Viết phương trình tiếp tuyến của C, biết tiếp điểm có tung độ bằng 5.. Chứng minh rằng SOABCD và mp SAC mp SBD.. Tính góc giữa mặt phẳng SBC và mặt phẳng ABCD.. Tính góc giữa đường th
Trang 1TRƯỜNG THPT ĐA PHÚC ĐỀ KIỂM TRA HỌC KỲ 2
- - (Thời gian làm bài 90 phút không kể thời gian phát đề).
Câu 1 (2,0 điểm) Tìm các giới hạn sau
a)
2
lim
1
x
x x
x x
; b)
2 2 3
lim
9
x
x x x
Câu 2 (1,0 điểm)
Tìm các giá trị của m để hàm số
2 3
nÕu x -2
m 1 nÕu x = -2
liên tục tại x = -2.
Câu 3 (3,0 điểm)
a) Cho các hàm số g x( )x33x29xvà ( ) 2 1 4
cos 2 2 tan
h x
.Giải phương trình g’(x)=0 và tính ' h 4
b) Cho hàm số 3 2
2
x y x
có đồ thị (C) Viết phương trình tiếp tuyến của (C), biết tiếp điểm có tung độ bằng
5 3
Câu 4 (4,0 điểm) Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, các cạnh bên SA, SB, SC, SD có độ dài
bằng a 3 Gọi O là giao điểm của AC và BD, M là trung điểm của đoạn AB , K thuộc đoạn SA và AK = 2KS.
a) Chứng minh rằng SO(ABCD) và mp SAC( )mp SBD( )
b) Tính góc giữa mặt phẳng (SBC) và mặt phẳng (ABCD).
c) Tính góc giữa đường thẳng CM và mặt phẳng (SBC)
d) Tính khoảng cách giữa đường thẳng CM và đường thẳng BK theo a.
Hết
Trang 2-TRƯỜNG THPT ĐA PHÚC ĐỀ KIỂM TRA HỌC KỲ 2
- - (Thời gian làm bài 90 phút không kể thời gian phát đề).
Câu 1 (2,0 điểm) Tìm các giới hạn sau
a) lim 2 32 4 2 1
1
x
x x
x x
; b)
2 2 3
lim
9
x
x x x
Câu 2 (1,0 điểm)
Tìm các giá trị của m để hàm số
2 3
x x 3 3 nÕu x -2
m 1 nÕu x = -2
liên tục tại x = -2.
Câu 3 (3,0 điểm)
a) Cho các hàm số g x( )x33x29xvà ( ) 2 1 4
cos 2 2 tan
h x
Giải phương trình g’(x)=0 và tính ' h 4
b) Cho hàm số 3 2
2
x y x
có đồ thị (C) Viết phương trình tiếp tuyến của (C), biết tiếp điểm có tung độ bằng
5 3
Câu 4 (4,0 điểm) Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, các cạnh bên SA, SB, SC, SD có độ dài
bằng a 3 Gọi O là giao điểm của AC và BD, M là trung điểm của đoạn AB , K thuộc đoạn SA và AK = 2KS.
a) Chứng minh rằng SO(ABCD) và mp SAC( )mp SBD( )
b) Tính góc giữa mặt phẳng (SBC) và mặt phẳng (ABCD).
c) Tính góc giữa đường thẳng CM và mặt phẳng (SBC)
d) Tính khoảng cách giữa đường thẳng CM và đường thẳng BK theo a.
Hết
Trang 3-TRƯỜNG THPT ĐA PHÚC
NĂM HỌC 2014 - 2015 ĐÁP ÁN VÀ THANG ĐIỂM KIỂM TRA HỌC KÌ II MÔN TOÁN LỚP 11
Câu
I 2,0 điểm
a 1,0 điểm
2
2
1
x
x x x
x x
0,5
2
lim
2 vì
1
x
x
x
x x
x x
0,5
b 1,0 điểm
=
3
1 lim
3
x
x x
0,5
= 1
3
0,5
Câu
II
TXĐ: D = R.
2
5 72
f x
0,25 0,25
Hàm số liên tục tại x = 1 khi và chỉ khi
2
0,25
Câu
III
a (2,0 điểm)
2
1 '( ) 0
3
g x x x
x
g x
x
0,5
0,5
cos 2 2 tan '( )
cos 2 2 tan 2cos 2 sin 2 4 tan (1 tan ) (cos 2 2 tan ) cos 2 2 tan
h x
0,25
0,5
'( ) 2 2
4
b (1,0) điểm
Trang 4 2
4 '
2
y x
y 5 x 1 tiÕp ®iÓm M(1; )5
0,25
Hệ số góc của tiếp tuyến là k = y'(1) 4
9
0,25
Tiếp tuyến của (C) tại M có phương trình là: y = 4(x 1) 5 4x11
0,25
Câu
IV
4,0 điểm
a) 1,5 điểm
Từ giả thiết, các tam giác SAC, SBD cân tại S, O là trung điểm của AC và BD (tc hình vuông)
SO AC
SO (ABCD)
SO BD
BD AC (tc hv)
BD SO (vi SO (ABCD)) BD (SAC),
SO AC O
BD (SBD) (SBD) (SAC)
0,5 0,5 0,25 0,25
b) 1,0 điểm
Trong (ABCD) kẻ ONBC (NBC) => SNBC ((·SBC),(ABCD)) ( ON SN· , )ON· S
, 2
ON AB a SO SA OA a
Tam giác SON vuông cân tại O => · S
4
ON ((· ),( )) .
4
SBC ABCD
0,25 0,25 0.25 0,25
c) 0,5 điểm
Từ 2)=> BC (SON) =>(SBC) (SON), trong (SON) kẻ PQ SN =>PQ (SON)=>Góc
giữa đường thẳng MC và mp(SBC) bằng ·PCQ (với P = CM ON, QSN)
P trung điểm ON và PQ = 2
4
2
a => tan·PCQ=
·
( ,( )) arctan
PQ
CM SBC
0,25
0,25
d) 1,0 điểm
Trong (SAC) kẻ KG//SO (GAC) => KG (ABCD) =>CMKG
Từ gt và cách dựng => G là trọng tâm tam giác ABD) => BG qua trung điểm E của
AD=>BGCM => CM((SBG)
Trong (ABCD) gọi F là giao điểm của BG và CM, trong(KBG) kẻ FH vuông góc với
BK(HBK)=> đoạn FH là đoạn vuông góc chung của CM và BK
Tính được FH= 2
30
a
=>d(CM,BK) = 2
30
a
.
0,25 0,25 0,25 0,25
(Các cách giải khác đúng vẫn được điểm tối đa, giáo viên chia điểm theo thành phần tương ứng)