1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TUYỂN TẬP ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012 - 2013 MÔN TOÁN KHỐI B - MÃ SỐ B3 pptx

1 257 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 180,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị  C của hàm số đã cho.. Tìm tọa độ điểm các điểm A nằm trên trục tung để từ A kẻ được hai tiếp tuyến đến  C sao cho hai tiếp điểm nằm khác phía đ

Trang 1

TRUONGHOCSO.COM

MÃ SỐ B3

(Đề thi gồm 01 trang)

TUYỂN TẬP ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012 - 2013

Môn thi: TOÁN; Khối: B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

-HẾT -

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh:……… ;Số báo danh:………

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1 (2,0 điểm) Cho hàm số

3

x y x

 , có đồ thị là  C

1 Khảo sát sự biến thiên và vẽ đồ thị  C của hàm số đã cho

2 Gọi  C là đồ thị hàm số đối xứng với  C qua điểm M2;1 Tìm tọa độ điểm các điểm A nằm trên trục tung để từ

A kẻ được hai tiếp tuyến đến  C sao cho hai tiếp điểm nằm khác phía đối với trục hoành

Câu 2 (1,0 điểm) Giải phương trình 2 2  

cotx

Câu 3 (1,0 điểm) Giải bất phương trình  

2

1

x x

x

Câu 4 (1,0 điểm) Tính tích phân

2

0

sin x cosx

sinx

Câu 5 (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a , BAD60 , các cạnh SA, SB, SC nghiêng

đều trên đáy một góc  Tính thể tích khối chóp S ABCD và khoảng cách từ A đến mặt phẳng (SBC) theo a và 

Câu 6 (1,0 điểm) Cho ba số thực dương , , x y z thỏa mãn hệ thức xyyzzx Tìm giá trị nhỏ nhất của biểu thức 1

 2  2  2

P

II PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)

A Theo chương trình Chuẩn

Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn  2 2

3; 5 , 7; 3

AB  Tìm tọa độ điểm nằm trên  C sao cho tổng MA2MB2 đạt giá trị nhỏ nhất

Câu 8.a (1,0 điểm) Giải phương trình 1 2 1

6

CC   C

Câu 9.a (1,0 điểm) Xác định giá trị thực của m để hệ phương trình sau có nghiệm

;

log y x log xy

x y

B Theo chương trình Nâng cao

Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn   C : x22y22  và đường thẳng 9

d xym  Tìm m để trên đường thẳng d tồn tại duy nhất một điểm P sao cho từ P kẻ được hai tiếp tuyến đến

 C mà hai tiếp tuyến này vuông góc với nhau.

Câu 8.b (1,0 điểm) Giải phương trình 2 2  2   2  2  

Câu 9.b (1,0 điểm) Tìm giá trị của m để hàm số

2

1

y

x

 có hai điểm cực đại, cực tiểu cách đều đường thẳng

Ngày đăng: 14/03/2014, 23:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm