanionic(nitrogen)

co-dopedwithTiO2 hasalsobeensynthesisedfromasinglesource,

ammoniumsulfate,usingasimplesol–geltechnique[112].Periyat

etal.successfully developedS-dopedTiO2 throughmodification

oftitaniumisopropoxidewithsulphuricacid.Theyfoundthat

for-mationoftitanyloxysulfateresultsintheretentionofanataseat

increasedtemperatures(≥800◦C)andthatthepresenceofsulfur

causesincreasedvisiblelightphotocatalyticactivityofthe

synthe-sisedmaterials.[113].Recently,visiblelight-activatedsulfurdoped

TiO2 films were successfully synthesized using a novelsol–gel

methodbasedontheself-assemblytechniquewithanonionic

sur-factanttocontrolnanostructureandH2SO4asaninorganicsulfur

source[114].Sulfurspeciesdistributeduniformlythroughoutthe

filmswereidentifiedbothasS2−ionsrelatedtoanionic

substitu-tionaldopingofTiO2aswellasS6+/S4+cations,attributedmainlyto

thepresenceofsurfacesulfategroups.AstrongEPRsignal,whose

intensitycorrelatedwiththesulfurcontentandmostimportantly

wasmarkedly enhanced under visible lightirradiation, implied

formationoflocalizedenergystatesintheTiO2 bandgapdueto

aniondopingand/oroxygenvacancies.Calcinationat350◦C for

2hprovidedsulfurdopedTiO2filmswiththehighestsulfur

con-tentandBETsurfacearea,smallcrystallitesize,highporosity,and

largeporevolumetogetherwithverysmoothanduniformsurface

ThecorrespondingmesoporousS–TiO2filmwasthemosteffective photocatalystforthedegradationofmicrocystin-LR(MC-LR)under visiblelightirradiation

2.1.3 Non-metalco-doping N–Fco-dopedTiO2hasbeenexploredinvisiblelight photocatal-ysis[115,116]duetothesimilarstructuralpreferencesofthetwo dopants.Inaddition,thecombinedstructureretainstheadvantages

ofN-dopinginhighvisiblelightresponseandtheF-doping signif-icantroleinchargeseparation.Furthermore,synergeticeffectsof theco-dopinghavebeenfound.Infact,surfacefluorinationinhibits phase transformation fromanatasetorutile and removalof N-dopantsduringannealing[117].Inaddition,itreducestheenergy costofdopingandalsotheamountofoxygendefectsinthe lat-tice,asa consequenceofthechargecompensationbetweenthe nitrogen(p-dopant)andthefluorine(n-dopant)impurities[118] Theseeffectsstabilizethecompositesystemandeffectivelyreduce theconcomitantelectron–holerecombination thathampersthe photocatalyticperformanceofsinglydopedN–TiO2

ThesynergisticapproachoftheN–Fdopinghasbeenfurther exploitedemployingamodifiedsol–geltechniquebasedona nitro-gen precursor and a Zonyl FS-300nonionic fluorosurfactant as bothfluorinesourceandporetemplatematerialtotailor-design the structural properties of TiO2 [119] The obtained materials areactiveundervisiblelightilluminationandhavebeenusedfor thephotocatalyticdegradationofavarietyofpollutantsinwater Veryrecently,theseN–Fdopedtitaniamaterialsweresuccessfully immobilizedonglasssubstratesemployingthedip-coatingmethod withsubsequentdryingunderinfraredlamp,followedby calcina-tionat400◦C.Thenanostructuredtitaniadopedthinfilmspreserve theirvisible light induced catalytic activity[120].Furthermore, comparativeEPRmeasurementsbetweentheco-dopedand refer-encesamplesidentifieddistinctNspinspeciesinNF–TiO2,witha highsensitivitytovisiblelightirradiation.Theabundanceofthese paramagneticcentersverifiestheformationoflocalizedintra-gap statesinTiO2andimpliessynergisticeffectsbetweenfluorineand nitrogendopants[120]

Significantimprovement of thevisible-light photoactivity of N–Fco-dopedtitaniafilmshasbeenobservedbyemployingan inverseopalgrowthmethod,usinga silicacolloidalcrystalasa templateforliquidphasedepositionofNF–TiO2.Inthisway, hierar-chicalmeso-macroporousstructuresarepreparedwhichpromote efficientandstablephotocatalysisviatunedmorphologyand pho-tonmultiplescatteringeffects[121]

2.1.4 OxygenrichTiO2modification Followinganotherapproach, recentlythe visiblelight active photocatalytic properties have been achieved by the in situ generation of oxygen through the thermal decomposition of peroxo-titania complex[122].IncreasedTi O Tibond strength and upward shiftingof the valence band(VB) maximum were responsiblefor thevisible lightactivity.Theupwardshiftingof theVBmaximumforoxygenrichtitaniaisidentifiedasanother crucialreasonresponsibleforefficientvisiblelightabsorption Typ-icalbandgapstructuresofcontrolandoxygenrichtitaniasamples obtainedarerepresentedinFig.5

2.2 Metaldeposition 2.2.1 Noblemetalandtransitionmetaldeposition ModificationsofTiO2withtransitionmetalssuchasCr,Co,Vand

FehaveextendedthespectralresponseofTiO2wellintothe vis-ibleregionalsoimprovingphotocatalyticactivity[107,123–128] However,transitionmetals mayalsoactasrecombinationsites for thephotoinducedcharge carriers thus, loweringthe quan-tumefficiency.Transitionmetals havealsobeenfoundtocause

Trang 7

Fig 5. Mechanism of band gap narrowing by oxygen excess Number 2 and 16 in H 2 O 2 –TiO 2 was used to identified two different modified titania samples (Reprinted with permission from V Etacheri, M K Seery, S J Hinder,S C Pillai, Adv Funct Mater 21 (2011) 3744–3752 Copyright (2011) Wiley VCH).

thermalinstabilitytotheanatasephaseofTiO2[29].Kangargues

thatdespitethefactthatadecreaseinbandgapenergyhasbeen

achievedbymany groups throughmetaldoping,photocatalytic

activityhasnot beenremarkablyenhanced because themetals

introducedwerenotincorporatedintotheTiO2framework.In

addi-tion,metals remaining ontheTiO2 surface block reactionsites

[129].Morikawaetal.showedthatdopingTiO2withCrwasfound

toreducephotocatalyticactivitybutCrandVionimplantedTiO2

showedhigherphotocatalyticperformancesthanbareTiO2didfor

thedecompositionofNO undersolarirradiation[130] Another

techniqueinvolvesmodifyingTiO2withtransitionmetalssuchas

Fe,Cu,Co, Ni,Cr, V, Mn,Mo,Nb, W,Ru, Ptand Au[131–140]

Theincorporationoftransitionmetalsinthetitaniacrystallattice

mayresultintheformationofnewenergylevelsbetweenVBand

CB,inducingashiftof lightabsorptiontowardsthevisiblelight

region.Photocatalyticactivityusuallydependsonthenatureand

theamountofdopingagent.Possiblelimitationsare

photocorro-sionandpromotedchargerecombinationatmetalsites[132]

DepositionofnoblemetalslikeAg,Au,PtandPdonthe

sur-faceofTiO2 enhancesthephotocatalyticefficiencyundervisible

lightbyactingasanelectrontrap,promotinginterfacialcharge

transferandthereforedelayingrecombinationoftheelectron–hole

pair[131,141–144].Hwangetal.showedthatplatinumdeposits

onTiO2trapphoto-generatedelectrons,andsubsequentlyincrease

thephoto-inducedelectrontransferrateattheinterface.Seeryetal

showedenhanced visible lightphotocatalysiswithAg modified

TiO2[145].WhileGunawanetal.demonstratedthereversible

pho-toswitchingofnanosilveronTiO2wherereducedsilveronaTiO2

supportexposedtovisiblelight(>450nm)resultedinexcitation

andreverseelectronflowfromsilvertotheTiO2support,oxidising

silver(Ag0→Ag+)intheprocess[146].Thevisiblelight

respon-sivenessofTiO2wasaccreditedtothesurfaceplasmonresonance

ofsilvernanoparticles(Fig.6)[146,147]

2.3 Dyesensitizationinphotocatalysis

Dyephotosensitizationhasbeenreportedbydifferentgroups

andtobeoneofthemosteffectivewaystoextendthe

photore-sponseofTiO2intothevisibleregion[148–151].Indeedthesetypes

ofreactionsareexploitedinthewellknowndyesensitizedsolar

cells[21].Themechanismofthedyesensitizedphoto-degradation

ofpollutantsisbasedontheabsorptionofvisiblelightforexciting

anelectronfromthehighestoccupiedmolecularorbital(HOMO)

tothelowestunoccupiedmolecularorbital(LUMO)ofadye.The

exciteddye moleculesubsequently transferselectrons intothe

conductionbandofTiO2,whilethedyeitself isconvertedtoits

cationicradical.TheTiO2 actsonlyasamediatorfortransferring

electronsfromthesensitizertothesubstrateontheTiO2surface

as electron acceptors, and the valence band of TiO2 remains unaffected.Inthisprocess,theLUMOofthedyemoleculesshould

bemorenegativethantheconductionbandofTiO2.Theinjected electronshopover quicklytothe surfaceof titaniawhere they are scavenged bymolecularoxygen toformsuperoxide radical

