1. Trang chủ
  2. » Thể loại khác

Logic as a tool a guide to formal logical reasoning ( PDFDrive ) 162

1 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 71,94 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Example 111 Here we illustrate “semantic reasoning”, based on the formal semantics of first-order formulae, for proving or disproving first-order logical consequences.. Show the logical

Trang 1

k

4 ∃ xP(x)∧ ∃ xQ(x)∃ x(P(x)∧ Q(x )).

and Q(x ) is interpreted as ‘ x is odd’ is a counter-model:

N  |= ∃ xP(x)∧ ∃ xQ(x ), but N ∃ x(P(x)∧ Q(x )).

Example 111 Here we illustrate “semantic reasoning”, based on the formal semantics

of first-order formulae, for proving or disproving first-order logical consequences.

1 Show the logical validity of the following argument:

“If Tinkerbell is a Disney fairy and every Disney fairy has blue eyes, then some-one has blue eyes.”

Proof Let us first formalize the argument in first-order logic by introducing predicates:

P(x ) meaning “ x is a Disney fairy”, Q(x ) meaning “ x has blue eyes”, and a

The argument can now be formalized as follows:

1 P(c)∧ ∀ x(P(x)→ Q(x))|= ∃ yQ(y ).

2 S , v |= ( P(c)∧ ∀ x(P(x)→ Q(x )).

We have to show that:

3 S , v |= ∃ yQ(y ).

4 S , v |= P(c ) and

5 S , v |= ∀ x(P(x)→ Q(x )).

Then:

6 S , v  |= P(x ).

7 S , v  |= P(x)→ Q(x ).

From (6) and (7) it follows that:

8 S , v  |= Q(x ).

fol-lows: v  y) =v (x) =c S We then have:

9 S , v  |= Q(y ).

(3) S , v |= ∃ yQ(y ), so we are done.

2 Prove that the following argument is not logically valid:

“If everything is black or white then everything is black or everything is white.”

Ngày đăng: 28/10/2022, 15:12