1. Trang chủ
  2. » Thể loại khác

Logic as a tool a guide to formal logical reasoning ( PDFDrive ) 353

1 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 56,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Applying Resolution: unify Pc and Px with MGU[c/x], and then resolveC1withC2to obtain{}.

Trang 1

k

Answers and Solutions to Selected Exercises 329

4.4.7 Transformation into a prenex CNF:

¬(∀ y(∀ zQ(y, z)→ P(z))→ ∃ z(P(z)∧ ∀ x(Q(z, y)→ Q(x, z))))

≡ ∀ y(∀ zQ(y, z)→ P(z))∧ ¬∃ z(P(z)∧ ∀ x(Q(z, y)→ Q(x, z)))

≡ ∀ y(¬∀ zQ(y, z)∨ P(z))∧ ∀ z(¬ P(z)∨ ¬∀ x(¬ Q(z, y)∨ Q(x, z)))

≡ ∀ y(∃ z ¬ Q(y, z)∨ P(z))∧ ∀ z(¬ P(z)∨ ∃ x(Q(z, y)∧ ¬ Q(x, z)))

≡ ∀ y1(∃ z1¬ Q(y1, z1)∨ P(z))∧ ∀ z2(¬ P(z2)∨ ∃ x(Q(z2, y)∧ ¬ Q(x, z2)))

≡ ∀ y1∃ z1(¬ Q(y1, z1)∨ P(z))∧ ∀ z2∃ x(¬ P(z2)∨ ( Q(z2, y)∧ ¬ Q(x, z2)))

≡ ∀ y1∃ z1∀ z2∃ x((¬ Q(y1, z1)∨ P(z))∧ (¬ P(z2)∨ Q(z2, y))∧ (¬ P(z2)

¬ Q(x, z2))) Skolemization:

∀ y1∀ z2((¬ Q(y1, f(y1))∨ P(z))∧ (¬ P(z2)∨ Q(z2, y))∧ (¬ P(z2)

¬ Q(g(y1, z2), z2))) Clausification:

C1 ={¬ Q(y1, f(y1)), P(z)},

C2 ={¬ P(z2), Q(z2, y)},

C3 ={¬ P(z2), ¬ Q(g(y1, z2), z2)}.

Clausal form:{ C1, C2, C3}.

4.4.9 Transformation into a prenex DNF and a prenex CNF:

¬(∀ y(¬∃ zQ(y, z)→ P(z))→ ∃ z((P(z)→ Q(z, y))∧ ¬∃ xR(x, y, z)))

≡ ∀ y(¬∃ zQ(y, z)→ P(z))∧ ∀ z((P(z)∧ ¬ Q(z, y))∨ ∃ xR(x, y, z))

≡ ∀ y(∃ zQ(y, z)∨ P(z))∧ ∀ z((P(z)∧ ¬ Q(z, y))∨ ∃ xR(x, y, z))

≡ ∀ v(∃ wQ(v, w)∨ P(z))∧ ∀ u((P(u)∧ ¬ Q(u, y))∨ ∃ xR(x, y, u))

≡ ∀ v ∃ w ∀ u ∃ x((Q(v, w)∨ P(z))∧ (( P(u)∧ ¬ Q(u, y))∨ R(x, y, u))) ()

≡ ∀ v ∃ w ∀ u ∃ x(((Q(v, w)∨ P(z))∧ ( P(u)∧ ¬ Q(u, y)))∨ (( Q(v, w)

P(z))∧ R(x, y, u)))

≡ ∀ v ∃ w ∀ u ∃ x((Q(v, w)∧ P(u)∧ ¬ Q(u, y))∨ ( P(z)∧ P(u)∧ ¬ Q(u, y))

(Q(v, w)∧ R(x, y, u))∨ ( P(z)∧ R(x, y, u))) (PDNF)

≡ ∀ v ∃ w ∀ u ∃ x((Q(v, w)∨ P(z))∧ ( P(u)∨ R(x, y, u))∧ (¬ Q(u, y)

R(x, y, u)))(PCNF from ()) Skolemization:

∀ v ∀ u((Q(v, f(v))∨ P(z))∧ ( P(u)∨ R(g(v, u), y, u))∧ (¬ Q(u, y)

R(g(v, u), y, u))) Clausal form:

{{ Q(v, f(v)), P(z)} , { P(u), R(g(v, u), y, u)} , {¬ Q(u, y), R(g(v, u), y, u)}}

Section 4.5

4.5.2 (a) Transformation of¬(∀ xP(x)→ ∀ yP(y)) into a clausal form:

C1 ={ P(x)} and C2={¬ P(c)}

for some Skolem constantc Applying Resolution: unify P(c) and P(x) with MGU[c/x], and then resolveC1withC2to obtain{}.

Ngày đăng: 28/10/2022, 15:13