O2•−andhydrogenperoxideradical•OOH.Thesereactivespecies canalsodisproportionatetogivehydroxylradical[152–154].In addition tothementioned species,singlet oxygenmayalso be formedundercertainexperimentalconditions Oxygenhastwo singletexcitedstatesabovethetripletgroundones.Suchrelatively longliveoxygenspeciesmaybeproduced byquenchingof the excitedstate ofthephotosensitizer byoxygen The subsequent radicalchainreactionscanleadtothedegradationofthedye[154] Knowledgeof interfacialelectrontransfer between semicon-ductorandmolecularadsorbatesisof fundamentalinterestand essentialforapplicationsofthesematerials[155–158].Ultrafast electroninjectionhasbeenreportedformanydye-sensitizedTiO2 systems.Thisinjectiondepends onthenatureofthesensitizer, thesemiconductor,andtheirinteraction.Asburyetal.observed verydifferentelectroninjectiontimesfromfemtotopicosecondby changingthesemiconductorunderthesameconditions[156] 2.4 Coupledsemiconductors

Manyeffortshavebeenmadeinthesynthesisofdifferent cou-pledsemiconductorssuchasZnO/TiO2[159],CdS/TiO2[160],and

Bi2S3/TiO2 [161] Thesynthesized couplessignificantlyenhance thephotocatalyticefficiencybydecreasingtherecombinationrate

Fig 6. Mechanism for light absorption of silver supported in TiO 2 (Adapted with permission from N T Nolan, M K Seery, S J Hinder, L F Healy, S C Pillai J Phys Chem C 114 (2010), 13026–13034 Copyright (2010) American Chemical Society).

Trang 8

Fig 7.TEM and mechanistic image of the interface between CdS nanowires and TiO 2 nanoparticles TiO 2 provide sites for collecting the photoelectrons generated from CdS nanowires, enabling thereby an efficient electron–hole separation (Reprinted with permission from S.J Jum, G.K Hyun, A.J Upendra, W.J Ji, S.L Jae, Int J Hydrogen Energy,

33 (2008) 5975 Copyright (2008) Elsevier).

ofthephotogeneratedelectron–holepairsandpresentpotential

applicationsinwatersplitting,organicdecomposition,and

photo-voltaicdevices[162–164].Thesecompositeswerealsoconsidered

aspromisingmaterialstodevelopahighefficiencyphotocatalyst

activatedwithvisiblelight.Theycanalsocompensatethe

disad-vantagesoftheindividualcomponents,andinduceasynergistic

effectsuchasanefficientchargeseparationandimprovementof

photostability [158,159] Therefore, visible light-drivencoupled

photocatalyststhatcandecomposeorganicmaterialareofgreat

interest[163,166,167]

Analysisofthemicrostructureandphase compositionofthe

coupledsemiconductorofBiFeO3/TiO2revealedthatacore-shell

structure was formed [168] This couple resulted in extended

photo-absorptionbandsintothevisiblewhichwasdependenton

theBiFeO3 content.Thiscouplewasreportedtobemore

effec-tivefor thephotocatalytic degradationof congo red dyeunder

visiblelightirradiation,ascomparedtopureBiFeO3andTiO2

pow-ders.SensitizingTiO2nanotubearrayswithZnFe2O4wasfoundto

enhancephotoinducedchargeseparationandtoextendthe

pho-toresponsefromtheUVtothevisibleregion,too[169]

Upuntilnow,themaineffortshavebeendevotedtothe

synthe-sisofvariouscore-shellnanocrystals.Theprevalentviewpointis

thatitrequiresalatticematchingbetweenshellsandcore

materi-alstoachieveabetterpassivationandminimizestructuraldefects

[164–173].Inaddition,thecouplingofalargebandgap

semicon-ductorwitha smallerone,which can beactivatedwithvisible

light,isofgreatinterestforthedegradationoforganicpollutants

usingsolar radiation.Blocking trapstates by coatingthe

parti-cleswiththin layersofa widebandgapmaterial canleadtoa

drasticenhancementofthephotostability[174–176].Forinstance,

CdSisafascinatingmaterialwithidealbandgapenergyforsolar

andvisiblelight applications(2.4eV) However,CdSis proneto

photo-anodiccorrosion in aqueousenvironments Toovercome

thisstabilityproblemandimprovethephotoactivity,CdShasbeen

combinedwithawidebandgapsemiconductor,suchasZnOand

TiO2[163,177],andthiscouplinggivesimprovedchargeseparation

ofphotogeneratedelectronsandholes(seeFig.7)

Inadditiontotheflatbandpotentialofthecomponents,the

photocatalyticperformanceofthecoupledsemiconductorsisalso

relatedtothegeometryoftheparticles,thecontactsurfacebetween

particles,andtheparticlesize[178,179].Theseparametersstrongly dependonthemannerwithwhichthecouplesareprepared Var-iouscore/shelltype nanocrystalshave beenextensivelystudied usingdifferentmethods.Synthesismethodsnormallyrequirehigh temperatures,longtimes,strictinertatmosphereprotectionand complexmultistepreactionprocess

Byapplyingultrasoundunderspecificconditions,thereisthe possibilityofsynthesizingnano-compositesinashorttime,under mildconditions,inair,andwithoutcalcination[160].Forexample, TiO2-coatednanoparticleswitha core-shellstructurehavebeen preparedwithultrasoundtreatment.TheTiO2wasfoundtobe uni-formlycoatedonthesurfaceofCdSandthisledtoanenlargement

ofthenanoparticles.Intheabsenceofultrasound,theformation

oflargeirregularaggregateswasobserved.TheUV–visabsorbance spectraofthepureandcompositesemiconductorsareshownin Fig.8[160].TheabsorptionbandofCdSnanoparticleswasfound

ataround450–470nmincomparisonwiththebulkcrystallineCdS whichappearedatabout515nm(Eg=2.4eV)[180].Inthecaseof

Fig 8. The UV–vis absorbance spectra of pure and composite semiconductors (Reprinted with permission from N Ghows, M.H Entezari, Ultrason Sonochem., 18

Trang 9

Fig 9.Proposed mechanism that shows the interaction of one species from the core with one species from the shell for the removal of RB5 by nanocomposite CdS/TiO 2 (Reprinted with permission from Ref [245] Copyright (2011) Elsevier).

TiO2,theonsetabsorptionfornanoparticlespreparedunder

ultra-soundwasabout360nm,whileforthebulkitwasabout385nm

(Eg=3.2eV)[181].ItisfoundthatmodificationofTiO2 withCdS

particlesextends theopticalabsorptionspectrum intothe

visi-bleregionincomparison withthatofpureTiO2.Increasingthe

amountofTiO2ledtoafurtherred-shiftoftheabsorptionbandin

compositephotocatalysts.Theredshiftofspectraaretypical

char-acteristicsofcore-shellnano-crystals,originatingfromtheefficient

diminishingofthesurfacedefectsofcorenano-crystalsafter

cap-pingthemwithhigherbandgapshells[173].Thisisinagreement

withthepreviousreportbyKischetal.thatthebandgapofCdS

employedincompositephotocatalystsisshiftedbyanelectronic

semiconductor-supportinteraction[182,183]

ThesynthesizedCdS/TiO2nano-compositesystemwasapplied

fortheremovalofReactiveBlack5inaqueoussolution,under

dif-ferentconditions,andemployingvisibleandsolarlightirradiation

Themechanismforthedegradationthatisproposedisbasedon

thereactionsinFig.9[245].In semiconductorcore-shell

struc-tureselectronicinteractionsthatoccurattheheterojunctioncan

trapphoto-generatedelectronsattheinterfaceandimprovethe

efficiencyofthephotocatalyticactivity.Thephoto-generated

elec-tronsandholesinduceredoxreactionsaccordingtotherelative

potentialsoftheconductionandvalencebandsofthetwo

semicon-ductors.Suchcore-shellnano-compositesmaybringnewinsights

into thedesign of highly efficient photocatalysts and potential

applicationsintechnology

2.5 DefectinducedVLAphotocatalysis

VLAtitania canalsobe formedby introducingcolorcenters

insidethematerial[44,56].Thisdefectinduceddopingcanbe

pro-ducedeither byheat treatmentof TiO2 in vacuumorinertgas

environmentsor byintercalation of smallcations(H+,Li+, etc.)

intothelattice.In somecases,O2 is releasedfromthematerial

and Ti3+ centers are formed Veryrecently, hydrogenation has

beendemonstratedasaveryeffectiveroutetoengineerthe

sur-faceofanataseTiO2nanoparticleswithanamorphouslayerwhich,

insteadofinducingdetrimentalrecombinationeffects,resultedin

themarkedextensionoftheopticalabsorptiontotheinfraredrange

andremarkableenhancementofsolar-drivenphotocatalytic

activ-ity[184]

3 Oxidation chemistry, the reactive oxygen species generated and their subsequent reaction pathways

3.1 ReactiveoxygenspeciesandreactionpathwaysinVLATiO2 photocatalysis

Asamodel,thereactionpathwaysofvisiblelight-induced pho-tocatalytic degradation of acidorange 7 (AO7) in thepresence

of TiO2 has been investigated [185], monitoringthe formation andthefateofintermediatesandfinalproductsinsolutionand

onthephotocatalystsurfaceasafunctionofirradiationtime.It wasobservedthattheintensityofthechromophorebandofAO7 reducedexponentiallywithtimeanddisappearedafterabout60h Theintensitiesoftheabsorbancepeaksrelatedtothenaphthalene andbenzeneringsinAO7decreasedwithaslowerratecompared

tothatofdecolorizationofthesolutionduringthefirst60h.After completedecolorization,theabsorbanceduetothenaphthalene andbenzeneringsremainedconstant.Thisobservationconfirmed thatintheabsenceofcoloredcompoundsonthephotocatalyst sur-face,visiblelightcannoteffectivelydegradefragmentscontaining thebenzeneandnaphthaleneringsproducedbythecleavageof thedyemolecule.ItshouldbenotedthatAO7solutionwasstable undervisiblelightwithoutTiO2,andthattheTiO2suspensionwas unabletoinitiatethedyedegradationinthedark.Bothvisiblelight andTiO2particleswereindispensableforthedegradationofAO7

inaqueoussolution.DuringtheirradiationofAO7-TiO2suspension withvisiblelightdifferentintermediatessuchascompounds con-taininganaphthalenering,phthalicderivatives,aromaticacids,and aliphaticacidswereidentified.Inaddition,theevolutionof inor-ganicionssuchassulfate,nitrate,nitrite,andammoniumionswere monitoredduringtheirradiationbyvisiblelight

By using appropriate quenchers, the formation of oxidative speciessuchassingletoxygen,superoxide,andhydroperoxide rad-icalsandtheirroleinthedegradationofthedyemoleculesduring illuminationwasstudied[185].Itwasobservedthatinthe pres-enceof1,4-benzoquinone(BQ),whichisasuperoxidequencher and agood electronacceptor[123],bothphotodegradationand formationofhydrogenperoxidewerecompletelysuppressed.This indicatesthatthesuperoxideradicalisanactiveoxidative interme-diate.Additionofsodiumazide,whichisasingletoxygenquencher [186]andmayalsointeractwithhydroxylradical[187],initiallydid

Trang 10

Fig 10.%IPCE as a function of wavelength for the photooxidation of water on TiO 2 (red triangles) and WO 3 (blue squares) (Adapted with permission from J.W J Hamilton, J.

A Byrne, P S M Dunlop, N M D Brown, International Journal of Photoenergy (2008) Article ID 185479 Copyright (2008) Hindawi Publishing Corporation) (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of the article.)

notsignificantlyaffectthedegradationofAO7buttheinhibition

becameimportantafter40min,indicatingthedelayedformation

ofsinglet oxygenandpossiblyhydroxyl radicalspecies

Forma-tionofhydrogenperoxidewasalsosuppressedin thepresence

ofthisinhibitor.Similarresultswereobtainedbyadditionof

1,4-diazabicyclo[2,2,2]-octane(DABCO)[188],whichisalsoasinglet

oxygenquencher.Theimportantpointoftheworkin[185]isthat

whencompletedecolorizationofthesolutionwasachieved,the

for-mationofactiveoxidationspeciesandhydrogenperoxidestopped,

theoxidation reactionsceased and theconcentrations of

inter-mediatesremainedconstant.Thisisbecauseonlyinthepresence

ofvisiblelightabsorbingcompounds,theformationofoxidizing

specieswaspossible

Inavisiblelight/sensitizer/TiO2 system,oxygenis

indispens-ableinorder togenerateactiveoxygenradicals [189].The role

ofdissolvedoxygenandactivespeciesgeneratedinthe

photocat-alyticdegradationofphenolwasinvestigatedbyusingapolymer

sensitizedTiO2undervisiblelight[190].Theexperimentalresults

showedthatthephotocatalyticdegradationofphenolwasalmost

stopped under nitrogen atmosphere Therefore, oxygenis very

importantinphotocatalyticreactionsinducedbyvisiblelightand

itactsasanefficientelectronscavenger.Inthissystem,the

degra-dationofphenolgraduallydecreasedbyincreasingsodiumazide

concentration.Thisindicatedthatsingletoxygenwasgenerated

undervisiblelight irradiation.Singlet oxygencandegrade

phe-noldirectly toabout40%which is due toitshighenergy level

(22.5kcalmol−1).Inaddition,singletoxygencanbemeasuredby

phosphorescenceinnearIRasadirectmethodofdetection.There

isarangeofdifferentfluorescenceorspin-trapprobesforindirect

measurements of singlet oxygen and/or superoxide The

spin-trap2,2,6,6-tetramethyl-4-piperidone-N-oxide(TEMP)isgenerally

usedasaprobeforsingletoxygeninEPRstudies.Thereactions

ofTEMPwithsingletoxygenyieldsastableradicaladduct[191]

Anotherusefulspintrapsystemisthe5,5dimethylpyrrolineloxide

(DMPO)[192–194].Monitoringintermediate5,5

dimethylpyrro-lineloxide(DMPO)-OH• radicalsformedinthesuspensionduring

illumination[190]isdonebyitscharacteristic1:2:2:1quartetEPR

spectrumandprovidesevidenceofhydroxylradicalsinthe

sys-tem.Inaddition,somealcoholsarecommonlyusedasdiagnostic

toolsfor hydroxylradical mediatedmechanisms [195,196].The

degradationofphenolbyaddingi-PrOHorMeOHwasdecreased

byabout60%whichindicatedthatbothofthemseriously inhib-itedthephotocatalyticdegradationofphenol[190].Thisconfirmed thathydroxylradicalswerethepredominantactivespeciesinthis system,butdidnotprobethemechanismofhydroxylradical for-mation

3.2 Photoelectrochemicalmethodsfordeterminingvisiblelight activity

Ifthephotocatalyticmaterialis immobilizedontoan electri-callyconductingsupportingsubstrate,onecanusethiselectrode

inaphotoelectrochemicalcelltomeasurepropertiesincludingthe bandgapenergy,flatbandpotential,dopantdensity,kineticsof holeand electrontransfer,and theenergiesof dopantlevels.If oneexaminesthecurrent-potentialresponseunder potentiomet-riccontrol,forann-typesemiconductore.g.TiO2,inthedarkno significantanodic(positive)currentisobservedbecausethereare essentiallynoholesinthevalenceband.Whenirradiatedwithlight equaltothebandgapenergy,electronsarepromotedtothe con-ductionband,leavingpositiveholesinthevalenceband,andan increaseisobservedintheanodiccurrentatpotentialsmore pos-itivethattheflatbandpotentialEfb.Thedifferencebetweenthe currentobservedinthelightandthatinthedarkiscalledthe pho-tocurrent(Jph)anditisameasureofthehole-transferrateatthe SC-electrolyteinterface.Attheflatbandpotential,nonetcurrent

isobservedasallchargecarriersrecombine.Forap-type semicon-ductor,thesituationisreversedandanincreaseincathodiccurrent

isobservedunderbandgapirradiationforpotentialsmorenegative thanEfb.Ifamonochromatorisusedalongwithapolychromatic source,e.g.xenon,toirradiatetheelectrodeonecandeterminethe spectralphotocurrentresponseandtheincidentphotontocurrent conversionefficiency(IPCE)

IPCE= Jph I0F whereJphisthephotocurrentdensity(Acm−2),I0istheincident light flux (moles of photonss−1cm−2)and F is Faraday’s con-stant(Cmol−1).Forann-typesemiconductor,thisisthequantum efficiencyforhole-transfertotheelectrolyte.Themaximum wave-lengthatwhichphotocurrentisobservedwillcorrelatetotheband gapenergyforthematerial.Therefore,thevisiblelightactivitycan

Ngày đăng: 17/03/2014, 19:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm