1. Trang chủ
  2. » Ngoại Ngữ

Sussman-Jin-Mohanty_TD-BU-factors-in-threat-related-perception-and-attn-in-anx_BioPsy_2016-2bhu3p2

13 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Top-down and bottom-up factors in threat-related perception and attention in anxiety
Tác giả Tamara J. Sussman, Jingwen Jin, Aprajita Mohanty
Trường học Stony Brook University
Chuyên ngành Psychology
Thể loại review article
Năm xuất bản 2016
Thành phố Stony Brook
Định dạng
Số trang 13
Dung lượng 735,11 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

While bottom-up processing of emotional stimuli is adaptivewhentheyarerelevanttoourwell-being, itisequally adaptivetoignorethesestimuliandstaytask-focusedwhenthey posenodanger.Hence,adap

Trang 1

Contents lists available atScienceDirect

Biological Psychology

j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / b i o p s y c h o

Top-down and bottom-up factors in threat-related perception and

attention in anxiety

Tamara J Sussman, Jingwen Jin, Aprajita Mohanty∗

Department of Psychology, Stony Brook University, United States

a r t i c l e i n f o

Article history:

Received 14 September 2015

Received in revised form 10 August 2016

Accepted 17 August 2016

Available online xxx

Keywords:

Top-down

Endogenous

Threat perception

Prestimulus processes

Attention

Amygdala

Anxiety

Sensory cortex

Prefrontal cortex

Perceptual bias

Attentional bias

a b s t r a c t

Anxietyischaracterizedbytheanticipationofaversivefutureevents.Theimportanceofprestimulus anticipatoryfactors,suchasgoalsandexpectations,iswell-establishedinbothvisualperceptionand attention.Nevertheless,theprioritizedperceptionofthreateningstimuliinanxietyhasbeenattributed

totheautomaticprocessingofthesestimuliandtheroleofprestimulusfactorshasbeenneglected.The presentreviewwillfocusontheroleoftop-downprocessesthatoccurbeforestimulusonsetinthe perceptualandattentionalprioritizationofthreateningstimuliinanxiety.Wewillreviewboththe cog-nitiveandneuroscienceliterature,showinghowtop-downfactors,andinteractionsbetweentop-down andbottom-upfactorsmaycontributetobiasedperceptionofthreateningstimuliinnormalfunction andanxiety.Theshiftinfocusfromstimulus-driventoendogenousfactorsandinteractionsbetween top-downandbottom-upfactorsintheprioritizationofthreat-relatedstimulirepresentsanimportant conceptualadvance.Inaddition,itmayyieldimportantcluesintothedevelopmentandmaintenanceof anxiety,aswellasinformnoveltreatmentsforanxiety

©2016ElsevierB.V.Allrightsreserved

Emotionalstimuli requirerapid adaptive responses, suchas

avoidanceofthreatorapproachtowardsarewardingstimulus.To

allowfor theseswiftbehaviouralresponses,ourperceptualand

attentionalsystemprioritizesemotionalstimulioverstimulithat

arerelatively unemotionalin nature.Spiders,snakesand angry

facesarehypothesizedtobelongtoaspecialclassofstimulithat

areperceptuallyprioritizedduetotheirimportanceforsurvival

(Brosch,Pourtois,&Sander,2010;New,Cosmides,&Tooby,2007;

Seligman,1971).Empiricalresearchsupportingthisviewshows

that spiders and snakesare detectedmore rapidlythan

mush-roomsandflowers(Ohman,Flykt,&Esteves,2001)and.angryfaces

aredetectedfasterthan neutralfaces(Hansen&Hansen,1988;

Horstmann,2007).Saccadiceyemovementsorientmorequicklyto

imagesofthreateningcomparedtoneutralfacesandbodypostures

(Bannerman, Milders,de Gelder, & Sahraie, 2009) Threatening

∗ Corresponding author at: Department of Psychology, Stony Brook University,

Stony Brook, NY 11794, United States.

E-mail address: aprajita.mohanty@stonybrook.edu (A Mohanty).

stimulishownrapidlyinastreamofimagesareidentifiedmore accuratelythanneutralstimuli(Anderson,2005).Whilepositive stimulimayalsobeassociatedwithsimilarperceptualbenefits,the effectstendtobesmallerthanthoseelicitedbythreateningstimuli (Carretie,Mercado,Tapia,&Hinojosa,2001;Dijksterhuis&Aarts,

2003;Smith,Cacioppo,Larsen,&Chartrand,2003;Stefanics,Csukly, Komlosi, Czobor, &Czigler, 2012; Sussman,Weinberg, Szekely, Hajcak,&Mohanty,2016)

The facilitated perception of threatening stimuli has been attributedtobottom-upprocessingdrivenbythephysical charac-teristicsorevolutionarysignificanceofthesestimuli(Bannerman

etal.,2009;Ohmanetal.,2001).Inlinewiththisview,research

inaffective neurosciencehascenteredonexaminingtheneural pathwaysthatpromote‘automatic’perceptionofemotional stim-uli(Fox,2002;Mendez-Bertoloetal.,2016;Vuilleumier&Pourtois,

2007).Itishypothesizedthatthreateningstimuliareprioritized duetoaprocessingbias(Bar-Haim,Lamy,Pergamin, Bakermans-Kranenburg,&van,2007; Cisler,Bacon,&Williams,2009).This processingbiasisnotmeasureddirectly,andinsteadisinferred fromaccuracyandreactiontimedifferencesbetweenthe detec-tionofthreateningcomparedtoneutralstimuli.Dependingonthe designofthetask,thethreatbiasishypothesizedtofacilitate detec-http://dx.doi.org/10.1016/j.biopsycho.2016.08.006

0301-0511/© 2016 Elsevier B.V All rights reserved.

Trang 2

orimpedeperformancewhenthreateningstimulidistractfromthe

taskathand(Mathews&MacLeod,1994;Ohmanetal.,2001).Here,

weexplorethepossibilitythatinadditiontoprocessingbiasesthat

occurcoincidentwithstimuluspresentation,prioritized

percep-tionofthreateningstimuliinnormalfunctionandanxietymaybe

attributedtoprestimulusbiases

Theideathat prestimulusbiases impactthreat-perceptionis

consistentwithresearchindicatingthattheprocessofperception

startspriortoanencounterwithastimulus,and withresearch

demonstratingthatperceptionisguidedbytop-downfactorssuch

asgoalsandexpectations(Bacon&Egeth,1994;Itti&Koch,2001)

Forexample,bothimplicitandexplicitprestimuluscuesimprove

target perception (Chen & Zelinsky, 2006; Wolfe, Butcher, Lee,

&Hyle, 2003) Similarly, in day-to-day life, we often use both

implicitandexplicitemotionalinformationtoguideour

percep-tion,forexample, whilescanningfor spidersin anuninhabited

roomfilled withcobwebs Theseanticipatorysearch behaviors,

aimedatrapidlydetectingsourcesofpotentialrewardorthreat,are

deployedinawiderangeofsituationsfromdrivingonahighwayto

navigatingsocialgatherings.Prestimulusbiasesmaybeof

partic-ularimportanceinanxiety,asdispositionalanxietyisassociated

withoverestimation of the likelihood and cost of future

nega-tiveevents(Aue&Okon-Singer,2015;Grupe&Nitschke,2013)

Theimportanceoftop-downprocessesinanxietyhasalsobeen

demonstratedbystudiesshowingthatthreat-relatedcuesimpact

subsequentperceptiondifferentlydependingontypeofanxiety

(Sussman,Szekelyetal.,2016)

In the present review we first discuss the current

affec-tiveneuroscienceliteratureonexogenous,‘bottom-up’factorsin

understandingperceptualandattentionalbiasestowards

threaten-ingstimuli,bothinnormalfunctionandinanxiety.Whileresearch

hasexaminedtheroleoftop-downfactorsthatarenon-emotional

innature(fore.g.,searchingformatchingGaborpatches)andtheir

interactionwithbottom-upprocessingofemotionalstimuli(for

e.g.,task-irrelevantemotionalfacesinthebackground),veryfew

studieshaveexaminedtop-downfactorsthatarethemselves

emo-tionalinnature(e.g.,cuesindicatinganupcomingthreateningface)

andtheireffectonperception.Hence,wediscussconceptualand

methodologicalissuesintheresearchliteraturethatarisefroman

exclusivefocusonbottom-upfactorsinunderstandingprioritized

perceptionofthreateningstimuli.Wethendiscusstheimportance

ofendogenous,emotion-related‘top-down’factors,suchas

expec-tationsand prior knowledge regarding threat,in guiding basic

humanperception.Wealsodiscussemergingevidencethat

under-scorestheimportanceofendogenousprocessingintheperceptual

prioritizationofthreateningstimulibothinnormalfunctionandin

anxiety.Finally,wehighlighttheimportanceofshiftingthe

empha-sisfromstimulus-driventotop-downmechanismsaswellastheir

interactionwithbottom-upmechanismsinthestudyofthe

percep-tualprioritizationofthreateningstimulibothinnormalfunction

andinanxiety(Mohanty&Sussman,2013)

Thehumanvisualsystemisconstantlybombardedwith

infor-mation.Thelimitedcapacityofthis systemmakesitimpossible

toprocessallincominginformation(Tsotsos,1990).Asaresult,

stimulientering thevisualfield competeforneural

representa-tion(Desimone&Duncan,1995;Tsotsos,1997).Todealwiththis

overwhelmingexcessofinformation,thevisualsystembiasesthe

competitionbetweenstimulitowardspreferentialrepresentation

of themost relevant stimuli (Desimone &Duncan, 1995).This

biasingprocessisafunctionoftwomechanisms:abottom-up, sen-sorydrivenmechanismthatselectsstimulibasedontheirphysical salience,andatop-downmechanismwithvariableselection cri-teria,whichselectsstimulibasedonexpectations,knowledgeand goals.Unliketop-downmechanisms,bottom-upmechanismsare thoughttooperatebyautomaticallyshiftingresourcestosalient visualstimuli.For example,stimuli thatcreate alocal disconti-nuityinthevisualenvironment,suchasabruptoccurrenceofa newobject(Jonides&Yantis,1998),suddenmotionandlooming (Abrams&Christ,2003;Franconeri&Simons,2003),andluminance contrastchanges(Enns,Austen,DiLollo,Rauschenberger,&Yantis,

2001)aregivenmorepriority

Similarly, emotional stimuli are considered another class of stimulithatarehypothesizedtobeprocessedinabottom-up man-ner.Forexample,invisualsearcharrays,snakesandspidersare detectedfasterthanflowersandmushrooms(Ohmanetal.,2001); andangryfacesaredetectedfasterandmoreefficientlythan neu-tralandhappyfaces(Eastwood,Smilek,&Merikle,2001;Tipples, Atkinson,&Young,2002).Threateningfacesarealsoprocessed ear-lierandreceivemoreperceptualelaborationcompared toother facialexpressions(Schuppetal.,2004).Furthermore,saccadic reac-tiontimesarefastertowardsanemotionalcomparedtoneutral facesandbodypostures(Bannermanetal.,2009),aswellastowards emotionalcompared toneutral scenes(Nummenmaa,Hyona, & Calvo,2009).Similarly,negativewordsaredetectedmore accu-rately(Dijksterhuis&Aarts,2003;Nasrallah,Carmel,&Lavie,2009) andmorequickly(Dijksterhuis&Aarts,2003)thanpositivewords Attentionalprobesappearinginthesamelocationasthreatening facesaredetectedfasterthan probesappearingin theopposite location(Armony&Dolan,2002;Mogg&Bradley,1999;Pourtois, Grandjean,Sander,&Vuilleumier,2004)

Itishypothesizedthatemotionalstimuliareprioritizeddueto theirsalience,asproposedbyappraisal,constructivistand, dimen-sional theories of emotion (Barrett, 2006; Brosch et al., 2010; Ellsworth&Scherer,2003;Russell,2003),ortheirphysical char-acteristics,asdemonstratedbyperceptualprioritizationofshapes associatedwiththreats(Larson,Aronoff,Sarinopoulos,&Zhu,2009; Larson,Aronoff,&Stearns,2007).Forexample,inonestudy, par-ticipantswereaskedtodetectandratethevalenceofadiscrepant threatening,happyorneutralschematicfaceinarraysof other-wise identicalfaces(Lundqvist&Ohman,2005).Theschematic faceswere manipulated suchthat three, two or one feature(s)

oftheschematicfaceconveyedemotion.Resultsshowedbetter visualsearchperformanceformorenegatively ratedfaces,even

ifonlyonefeatureconveyedemotion,indicatingthatthe threat-eningmeaningofthefacedrivesimproveddetection(Lundqvist& Ohman,2005).Ontheotherhand,researchershavehypothesized thatthesearchadvantageofthreateningcomparedtoneutralfaces maybeduetofeaturessuchasupturnedlipcorners,openeyes,or frowningthatcanbediscriminatedfromneutralfeatures(Calvo

&Nummenmaa,2008;Larsonetal.,2007).Thiscouldbebecause

ofthesalienceofthethreat-relatedfeatures,resultingfromtheir associationwiththeholisticfacialexpressiontheycomefrom(e.g., Cave&Batty,2006),orbecauseofphysicaldifferencesbetween features ofthreateningvs neutral facesregardlessof emotional meaning.Finally,someresearchershavehypothesizedthatitisthe configurationofthreateningfacialfeatures,suchasshapeand posi-tioningofthemouthrelativetonoseandeyesthataidsvisualsearch (Calder,Young, Keane, &Dean, 2000; Carey &Diamond,1977), othershave concludedthat specificfeaturesare responsiblefor improveddetection(Calvo&Nummenmaa,2008),andsome stud-ieshavepresentedresultssupportingbothpositions(Lundqvist, Esteves,&Ohman,2004)

Trang 3

3 Neural mechanisms involved in bottom-up

threat-perception

Attheneurallevel,thebottom-upprocessingofemotional

stim-uliisbelievedtobemediatedviatheamygdalaanditsinteractions

withthevisualcortices(Cisler&Koster,2010;Dolan,2002;Ohman,

2002,2005).For example, resultsfromstudiesusing backward

maskingparadigmssuggestthatfearfulfacesactivatetheamygdala

intheabsenceofconsciousawareness(Morris,Ohman,&Dolan,

1998;Whalenetal.,1998).Usinganevent-relatedfMRIparadigm

in which subjects fixatedona centralcue and matched either

twofearfulorneutralfacesortwohousespresentedeccentrically,

Vuilleumierand colleaguesexaminedthehypothesisthat

emo-tionandvoluntaryattentionreflectdistinctinfluencesthatdonot

interact(Vuilleumier,Armony,Driver,&Dolan,2001;Vuilleumier,

Richardson,Armony,Driver,&Dolan,2004).Theyfoundthatwhile

activityin thefusiformgyrus(FG), which isknownto respond

stronglytofaces,wasmodulatedbyvoluntaryattention,

amyg-dalaresponsestofearfulfaceswerenot(Vuilleumieretal.,2001)

Bottom-upappraisalofemotionalstimuliisalsoassociatedwith

greater connectivitybetweenthe amygdalaand limbicregions,

suchastheanteriorcingulatecortex(Comteetal.,2014)

The amygdala is thought to quickly detect relevant

stim-uli,includingthreateningstimuli (Cunningham&Brosch,2012;

Sander,Grafman,&Zalla,2003),viaaneuralpathway,sometimes

referred to as the‘low road,’that passes through thesuperior

colliculi and thethalamus, that does not requirecorticalinput

(LeDoux, 2000), and carries low-spatial frequency information

Thistheoryhasbeensupportedbyevidencedemonstratingthat

lowspatialfrequencyimagesoffearfulfacesproducemore

amyg-dala activation than fearfulimagesdisplayed with highspatial

frequency (Vuilleumier,Armony, Driver,&Dolan,2003)and by

evidencethatemotionalfacescanbeprocessedintheabsenceof

awarenessin a subjectwithalesioned striatevisualcortex (de

Gelder,Vroomen,Pourtois,&Weiskrantz,1999).Recentevidence

using humanintracranial electrophysiologicaldata showedfast

amygdalaresponses,beginningasearlyas74-msaftertheonset

offearful,butnotneutral orhappy,facialexpressions(

Mendez-Bertoloetal.,2016).Thelatencyoffearresponsesinamygdalawas

muchshorterthantheirlatencyinthevisualcorticesandreliedon

lowspatialfrequencyinformation.However,thistheoryhasbeen

challengedbyacompetingmodel,positingthatduringthe

pro-cessingofemotionalvisualstimuli,theamygdala’sprimaryroleis

tocoordinatecorticalfunctionanddetectsalientstimuli(Pessoa&

Adolphs,2010).Thismodel(discussedingreaterdetailbelow)has

beensupportedbyevidencedemonstratingthatemotionalfaces

onlyproduce greateramygdalaactivitywhenfacesare actively

attendedto (Pessoa, Kastner,&Ungerleider,2002), and by

evi-dencethatrapidfeardetectioncanrelyonhighspatialfrequency

information,suggestinginvolvementofcorticalvisualareas(Stein,

Seymour,Hebart,&Sterzer,2014)

Aftertheamygdalaevaluatesincominginformationas

threat-ening, it can boost processing in other brain regions, such as

thesensorycortices,viare-entrantfeedback(Vuilleumier,2005)

Hence, exogenously-driven perceptual prioritization of

threat-relatedinformationishypothesizedtoinvolvevisualprocessing

modulated by re-entrant feedback signals from the amygdala

(Anderson&Phelps,2001;Davidson,2002;Ohmanetal.,2001;

Ohman,2005;Vuilleumier&Pourtois,2007).Sincetheamygdala

bothreceivesinputs fromallsensorymodalitiesandprojectsto

numerouscorticalandsubcorticalareas,itiswellpositionedto

influenceanumberofprocessesandbehaviors(Fox,Oler,Tromp,

Fudge,&Kalin,2015;Freese&Amaral,2009;Holland&Gallagher,

1999).Supportingthetheorythatthis rich connectivityisused

duringthreat perceptionis evidencethat lesionsin thehuman

amygdalaleadtolessactivationoftheFGwhenviewingfearful

faces compared to healthy controls and participants with hip-pocampallesions(Vuilleumieretal.,2004)andalsoleadtoless activationintheinferiortemporalcortex,aregioncrucialforvisual recognition,inmonkeys(Hadj-Bouzianeetal.,2012).Furthermore, greaterconnectivitybetweentheamygdalaandsensoryregions hasbeenfoundduringthreatperception(Lim,Padmala,&Pessoa,

2009;Morris,Fristonetal.,1998;Pessoa,Gutierrez,&Ungerleider,

2002).Theseempiricalresultssupportclaimsofquickand auto-maticprocessingofsalientstimuli,andprovideanamygdala-based mechanismbywhichthreatstimulicouldbeperceptually priori-tized

Inadditiontoevidenceofanamygdala-drivenbottom-up pro-cessingofsalientstimuli,studiessuggestthataventralnetwork, comprising the temporoparietal junction (TPJ) and the ventral frontalcortex(VFC),helpstoreorientattentiontosalient incom-ingsensoryinformation outsidethecurrent focusofprocessing (Corbetta&Shulman,2002).Thisnetwork isrecruitedby infre-quentorunexpectedeventsthataresalient;fore.g.,invalidlycued targetsinthePosnertaskoroddballs.Studiesshowthatduring top-downattentionalguidanceactivityinTPJissuppressed(Shulman, Astafiev,McAvoy,d’Avossa,&Corbetta,2007;Shulmanetal.,2003; Todd,Fougnie,&Marois,2005)andinthepresenceofsalient non-targetsstimulusactivityinTPJincreases(Geng&Mangun,2011) Hence,the TPJand VFCfunction likecircuitbreakers that shift thefocus to salient but task-irrelevantstimuli, even in case of emotionalstimuli(Dolcos&McCarthy,2006).Thesestudies sug-gestadditionalbottom-upstimulus-drivenmechanismsbywhich threatscouldbeperceptuallyprioritized,anddemonstratea possi-bilityofinteractionsbetweentop-downandbottom-upprocesses viaabrainnetworkthatissensitivetobothkindsofprocessing

While anxiety is typically conceptualized as an anticipatory responsetofuturethreateningevents,fearistypicallythoughtof

astheresponsetoanimmediatethreat(Davis,Walker,Miles,& Grillon,2010;Grupe&Nitschke,2013;LeDoux,2015) Neverthe-less,perceptualprocessinginanxietyistypicallyconceptualized

asdriven bybottom-up processes (Mathews &MacLeod,1994; Ohmanet al.,2001).Empiricalstudiesexaminingperceptionof threatening stimuliin anxiousindividuals, like thestudiesthat examinethesephenomenainhealthyindividuals,tendtoutilize tasks that exogenously drive perceptionand attentionthrough theuseofunanticipatedortask-irrelevantstimuli.Commontasks employedtostudy thisphenomenon present emotionalstimuli that ‘popout’amongstnon-emotional stimuli (Fox etal.,2000; Ohmanetal.,2001),areperipheraltofixation(Mogg&Bradley,

1999),appearrapidlyinstreamofimages(Arend&Botella,2002),

or are irrelevant to the task at hand (Williams, Mathews, & MacLeod,1996)

Experimentalresultssuggestthatcomparedtohealthycontrols, individuals withclinical anxiety(Klumpp&Amir, 2009; Mogg, Millar,&Bradley,2000;Ohmanetal.,2001),dispositional anxi-ety(Eysenck,Derakshan,Santos,&Calvo,2007;Mogg&Bradley,

1999;Richards,French,Johnson,Naparstek,&Williams,1992),and experimentallyinduced anxiety(Lim &Pessoa,2008;Robinson, Letkiewicz, Overstreet, Ernst, & Grillon, 2011) detect or orient towards threatening stimuli more quickly Other studies have foundnodifferenceintheinitialorientationtothreat,buthave demonstratedthatindividualdifferencesinanxietyincreasedwell timeandthetimerequiredtodisengagefromathreatening stim-ulus (Fox, Russo, Bowles, & Dutton, 2001; Yiend & Mathews,

2001).However,there is some empiricalevidence demonstrat-ingthatanxietycanbothfacilitateengagementwiththreatening stimuliandslowdisengagementwiththreateningstimuli(Koster,

Trang 4

McMenamin,Greischar,&Davidson,2011),suggestingthat

anx-ietyinfluencesbothearlierandlatersensoryprocessesinvolved

in threat perception Finally, recent studies of soldiers

experi-encingacutestressors,suchascombat,showthat avoidanceof

threat,ratherthanabiastowardsthreatspredictssubsequentPTSD

symptoms(Wald,Shechneretal.,2011;Wald,etal.,2011).These

studiessuggestthatsituationallyinducedanxietymayinfluence

therelationshipbetweenorientationtothreatandfutureanxiety

symptoms

The well-documented, bidirectional relationship between

attentional biases tothreat and anxiety(Van Bockstaele et al.,

2014)hasledtothedevelopmentofcognitive-biasmodificationof

selectiveattention(CBM-A),aprocedurewithdemonstrated

thera-peuticpromise,andAttentionBiasModificationTreatment(ABMT),

atreatmentforanxiety.Bothofthesetechniquesarebasedon

cog-nitivebehaviouralmodelspositingthatcognitivebiasescanleadto

anxietydisorders,andthereforealteringattentionalbiasescould

subsequentlyreduceanxietysymptoms.ReviewsofbothCBM-A

andAttentionBiasModification(ABM)haveshownthese

proce-duresreduce anxietysymptomsand vulnerability toanxietyin

adults(MacLeod&Clarke,2015;MacLeod&Mathews,2012)andin

children(Eldaretal.,2012).Furthermore,meta-analysesof

stud-iesexaminingtheimpactofCBMandABMTonanxietysymptoms

hasdemonstratedthatthesetreatmentsareeffective(Hakamata

etal.,2010;Hallion&Ruscio,2011).Ameta-analysisoftheefficacy

ofABMTonclinicalanxietydemonstratedthatmorepatientswho

receivedthistreatmentnolongermetdiagnosticcriteriacompared

topatientsincontrolconditions(Linetzky,Pergamin-Hight,Pine,&

Bar-Haim,2015)

Different types of anxiety (e.g dispositionalvs situationally

induced)caninteract,impactingperceptualbiasesforthreatening

images.Forexample,anxietyinducedbyanupcomingexamination

increasedapre-existingtendencyforthosehigherindispositional

anxietytorespondmorerapidlytotargetsfollowinga

threaten-ingstimulus(MacLeod&Mathews,1988).Similarly,inindividuals

highintrait-anxiety,anegativemoodmanipulationledtogreater

interferencefromanxiety-relatedwordsonanemotionalStroop

task(Richardsetal.,1992).However,somestudieshavefounda

differentpatternof interaction.For example,whileparticipants

highintraitanxietyrespondedmoreslowlytothreateningwords

onanemotionalStrooptaskưindicatingthatattentionhadbeen

capturedbythesethreateningdistractorsưunderstress,trait

anx-ietynolongerinfluencedresponsetimes(Mogg,Mathews,Bird,&

Macgregor-Morris,1990).Asubsequentstudysuggeststhatwhile

transientstressorsmaywashoutdifferencesbetweenhighandlow

anxiousindividuals,chronicstressorsexaggeratethedifferencesin

attentionattributedtotraitanxiety(Mogg,Bradley,&Hallowell,

1994).Therefore,payingattentiontothetypeofstressorathand

couldresolvethedifferencesbetweenstudiesthatfindthatinduced

anxietyeitherincreasesordecreasesthreatbiases

Overall,clinical,dispositionalandsituationallyinducedanxiety

areassociatedwithfasterdetectionofthreateningstimuli.This

per-ceptualprioritizationofthreatinanxietyisattributedtoattentional

capture by the stimulus or automatic processing of

threaten-ingstimuli (Ohmanet al.,2001; Robinson,Charney, Overstreet,

Vytal,&Grillon,2012;Robinsonetal.,2011).Studiesthat

exam-inedbrainactivitywhileunanticipatedortask-irrelevantstimuli

exogenouslydriveperceptionandattentiondemonstrateincreased

amygdalaand visualcorticalactivityfor fearedstimuli in

anxi-ety(Lipka,Miltner,&Straube,2011;Straube,Mentzel,&Miltner,

2005) It is hypothesized that these perceptual enhancements

share similarities with exogenous stimulus-driven mechanisms

andaremediatedviaamydalarfeedbackintovisualsensoryregions

(Pourtois,Schettino,&Vuilleumier,2013)

Otherstudieshavedemonstratedthatveryearlysensory pro-cessingisboosted inclinically anxiousindividuals(Knottetal.,

1994),andinchildrenhigherindispositionalanxiety(Woodward

etal.,2001).Threateningstimulihavebeenshowntoactivatethe amygdalamoreforanxiousthannon-anxioussubjects,inclinical, dispositionalandexperimentallyinducedanxiety(Bishop,Duncan,

&Lawrence,2004;Calder,Ewbank,&Passamonti,2011;Etkin& Wager,2007;Etkinetal.,2004;Larson,Ruffalo,Nietert,&Davidson,

2005).However,theamygdaladoesnotworkinisolation.Arecent studydemonstratedthatunderthreatofshock,greaterfunctional connectivitybetweentheamygdalaandthedorsolateralprefrontal cortex(DLPFC)predictedfasterthreatdetection,andwaspositively associatedwithtraitanxiety(Robinsonetal.,2012).Otherstudies havefoundthatindividualswithanxietydisordershadless func-tionalconnectivitybetweentheamygdalaandtheDLPFCcompared

tohealthycontrolswhilerestingorviewingthreateningfaces(Birn

etal.,2014;Prater,Hosanagar,Klumpp,Angstadt,&Phan,2013) Furthermore,inonestudy,theconnectivitybetweenDLPFCand amygdalacorrelatednegatively withmeasuresofsocial anxiety (Prateretal.,2013).Together,thesestudiessuggestthatdifferent kindsofanxietyinfluencetherelationshipbetweentheamygdala andthefrontalcortexindistinctways

Whiletheliteraturedescribingtheimpactofanxietyon per-ceptionconsistentlydemonstratesabiasforthreateningstimuli, preciselywhenthisbiascomesintoplayremainsunclear.Sinceone

ofthecorefeaturesofanxietyisatendencytomakeinaccurate pre-dictionsregardingthelikelihoodandcostsoffuturenegativeevents (Grupe&Nitschke,2013),theeffectofanxietyonthreatperception maystartbeforestimuluspresentationandmayinvolvetop-down factorssuchasgoals,expectationsandpriorknowledge.Therefore,

togainacompleteunderstandingofhowanxietyimpactsthreat detection,itisnecessarytoexaminetheimpactoftop-down pro-cessingonthreatperceptioninanxiety

Overall, studies of psychological and neural mechanisms involvedin perceptionof emotionalstimulihavereinforcedthe viewthatemotionalsalience-related,bottom-upeffectsare invol-untaryandnotunderthecontrolofattention(Vuilleumier&Driver,

2007).However,thisresearchraisesmethodologicalissues First,themajorityofstudiesexaminingtheinfluenceof emo-tionalstimuli onattentionhave usedtasks inwhich emotional stimuliappearunexpectedly,suchasmodificationsofaperipheral

orexogenouscuingtask(Armony&Dolan,2002;Holmes,Green,& Vuilleumier,2005;Keil,Moratti,Sabatinelli,Bradley,&Lang,2005; Mogg&Bradley,1999; Mogg,McNamaraet al.,2000;Stormark

&Hugdahl,1996,1997).Thedotprobeparadigmisavery com-monlyusedtaskinwhichbothathreateningandneutralstimulus arepresentedsimultaneouslyandperipherally,andoneofthem

isfollowedbyanattentionalprobe(Holmesetal.,2005;Mogg& Bradley,1999;Mogg,McNamaraetal.,2000).Afacilitatedresponse

toprobesthatappearatthesamelocationofthreatinformation (validtrial),incomparisonwithresponsestoprobesatthe oppo-sitelocationofthreatinformation(invalidtrial),isinterpretedas vigilanceforthreat

Secondly,bottom-upprocessingofemotionalstimulihasbeen showntointeractwithtop-downfactorssuchasgoalsand task-relevance While bottom-up processing of emotional stimuli is adaptivewhentheyarerelevanttoourwell-being, itisequally adaptivetoignorethesestimuliandstaytask-focusedwhenthey posenodanger.Hence,adaptivebehaviorrequiresconstant inter-actionbetweentop-downgoalsandbottom-upprocessing.Studies usingparadigms in which emotionalstimuli aretask-irrelevant

Trang 5

becausetheyareprocessedautomatically,leadingtoimpaired

task-relevantperformance.Forexample,task-irrelevantemotionalfaces

slowreactiontimes(Vuilleumieretal.,2001)anddecreaseaccuracy

(McHugo,Olatunji,&Zald,2013).Thepresentationofemotional

stimuliexogenouslyorasdistractorsinexperimentalparadigms

hascontributedtotheviewthatemotionalstimuliareprocessed

involuntarilyinabottom-upmannerandareimmunetotheeffect

attentionorcognitivecontrol

However,studiesalsoshowthatstrongasitmaybe,bottom-up

processingofanemotionalstimulusisalsosusceptibletotop-down

control For example, happyand threateningfacial expressions

have been shown to capture attentionwhen theyare the

tar-getofsearchbutnotwhen theyareinopposition totaskgoals

(Hahn&Gronlund,2007;Williams,Moss,Bradshaw,&Mattingley,

2005).Thisindicatesthatinadditiontostimuluscharacteristics,

top-downgoalsguidetheefficiencyofemotionalfacialexpression

search.Similarly,rewardandpunishmentcanmodulate

bottom-upcaptureofattention(Engelmann&Pessoa,2007)anddistractor

inhibition(DellaLibera&Chelazzi,2006).Formoredetailed

cov-erageontheinteractionbetweentop-downgoalsandbottom-up

processingofemotionalstimuliwewouldreferreaderstomore

comprehensivereviewsonthistopicbyAue,Chauvigne,Bristle,

Okon-Singer,&Guex,2016;Pessoa,2009;Pessoa&Ungerleider,

2005andPessoaetal.,2002;Pessoa,Gutierrezetal.,2002

Neuralevidencealsoindicatesthatbottom-upsubcortical

pro-cessingof emotionalstimuliissusceptible totop-downcontrol

Forexample,amygdalaanditsinfluenceonthevisualcortex,is

impactedbytop-downfactorsliketask-context andattentional

control(Pessoa&Adolphs,2010;Pessoa,2008).Amygdalaresponse

is modulatedvia top-downinputfromprefrontalbrain regions

duringemotionalconflict(Etkin,Egner,Peraza,Kandel,&Hirsch,

2006)and reappraisal(Ochsner,Bunge,Gross,&Gabrieli,2002;

Ochsneretal.,2004;Phan,Wager,Taylor,&Liberzon,2004);for

areviewsee(Ochsner&Gross,2005).While somestudieshave

arguedthatamygdalaresponsetothreateningstimuliis

indepen-dentofvoluntaryattention(e.g.Vuilleumieretal.,2001),these

studiestendtousetasksinwhichthreateningstimuliarepresented

inanunexpectedmanner,andhavenotexaminedthecontributions

top-downfactors,suchasthoseimplementedviaprojectionsfrom

theprefrontalcortextotheamygdala.Hence,PessoaandAdolphs

(2010)proposeanalternativemodel,whichunderlinesthe

numer-ousconnectionsbetweentheprefrontalcortex,thevisualcortex,

theamygdalaandothersubcorticalstructures,andpositsthatthe

amygdalaisprimarilyinvolvedinthecoordinationofcortical

pro-cessingratherthanjustthedetectionofthreat

Theinteractionbetweenbottom-upemotionalprocessingand

top-downfactorsalsoplaysanimportantroleinanxietyasoutlined

bytheattentionalcontroltheory(Eysencketal.,2007).Thistheory

positsthattraitanxietyincreasestheattentiongiventothreatening

stimuliandimpairsattentionalcontrol.Inotherwords,trait

anxi-etyimpairstop-downguidanceofattentionandboostsbottom-up

processesrelatedtothreatdetection.Morespecifically,according

toattentionalcontroltheory,traitanxietyimpairstheefficiency

withwhich non-threatening stimuli are processed, rather than

alwaysimpactingperformance.Thisisconsistentwithstudiesthat

foundthataccuracy(Calvo,Eysenck,Ramos,&Jimenez,1994;Ikeda,

Iwanaga, & Seiwa,1996; Markham& Darke, 1991) or reaction

timewasnotnegativelyimpactedbyanxiety(Bishopetal.,2004;

Comptonetal.,2003;Whalenetal.,1998).Attentionalcontrol

the-oryalsopositsthattheimpactoftraitanxietyonperformanceis

exacerbatedasdemandsontheexecutivecontrolincrease(Ashcraft

&Kirk,2001;Eysenck,1985)

Finally, in addition to evidence indicating that emotional

bottom-up factors constantly interact with top-down factors,

researchincreasinglyshowsthattop-downfactorsplayavitalrole

inperception(Barrett&Simmons,2015;Summerfield&deLange,

2014).Perceptualdecision-makingisheavilyinfluencedbyfactors thatoccurpriortophysicalencounterwiththestimulus,suchas, expectationsregardingwhatiscontextuallyrelevantorlikely.This

isexemplifiedbyfasterandmoreaccuraterecognitionofobjects thatoccurinfamiliarcontexts(Bar,2004;Brattico,Naatanen,& Tervaniemi,2002;Enns&Lleras,2008),hence,aloafofbreadis identified moreaccurately thana drum inthekitchen (Palmer,

1975).Morerecently,researchisshowingthatemotionaltop-down factorscanalsoinfluenceperception(e.g.,Sussmanetal.,2016; Sussman,Szekelyetal.,2016).Inthebrain,top-downfactorssuch

asexpectation,context,attention,andlearninghavebeenshown

toinfluenceamygdalaactivity.Theamygdalaisoneofthemost highlyconnectedregionsofthebrainandshowsconnectivity con-sistentwiththatofa‘hub’region(Barbas,1995;Stephanetal., 2000;Swanson,2003;Young,Scannell,Burns,&Blakemore,1994) indicatingthatitiswellsituatedtoinfluenceprocessinginother regions

In summary, while much has been learned regarding the bottom-up factors involved in the perceptual prioritization of emotionalstimuli,increasingevidenceisshowingthat1)studies examiningattentionalandperceptualbiasesforemotional stim-ulihavelargelyutilized paradigmsthatcapitalizeontheuseof bottom-upprocesses,2)bottom-upperceptionandrelated neu-ralmechanismsaresensitivetotop-downinfluence,3)top-down factorsplayacriticalroleinhumanvisualperception.Together, theselinesofevidenceunderscoretheimportanceofexaminingthe roleoftop-downprestimulusbiasesintheprirotizedperceptionof threateningstimuli

In contrastto bottom-upprocesses, top-down processesare endogenous and driven by contexts or goals According to the top-down perspective, visual perception involves a process of hypothesis testing in which predictive perceptual models are proposedbasedonpriorknowledgeandincomingsensory infor-mationis compared tothese predictedmodels(Gregory,1968; Summerfieldetal.,2006).Therefore,pastknowledgeand expe-rience createexpectationsof whatis relevantor likely,helping facilitatethespeedandaccuracyofsubsequentperceptual judg-ments This expectation takes the form of predictive neural representationsthatmaybebasedonperceptualtemplatesthat consistofimportantdiscriminatingfeatures(Neisser,2014)used

toaidstimulusrecognition

These predictive representations are implemented via two importanttop-downmechanisms:1)byanattention-related pri-oritizationofstimulusprocessing basedontherelevanceofthe stimulustogoalsand2)byanexpectation-relatedinterpretation

of stimulus based on thelikelihood of encountering an antici-patedstimulus(Summerfield&deLange,2014;Summerfieldetal.,

2006).Thefunctionoftop-downattentionistoallocatecognitive resourcesbasedontherelevanceorsalienceofastimulusgiventhe currentcontext.Commonmanipulationsofattentionbytop-down processesinclude spatialattention,feature-basedattention,and object-basedattention(Kanwisher&Wojciulik,2000).For exam-ple,priorknowledgeofthetargetstimuluslocationenhancesthe detectionofstimuliattheattendedlocation(Carrasco,Ling,&Read,

2004;Posner,Snyder,&Davidson,1980),evenwhenattentionis

‘covert’(i.e.intheabsenceofsaccadestoattendedlocations) Sim-ilarly,top-downspatialbiasingtowardsthelocationreducesthe distractingeffectsofsalientstimuliatotherlocations(Theeuwes, 1991;Yantis&Jonides,1984).Incontrasttoattention,theeffect

ofexpectationisoftenstudiedbymanipulatingthelikelihoodof theoccurrenceofastimulus.Studieshaverobustlydemonstrated thatresponsestovisualstimuliarefacilitatedbytheconditional

Trang 6

probabilityofoccurrence ina given context.Objectsare

recog-nized morequickly ina context in which theyarelikely tobe

found(Gold&Shadlen,2007;Heekeren,Marrett,&Ungerleider,

2008).Researchalsodemonstratesthatobjectsinfamiliaror

pre-dictablecontextsarerecognizedfasterandmoreaccuratelythan

objectsseeninunpredictablecontexts(Bar,2004;Bratticoetal.,

2002;Enns&Lleras,2008);forexample,aloafofbreadis

iden-tifiedmoreaccuratelythanadruminthekitchen(Palmer,1975)

Additionally,humansintegrateandweighpriorknowledgeabout

likelihoodand uncertaintyincombination withcurrent sensory

informationinperceptualdecision-makingfollowingBayes’

the-orem(Bach&Dolan,2012).Incontrast,unexpectedvisualobjects

inacomplexsceneareoftendetectedmoreslowlyandwithmore

errors(Biederman,Mezzanotte,&Rabinowitz,1982)

While threateningstimuli cantakeus bysurprise, we often

detectthesestimuliwithincontextsorfollowingcuesthat

indi-cateanupcomingthreat.Implicitandexplicitenvironmentalcues

directustostimulithatarerelevantorlikelygiventhecontext,

subsequentlyimprovingperception.Forexample,acontextsuch

asadenseforestpathinColoradocancreateexpectationsof

see-ingabear,oranovertcue,suchasasignwarningthatafloorwas

recentlywashed,encouragesustolookforslipperyspots,resulting

infasterdetectionoftheexpectedstimulus.Emotionaland

moti-vationaltop-downfactors(e.g.searchingforthreatoranticipating

reward)havebeenshowntoinfluencetargetdetection.When

emo-tionalstimuli are task-relevant,in other words,when theyare

prioritizedbothbytop-downandbottom-upprocesses,detection

ofthesestimuliareimproved.Forexample,happyand

threaten-ingfacialexpressionsareprioritizedwhentheyarethetargetof

search,butnotwhentheyareinoppositiontotaskgoals,(Hahn

&Gronlund,2007;Williamsetal.,2005).Furthermore,cues

indi-catinganupcomingthreat-relatedperceptualdecisionimprovethe

sensitivityandspeedofsubsequentperceptualdecisions(Sussman

etal.,2016;Sussman,Szekelyetal.,2016),specificallyincaseof

subsequentfearfulfaces(Sussman,etal.,2016).Thesestudies

indi-catethat,inadditiontostimuluscharacteristics,emotion-related

top-downgoalsguidetheefficiencyoffacialexpressionsearch,and

canimprovetargetdetection

Top-downprocessescouldimprovethreatperceptionby

guid-ing attentionto a spatiallocation, or toa specific feature.For

example, ona visual search task, cues correctly predictingthe

spatiallocationandthreatvalueoffacesimprovedreactiontime;

performanceimprovedbothwhenspatialcueswereaccurateand

whencuesaccuratelypredictedanangryface,demonstratingthat

endogenousprocesses relatedtobothspatialand feature-based

attentioncanenhancethreatdetection(Mohanty,Egner,Monti,

&Mesulam, 2009).Additionally, ona cued word identification

task,emotionalwordsweremoreaccuratelyidentifiedthanneutral

words,whileemotionaldistractorshadnoimpactonperformance,

suggestingthatwhendirectedtolookingforaspecificemotional

stimulusviacues,perceptualprocessingofthatemotional

stim-ulusisenhanced(Zeelenberg,Wagenmakers,&Rotteveel,2006)

Thearousal-biasedcompetitiontheorysuggestsamechanismby

whichtop-downprocessesmayperceptuallyprioritizeemotional

stimuli.Itpositsthatemotionalcuesincreasearousal,biasing

selec-tiveattentiontowardperceptionofthestimulirelevanttothegoal

athand(Mather&Sutherland,2011)

Aftersensoryinformationhitstheretinaitisprocessedin

hier-archicallyorganizedregionswithincreasinglevelofabstractness

andcomplexitybeforea perceptisformed(Deco&Rolls,2004;

Tanaka,1996).Downstream(higherorder)brainregionsfeed infor-mationbacktoupstream(lowerorder)regions,influencinghow informationisprocessed.Thesefeedbackprojectionsoutnumber thefeedforwardprojectionsinmoststagesofthehierarchy,and thereforearelikelytohaveamajorinfluenceontheprocessingof incominginformation(Angeluccietal.,2002).Sinceattentionand expectationaretwotop-downinfluencesthatmayplayacrucial roleinperceptualbiasestowardsthreateningstimuli,thisreview willfocusonthesetwofactors

Top-down modulation of perception impacts most known stagesofvisualinformationprocessing,eveninbrainregionsthat processbasicvisualinformation,suchasV1(Li,Piech,&Gilbert,

2006;Motter,1993;Roelfsema,Lamme,&Spekreijse,1998).Infact, top-downmodulationhasbeenfoundtooccurevenbeforethe sen-soryinformation reachesthecortexin thesubcorticalregionof lateralgeniculatenucleus(McAlonan,Cavanaugh,&Wurtz,2008; O’Connor,Fukui,Pinsk,&Kastner,2002);forreviewsee(Gilbert

&Li,2013).Top-down modulationismore obviousin extrastri-ateareas(V2/V3andV4)(McAdams&Maunsell,1999;Nienborg& Cumming,2009),andinthemedial(Womelsdorf,Anton-Erxleben,

&Treue,2008)andventralvisualstreams(Chelazzi,Miller,Duncan,

&Desimone,1993).Theeffectofattentionandexpectationonvisual corticalactivityprior tostimulusonset hasbeendemonstrated

inmultiplehumanstudies(Esterman&Yantis,2010;Peelen, Fei-Fei,&Kastner,2009;Stokes,Thompson,Nobre,&Duncan,2009; Summerfieldetal.,2006).For example,usingacued face/house discriminationtask, onestudy demonstratedincrease of blood-oxygen-leveldependent(BOLD)signalinobject-category-specific visualcorticalareasduringexpectation(Esterman&Yantis,2010) Anticipationincreasesprestimulusneuronalactivityinsensory anddecision-relatedneurons(Kastner,Pinsk,DeWeerd,Desimone,

&Ungerleider,1999;Ress,Backus,&Heeger,2000;Summerfield

&de Lange, 2014) For example, studiesshow that neurons in the inferior temporal lobe that encode the expected stimulus showincreasedactivationfollowingapredictivecue(Erickson& Desimone,1999).Similarly,neuronsinmedialtemporallobe (sen-sitivetoobjectmotion)areactivatedpriortoapredictedmotion stimulus(Albright,2012;K.Sakai&Miyashita,1991).Prestimulus BOLDsignalinextrastriatevisualcortexisassociatedwith sub-sequentdecisionsregarding whethersubjectsreport seeingthe Rubin’svaseillusionasafaceoravase(Hesselmann,Kell,Eger,

&Kleinschmidt,2008),andface-relatedcueselicitincreasedBOLD signalinfusiformfacearea(FFA)priortofacestimulusonset(Bar

etal.,2001;Esterman&Yantis,2010;Puri,Wojciulik,&Ranganath,

2009).Inarandomdotclassificationtask,BOLDsignalinmotion sensitivevisualcortexpriortostimulusonsetpredictsthesubject’s response(Hesselmann,Kell,&Kleinschmidt,2008).Anotherstudy examiningtheprestimulusoscillatoryactivityovermotorcortex foundthatbothendogenousexpectation(withoutexplicitcue)and expectationinducedbyexplicitcuesbiasesthestartingpointof decision-relatedactivitybeforetheaccumulationofsensory evi-dence(deLange,Rahnev,Donner,&Lau,2013)

StudiesexaminingtheensembleactivitypatternsofBOLDsignal haveshownthattop-downattentiontoatargetactivates target-specific representations in shape-sensitive visual areas (Peelen

etal.,2009), andbrain regionsinvolved inolfactoryperception (Zelano,Mohanty,&Gottfried,2011),indicatingapreparatorybias favoringtheattendedstimulusovercompetingones

Increasedprestimulusactivitymayreflectincreasedattention priortostimulusonset,therebyimprovingsubsequentdetection (Hesselmann, Sadaghiani, Friston, &Kleinschmidt, 2010) Alter-natively,accordingtosequential samplingmodelsofperceptual decision-making,likethedriftdiffusionmodel(Ratcliff&Smith, 2004;Ratcliff,1978),increasesinprestimulusactivitymayreflecta biasorshiftinthestartingpointforevidenceaccumulationtowards

aspecificdecisionboundary,ormayreflectachangeintherateof

Trang 7

Behav-iorally,studieshaveshownthatapredictedstimulusisassociated

withfasterreactiontime,higheraccuracy,andhigherperceptual

sensitivitycompared tounpredictedstimuli(Bar,2004;Geisler,

2008;Polat&Sagi,1994)

In additiontosensoryareas, top-downmodulationof visual

processing involves prefrontaland parietal areas For example,

top-down biasing of attention in space involves a network of

frontoparietal regions that include the intra-parietal sulcus in

the posterior parietal cortex (PPC) and the frontal eye fields

(FEF),theanteriorcingulatecortexandsupplementarymotorarea

(ACC/SMA), and thethalamus and superiorcolliculus (Corbetta

& Shulman, 2002; Gitelman et al., 1999; Kastner, De Weerd,

Desimone, &Ungerleider,1998; Kastneret al., 1999;Mesulam,

1981,1999; Reynolds,Chelazzi,&Desimone,1999).Thisspatial

attentionnetworkishypothesizedtoformanintegratedsearch

templatecombiningthespatialcoordinatesandtherelevanceof

the anticipated stimulus to bias visual neurons in preparation

for thesearch process (Egner,2008; Gottlieb, 2007; Thompson

&Bichot,2005).Brainregionsinvolvedwithassessingthe

moti-vational value of a stimulus include neurons in the inferior

parietallobuleandtheintra-parietalsulcus(Bushnell,Goldberg,

&Robinson,1981; Mountcastle,Lynch,Georgopoulos, Sakata, &

Acuna, 1975; Sugrue, Corrado, & Newsome, 2004) and limbic

regionssuchasamygdala(Pessoaetal.,2002;Pessoa,Gutierrez

etal.,2002;Vuilleumier&Driver,2007).However,whetherthese

regionscommunicateisunclear.Thecingulategyrusmaybea

con-duitforinformationonmotivationalsalienceusedbythespatial

attentionnetwork(Mesulam,VanHoesen,Pandya,&Geschwind,

1977), as the limbic parts of the cingulate gyrus send

projec-tionsto frontoparietal regions and posterior cingulateneurons

signalrewardoutcomesassociatedwitheyemovements(McCoy,

Crowley,Haghighian,Dean,&Platt,2003)andpreferencesguiding

visualorienting(McCoy&Platt,2005)

While most studies have focused onthe brain mechanisms

of bottom-up perception of emotional stimuli, newer evidence

is beginning to uncover the brain circuitry that is involved

in top-down guidanceby emotional information In one study,

endogenous guidance of attention wasmanipulated by

predic-tive cuesoffering both probabilistic information related tothe

locationof a subsequentlypresented stimulus,and information

regardingtheemotionalsalienceofthatstimulus(Mohantyetal.,

2009).Spatiallyvalidcuesenhancedtargetdetection.Inaddition,

cuesaccuratelypredictingangryfacetargetswereassociatedwith

fasterresponsesthanuninformativecues,indicating an

endoge-nousmediationofimprovedtargetdetection,drivenbyemotional

cues.Functionalimagingshowedthatpriortothestimulus

pre-sentation,spatiallyinformativecuesactivatedthefrontoparietal

spatialattentionnetworkincludingtheintra-parietalsulcusand

FEF,aswellasFG.Cuespredictingangryfacesalsoactivatedbrain

regions associated with emotional processing, including limbic

areas,suchastheamygdala.Additiveeffectsofspatialand

emo-tionalcueingwereidentifiedintheintra-parietalsulcus,FEFand

FGindicatingthatcuesactivateregionsinvolvedindirectingspatial

attentionpriortoarrivalofthethreatareactivatedinpreparation

Theseregionsalsohadincreasedconnectivitywiththeamygdala

followingangryfacecues.Thisstudydemonstratesthat

prestimu-lusthreat-relatedcueselicitamygdalainputtothespatialattention

networkandinferotemporalvisualareas,therebyfacilitatingthreat

detection

Separatefromtheeffectsofattention,expectationsregarding upcoming targetscanenhancetheirperception(Summerfield& Egner,2009).Accordingtothe‘predictivecoding’ theory,rather thanpassivelyabsorbingsensoryinput,thebrainactivelypredicts whatiscoming,generatingaprestimulustemplateagainstwhich observed sensory information is matched (Summerfield et al., 2006;Zelanoetal.,2011).InanfMRIstudyinwhichhumansubjects decidedwhethervisualobjectswerefacesornot,predictiveneural representationsrelatedtofaceswerereportedinmedialprefrontal cortex(mPFC;Summerfieldetal.,2006).Interestingly,perceptual decisionsaboutfaceswereassociatedwithanincreaseintop-down connectivityfromthemPFCtoface-sensitivevisualcortices, includ-ingFFA,consistentwiththeideathattheprefrontalcortexcodes forthepredictedrepresentationsandsendstop-downsignalsthat guidethesensoryregionsincollectingrelevantevidencetomake theperceptualdecision.Usingmultivariatepattern(MVP) analy-sesofprestimulusensemblepatterns,anotherstudyshowedthat target-specificensemblepatternsemergepriortoencounteringthe targetstimulusintheorbitofrontalcortex (OFC)andinsensory cortices.Furthermore,theseprestimuluspatternsreliablypredict subsequentbehaviouralperformance(Zelanoetal.,2011)

In a study thatexamined theimpactof threat compared to neutralprestimuluscuesonbrainactivityandsubsequent perfor-mance,threatcuesincreasedbothcue-andstimulus-relatedbrain activationandimprovedsubsequentstimulusdetection(Sussman

etal.,2016).Morespecifically,threatcuesresultedinalargerlate positive potential(LPP) and inincreasedsuperiortemporal sul-cus(STS)activity,bothofwhicharemeasuresofemotionalface processing.In addition,threatcuesspecificallyincreased amyg-dala activityfor subsequently presented threatening vs neutral faces.Furthermore, brain activity,as measuredby theLPP and STSactivity,predictedsubsequentimprovementinthespeedand precisionofperceptualdecisionsaboutthreateningfaces.These resultsdemonstratehowtop-down processingelicitedby pres-timulus threat-relatedcuescan enhancesubsequentperceptual decision-making.Ithasalsobeenhypothesizedthatthis enhance-ment maybedue toarousal-inducedrelease ofnorepinephrine intothelocuscoeruleusleadingtoincreasedlevelsofglutamate andnorepinephrineatthesiteofthegoal-relevantrepresentation, therebyenhancingtherepresentationofthegoal-relevantstimulus (Mather,Clewett,Sakaki,&Harley,2015)

Overall,whiletheneuralmechanismsinvolvedinprestimulus threat-relatedbiasesarerelativelyunexplored,emergingevidence indicatesthattop-downfactorsmayimpactthreatperceptionboth

bychangesinprestimulusactivityinsensoryregionsaswellas prestimulus biasing via templates instantiated in higher order regions(includingPPC,FEF,andotherprefrontalregions)and inter-actionsoftheseregionswithlimbicandsensoryregions

Top-downprocessesmayalsoplayacrucialroleinthe devel-opmentandmaintenanceofperceptualbiasesinanxietydisorders Anticipationofnegativefutureeventsisoneofthecardinalfeatures

ofanxiety.Forexample,peoplewithanxietytendtooverestimate boththelikelihoodofnegativeeventsoccurringandthecostof thesenegativeevents(Grupe&Nitschke,2013).Thus,apersonwith clinicalanxietyorspider-relatedfearstandinginaroomwith cob-websmighthavehigherexpectationofspidersbeingpresentand overestimatetheirdangerousnesscomparedtoanon-anxious per-soninthesameroom.Asaresultofthisoverestimation,anxious individualswillscantheenvironmentforspidersandwilldetect themfaster ifpresent.Researchershaveproposedthatfocusing

ontheanticipatoryphaseinanxietymaybeaneffectivestrategy

Trang 8

anxietydevelopmentandmaintenance(Davisetal.,2010)

Accordingtothe‘uncertaintyandanticipationmodelof

anxi-ety,’anxietyinfluencesseveralcognitiveprocesses,twoofwhich

relatedirectlytothreatperception(Grupe&Nitschke,2013).First,

hypervigilance,orincreasedattentiontothreateninginformation

evenbeforeastimulusispresentedcanleadtobothfasterdetection

ofthreateningstimuliandamisinterpretationofneutralstimuli

Forexample,anxietycausedbythethreatofshockleadstofaster

detectionofnegativestimuli(Robinsonetal.,2011),interpretation

ofneutralfacesasbeingnegativeinsociallyanxiousindividuals

(Yoon&Zinbarg,2008)andinterpretationofambiguous

intero-ceptiveexperiences asbeingnegativein peoplehighinanxiety

sensitivity(Richards,Austin,&Alvarenga,2001).Second,inflated

estimatesofthreatprobabilityandthecostsofthreatscanleadto

improvedperformance(Paulus&Yu,2012),viaoverweightingof

lowprobabilityevents(Mukherjee,2010)

Recentevidenceprovidesdirectsupportfortheviewthat

anx-ietycanimproveperceptionbyinfluencing top-downprocesses

suchastop-down attention.Thisresearch shows improvement

inperceptualsensitivitydue topriorthreat-relatedinformation

isdependentonindividualdifferencesin traitanxietyand

cur-rentlevelsofinducedanxiety(Sussman,Szekelyetal.,2016).In

this study,two groups of participantsvarying in levels oftrait

anxiety(dispositionalanxiety)identifieddegradedemotionaland

neutralstimuliinacuedtwo-alternativeforced-choiceperceptual

task.Onegroupcompletedtheperceptualtasksinthepresence

ofthethreatofshock(highsituationallyinducedanxiety),while

theothergroupcompletedthesametaskintheabsenceofthreat

ofshock(lowsituationallyinducedanxiety).Individualdifferences

intraitanxietymoderatedgainsinperceptualsensitivity

follow-ingthethreatcue,suchthathighertraitanxietywasassociated

withlargergainsinperceptualsensitivityinthepresenceofshock

(Sussman,Szekelyetal.,2016)butworseperceptualsensitivityin

theabsenceofshock.Overall,resultsfromthisstudydemonstrated

thatdistincttypesofanxiety(dispositionalandinduced)interact

witheachotherininfluencinghowpriorthreat-related

informa-tionisusedinatop-downmannertoguideperception(Sussman,

Szekelyetal.,2016).Prestimulusthreat-relatedinformationcan

influenceperceptionbyeffectingattentionorexpectation,bothof

whicharehypothesizedtoinvolvedifferentpsychologicaland

neu-ralmechanisms(Summerfield&deLange,2014).Thecuesinthe

aforementionedSussman,Szekelyetal.(2016)indicatedwhatto

lookfor(threateningorneutralfaces)butthecuesdidnotprovide

informationregardingthelikelihoodoftargets

Aue and colleagues (2013, 2016) manipulated the

probabil-ityorlikelihoodofupcomingtargetstoexaminewhetherthreat

expectancy(inflatedestimatesofthreatprobability)impacts

detec-tionofaspiderorbirdsinindividualswithorwithoutspiderfear

(Aueetal.,2016;Aue,Guex,Chauvigne&Okon-Singer,2013).In

twostudies,theymanipulatedexpectancyviaaprestimuluscue

tellingparticipantstherewasa90%or50%likelihoodofseeinga

spiderorabird.Cuesindicatingthelikelihoodofspidersdidnot

haveasignificantimpactonthespeedofspiderdetectionfor

indi-vidualswithorwithoutspiderfear.However,prestimuluscues

regardingthelikelihoodofseeingabirdonthesubsequenttrial

leadtoobservabledifferencesinreactiontime,errorrates,pupil

diameterandheart rateforboth groupsof subjects(Aue etal.,

2016; Aue, Guex,Chauvigne& Okon-Singer,2013).These

stud-iesindicatethattop-downmanipulationofexpectanciesdoesnot

impactdetectionofthreateningstimulithewayitaffects

detec-tionofnon-threateningstimuli.Takentogether,theSussmanetal

(2016,2016)andAueetal.(2013,2016)studiesindicatethat

anxi-etyisassociatedwithdifferentialutilizationofattentionbutnot

probability-relatedinformation regardingupcoming threatening

stimuli

Making useof prior threat related information requires the maintenance of task-relevant representations online in work-ing memory to match against incoming stimuli (Sreenivasan, Sambhara, &Jha,2011).Because emotional representationsare maintainedwithgreatervividness(Bywaters,Andrade,&Turpin,

2004),theymaytaxworkingmemoryresourcesmorethan neu-tral internal representations Therefore, tasks that require the maintenanceofthreat-relatedinformation,orthatencouragethe unnecessary entry of threat-related information into working memorymayresult indeficitsforindividuals highin trait anx-iety(Stout,Shackman, &Larson,2013; Sussman,Szekely etal.,

2016).Traitanxietyisthoughttoparticularlyimpacttheefficiency

on tasks involving the inhibition function (supporting empiri-calresearchincludesCalvo&Eysenck,1996;Fox,2002;Yiend& Mathews,2001),theshiftingfunction(Eysencketal.,2007;Gopher, Armony,&Greenshpan,2000),and,toacertainextent,theupdating function(Duff&Logie,2001)

Neurally, anxiety is associated withreduced recruitment of regions involved in top-down control For example, predictive representationsofupcomingtargetstimuliaremaintainedin pre-frontalregions of thebrain, specifically,thedorsal and ventral medial prefrontalcortex(DMPFC &VMPFC;Summerfield etal.,

2006).Studiesshowthatanxietyisassociatedwithpoorer recruit-mentofDMPFC(Shinetal.,2005)anddorsolateralprefrontalcortex (DLPFC;Bishop,2009),possiblycontributingtoanimpaired abil-itytomaintainanddeploythreat-relatedperceptualtemplatesin theserviceofthreatperception.Inlinewiththis,lowtraitanxious individualshavebeenfoundtobenefitfromcuesprecedingavisual searchtask,whereasindividualshighintraitanxietyarenotable

tousethesecuesaseffectively(Berggren&Derakshan,2013).In

arecentstudy,decreasedperceptualsensitivityinhightrait anx-ietywasobservedforthreateningbutnotneutralcues(Sussman, Szekelyetal.,2016).Sincetheadverseimpactofanxietyon per-formancebecomesgreaterwithincreasingtaskdemandsonthe centralexecutive(Eysencketal.,2007),itispossiblethat main-tenanceofaperceptualsetforthreateningstimuliwhichmight

bemore complexmaybemore demandingthan maintaininga perceptualsetforneutralstimuli

Fewstudieshaveexaminedneuralmechanismsofthreatrelated guidanceofattentionorexpectationinanxiety.However, exami-nationofneuralactivityatrestorpriortostimulusonsetinanxiety providesclues intopotentialneuralmechanisms.Neuroimaging studies have demonstrated that the amygdala is more active forpeoplewithanxietydisorders comparedtohealthy controls (Furmarketal.,2002;Sakaietal.,2005;Sempleetal.,2000),and forpeoplewithashortvariantofthe5-HTtransportedgene com-paredtoindividualshomozygousforthelongvariant(Canlietal.,

2006),whenatrest.Anticipatoryamygdalaandanteriorcingulate cortex activityprior totreatmentpredictedtreatmentoutcome

8weekslater(Nitschkeetal.,2009).Inoneexperiment,subjects withsocialphobiawereaskedtoimaginegivingapublicspeech Individualswithsocialphobiahadhyperactivityinlimbicand par-alimbicregionscomparedtohealthycontrols(Lorberbaumetal.,

2004).Whileanticipatinggivingapublicspeech,sociallyanxious individualsalsoshowedincreasedlimbicactivationanddecreased striatalactivation(Boehmeetal.,2014),aswellasreduced func-tionalconnectivitybetweencorticalregionsinvolvedinemotion regulationandlimbicregions(Cremersetal.,2015).Furthermore, symptomseveritywasfoundtocorrelatewithchangesin activa-tionandconnectivity(Boehmeetal.,2014;Cremersetal.,2015) Overall,thesestudiesshowgreaterlimbicactivitypriorto stim-ulusonsetinanxietysuggestingthatanxietymayimpactthreat perceptionbychangesinprestimulusactivityinlimbicregions, possiblyleadingindividualswithanxietytointerpretcues regard-ingsalienceandthelikelihoodofupcoming threateningstimuli differentlythanindividualswithoutanxiety.Enhancedperceptual

Trang 9

mayalsobeduetoenhancedsensory-perceptualfunctions,which

havebeenobservedinbothhightraitanxietyandinduced

anxi-ety(Robinson,Vytal,Cornwell,&Grillon,2013).Resultsfromone

studydemonstratethatthethreatofshockchangesneural

process-ingtoasensory-vigilancemodethatprioritizesthreateningstimuli

(Arnsten,2009;Shackmanetal.,2011).Finally,modelsof

decision-makingsuggestafewmechanismsthatcoulddrivetheperceptual

prioritizationofthreateningimagesinanxietybybiasingdecisions

towardsathreatenresponse(Sussman,Szekelyetal.,2016)

Overall,theroleoftop-downfactorsinthreatperceptionin

anxi-etyisnotwellunderstood.Whilegreateractivityinthreat-sensitive

limbicandsensorybrainregionsatrestandduringanticipatory

periodsinanxietysuggestsapossiblemechanismbywhichthreat

perceptioncouldbeprioritizedinanxiety,theimpactofanxiety

ontop-downattentionorexpectationofthreatisnotyetknown

Someempirical evidence supportsenhancements in perceptual

sensitivityduetopriorthreat-relatedinformation;however,these

perceptual benefits depend on the type of anxiety In

disposi-tionalanxiety,impairmentoftop-downmechanismsmaymake

utilizationandmaintenanceoftop-downthreat-related

informa-tionharder; whereas this information maybe more effectively

utilizedincaseofclinicalandsituationallyinducedanxiety

The perceptual prioritization of threatening stimuli, often

describedasabiasforthesestimuli,indispositional,clinicaland

inducedanxietyhasbeenobservedasfasterdetectionof

threat-relatedstimuli(Lim&Pessoa,2008;Mogg&Bradley,1999;Mogg

etal.,2000;Ohmanetal.,2001;Robinsonetal.,2011),orgreater

activationinfear-sensitivebrainregions(Bishopetal.,2004;Etkin

etal.,2004; Larsonetal., 2005).Thisperceptualadvantage has

generally beenstudied asa bottom-upphenomenon driven by

thephysicalcharacteristicsofthethreateningstimulus.Because

bottom-upprocesseswerethoughttodrivetheprioritized

percep-tionofthreat,experimentsdesignedtostudyabiasforthreatening

stimulihaveoftenreliedontasksthatonlytestedtheeffectsof

exogenous factors.However,top-downprocesses, suchas prior

knowledge,expectationsandgoals,influenceperception(Brosch

etal.,2010;Pessoa&Adolphs,2010).Furthermore,these

endoge-nous factors are of particular importance in anxiety, which is

characterizedbyexaggeratedandinaccurateestimatesofthe

prob-abilityandcostsoffuturenegativeevents(Grupe&Nitschke,2013)

Therefore,examiningtheimpactoftop-downfactorsonthreat

per-ceptioninanxietyisacrucialsteptowardssheddinglightonhow

basicprocessesofcognition,suchasperception,mayshapethe

developmentandmaintenanceofanxietyandrelateddisorders

Futurestudiesshouldfocusonexaminingthedifferentialimpact

ofthreat-relatedtop-downandbottom-upmechanisms(e.g.,cues

guidingone tolookforthreatening facesandthreatening faces

themselves)onperceptionandattention.Distinguishingtheimpact

ofprestimulusattentionfromtheimpactofprestimulus

expec-tationofseeingasalienttargetcouldprovidemorefine-grained

detailabouthowtop-downfactorsinfluenceperceptioninnormal

functionandinanxiety.Examinationofneuralandcomputational

modelswouldhelpelucidatethemechanismsimplementing

spe-cifictop-downandbottom-upfactorsinvolvedintheperceptual

prioritization of emotional stimuli For example, future studies

couldcomparepre-andpost-stimulusneuralrepresentationsof

emotionalvsneutralstimuliinvisualandprefrontalregionsofthe

brain,allowingustodeterminehoweachcontributestoperceptual

prioritizationofthreatinanxiety.Theuseofcomputationalmodels

wouldallowustoexaminethespecificmechanismsthatcontribute

totheperceptualprioritization

Furthermore,theimpactofothertypesoftop-downprocesses

onthreatperceptionshouldbeexamined.Forexample,sincewe typically caninferwhat kindsofthreats and rewardsaremore relevantorlikelydependingonthecontextwecurrentlyinhabit, exploringtheimpactofcontext onthreatperceptionwillallow formoreecologicallyvalidexaminationofhowemotionalstimuli areperceptuallyprioritized.Someworkhasbeenconductedinthis vein.Arecentstudydemonstratedthatnegativecontextsevoked

byrecallingareal-lifethreat(theBostonMarathonBombings)led

toanincreasedfalsealarmrateonashootingtask(Wormwood, Lynn,FeldmanBarrett,&Quigley,2016).Thisstudydemonstrates thatbystudyingtheimpactofcontext,wecanaddconsiderablyto ourunderstandingofhowthreatsareperceptuallyprioritized,and howneutralstimulimaybemisperceivedasthreateningin day-to-daylife.Theinteractionofsituationalcontexts(suchastheone describedabove),andinternalcontexts,suchasanxiety,orother moodsshouldalsobeexploredtogainamorecomplete under-standingofhowtop-downfactorsimpactperception.Whilesome researchhasbeendoneinthisarea,manyquestionsremain.One studydemonstratedthatafearfulmood,inducedviafilmclip,could speedreactiontimesoverandabovetheimpactoflow-levelvisual information(LoBue,2014).However,littleisknownabouthow pos-itivemoodsimpactthreatperception,orabouthowsituationaland internalcontextsinteractintheirimpactonthreat-perception Futureresearchshouldalsoaimtobetterisolatetheimpactof top-downfrombottom-upfactorsonthreatperception,asresults couldadvanceourunderstandingofhowthesefactorsinteractto perceptuallyprioritizeemotionalstimuli.Drawingthese distinc-tionsisespeciallycrucialwhenstudyingtheinfluenceofanxietyon perception,asanxietyisassociatedwithinaccurateestimatesofthe likelihoodandcostsoffuturenegativeevents(Grupe&Nitschke,

2013).Elucidatinghow individualdifferencesin anxietyimpact theinteractionbetweentop-down andbottom-up factors,both

intermsofbehaviouralperformanceandneuralprocessing,could providecluesabouthowbasicperceptualprocessesareassociated withclinicalsymptoms.This,inturn,mayprovidevaluablenew informationabouthowtocreatenewtreatmentsforclinical anxi-ety,andhowtoimproveexistingones.Forexample,arecentstudy foundthatdeliveringanABMTdesignedtoenhancevigilancefor threatpriortocombatexposureprotectedparticipants,reducing post-traumaticstressanddepression symptomsfollowing com-bat(Waldetal.,2016).Thisdemonstratesthatacknowledgingthe roleoftop-downprocessesinanxietycouldleadtonovelformsof therapy,somewhichcouldevenfunctionpreventatively

References

Abrams, R A., & Christ, S E (2003) Motion onset captures attention Psychological Science, 14(5), 427–432.

Albright, T D (2012) On the perception of probable things: neural substrates of associative memory, imagery, and perception Neuron, 74(2), 227–245 Anderson, A K., & Phelps, E A (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events Nature, 411(6835), 305–309.

Anderson, A K (2005) Affective influences on the attentional dynamics supporting awareness Journal of Experimental Psychology-General, 134(2), 258–281 Angelucci, A., Levitt, J B., Walton, E J., Hupe, J M., Bullier, J., & Lund, J S (2002) Circuits for local and global signal integration in primary visual cortex The Journal of Neuroscience, 22(19), 8633–8646.

Arend, I., & Botella, J (2002) Emotional stimuli reduce the attentional blink in sub-clinical anxious subjects Psicothema, 14(2), 209–214.

Armony, J L., & Dolan, R J (2002) Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study Neuropsychologia, 40(7), 817–826.

Arnsten, A F (2009) Stress signalling pathways that impair prefrontal cortex structure and function Nature Reviews Neuroscience, 10(6), 410–422 Ashcraft, M H., & Kirk, E P (2001) The relationships among working memory, math anxiety, and performance Journal of Experimental Psychology-General, 130(2), 224–237.

Aue, T., & Okon-Singer, H (2015) Expectancy biases in fear and anxiety and their link to biases in attention Clinical Psychology Review, 42, 83–95.

Trang 10

Aue, T., Guex, R., Chauvigne, L., & Okon-Singer, H (2013) Varying expectancies and

attention bias in phobic and non-phobic individuals Frontiers in Human

Neuroscience.

Aue, T., Chauvigne, L A., Bristle, M., Okon-Singer, H., & Guex, R (2016) Expectancy

influences on attention to threat are only weak and transient: behavioral and

physiological evidence Biological Psychology.

Bach, D R., & Dolan, R J (2012) Knowing how much you don’t know: a neural

organization of uncertainty estimates Nature Reviews Neuroscience, 13(8),

572–586.

Bacon, W F., & Egeth, H E (1994) Overriding stimulus-driven attentional capture.

Perception & Psychophysics, 55(5), 485–496.

Bannerman, R L., Milders, M., de Gelder, B., & Sahraie, A (2009) Orienting to

threat: faster localization of fearful facial expressions and body postures

revealed by saccadic eye movements Proceedings of the Royal Society

B-Biological Sciences, 276(1662), 1635–1641.

Bar, M., Tootell, R B., Schacter, D L., Greve, D N., Fischl, B., Mendola, J D., &

Dale, A M (2001) Cortical mechanisms specific to explicit visual object

recognition Neuron, 29(2), 529–535.

Bar, M (2004) Visual objects in context Nature Reviews Neuroscience, 5(8),

617–629.

Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M J., & van, I M H.

(2007) Threat-related attentional bias in anxious and nonanxious individuals:

a meta-analytic study Psychological Bulletin, 133(1), 1–24.

Barbas, H (1995) Anatomic basis of cognitive-emotional interactions in the

primate prefrontal cortex Neuroscience and Biobehavioral Reviews, 19(3),

499–510.

Barrett, L F., & Simmons, W K (2015) Interoceptive predictions in the brain.

Nature Reviews Neuroscience, 16(7), 419–429.

Barrett, L F (2006) Are emotions natural kinds? Perspectives on Psychological

Science, 1(1), 28–58.

Berggren, N., & Derakshan, N (2013) Trait anxiety reduces implicit expectancy

during target spatial probability cueing Emotion, 13(2), 345–349.

Biederman, I., Mezzanotte, R J., & Rabinowitz, J C (1982) Scene perception:

detecting and judging objects undergoing relational violations Cognitive

psychology, 14(2), 143–177.

Birn, R M., Shackman, A J., Oler, J A., Williams, L E., McFarlin, D R., Rogers, G M.,

& Kalin, N H (2014) Evolutionarily conserved prefrontal-amygdalar

dysfunction in early-life anxiety Molecular Psychiatry, 19(8), 915–922.

Bishop, S J., Duncan, J., & Lawrence, A D (2004) State anxiety modulation of the

amygdala response to unattended threat-related stimuli Journal of

Neuroscience, 24(46), 10364–10368.

Bishop, S J (2009) Trait anxiety and impoverished prefrontal control of attention.

Nature Neuroscience, 12(1), 92–98.

Boehme, S., Ritter, V., Tefikow, S., Stangier, U., Strauss, B., Miltner, W H., & Straube,

T (2014) Brain activation during anticipatory anxiety in social anxiety

disorder Social Cognitive and Affective Neuroscience, 9(9), 1413–1418.

Brattico, E., Naatanen, R., & Tervaniemi, M (2002) Context effects on pitch

perception in musicians and nonmusicians: evidence from

event-related-potential recordings Music Perception, 19(2), 199–222.

Brosch, T., Pourtois, G., & Sander, D (2010) The perception and categorisation of

emotional stimuli: a review Cognition & Emotion, 24(3), 377–400.

Bushnell, M C., Goldberg, M E., & Robinson, D L (1981) Behavioral enhancement

of visual responses in monkey cerebral cortex I Modulation in posterior

parietal cortex related to selective visual attention Journal of Neurophysiology,

46(4), 755–772.

Bywaters, M., Andrade, J., & Turpin, G (2004) Determinants of the vividness of

visual imagery: the effects of delayed recall, stimulus affect and individual

differences Memory, 12(4), 479–488.

Calder, A J., Young, A W., Keane, J., & Dean, M (2000) Configural information in

facial expression perception Journal of Experimental Psychology-Human

Perception and Performance, 26(2), 527–551.

Calder, A J., Ewbank, M., & Passamonti, L (2011) Personality influences the neural

responses to viewing facial expressions of emotion Philosophical Transactions

of the Royal Society B-Biological Sciences, 366(1571), 1684–1701.

Calvo, M G., & Eysenck, M W (1996) Phonological working memory and reading

in test anxiety Memory, 4(3), 289–305.

Calvo, M G., & Nummenmaa, L (2008) Detection of emotional faces: salient

physical features guide effective visual search Journal of Experimental

Psychology-General, 137(3), 471–494.

Calvo, M G., Eysenck, M W., Ramos, P M., & Jimenez, A (1994) Compensatory

reading strategies in test anxiety Anxiety Stress and Coping, 7(2), 99–116.

Canli, T., Qiu, M., Omura, K., Congdon, E., Haas, B W., Amin, Z., & Lesch, K P.

(2006) Neural correlates of epigenesis Proceedings of the National Academy of

Sciences of the United States of America, 103(43), 16033–16038.

Carey, S., & Diamond, R (1977) From piecemeal to configurational representation

of faces Science, 195(4275), 312–314.

Carrasco, M., Ling, S., & Read, S (2004) Attention alters appearance Nature

Neuroscience, 7(3), 308–313.

Carretie, L., Mercado, F., Tapia, M., & Hinojosa, J A (2001) Emotion, attention, and

the ‘negativity bias’, studied through event-related potentials International

Journal of Psychophysiology, 41(1), 75–85.

Cave, K R., & Batty, M J (2006) From searching for features to searching for

threat: drawing the boundary between preattentive and attentive vision.

Visual Cognition, 14(4–8), 629–646.

Chelazzi, L., Miller, E K., Duncan, J., & Desimone, R (1993) A neural basis for visual

search in inferior temporal cortex Nature, 363(6427), 345–347.

Chen, X., & Zelinsky, G J (2006) Real-world visual search is dominated by top-down guidance Vision Research, 46(24), 4118–4133.

Cisler, J M., & Koster, E H (2010) Mechanisms of attentional biases towards threat

in anxiety disorders: an integrative review Clinical Psychology Review, 30(2), 203–216.

Cisler, J M., Bacon, A K., & Williams, N L (2009) Phenomenological characteristics

of attentional biases towards threat: a critical review Cognitive Therapy and Research, 33(2), 221–234.

Compton, R J., Banich, M T., Mohanty, A., Milham, M P., Herrington, J., Miller, G A., & Heller, W (2003) Paying attention to emotion: an fMRI investigation of cognitive and emotional Stroop tasks Cognitive Affective & Behavioral Neuroscience, 3(2), 81–96.

Comte, M., Schon, D., Coull, J T., Reynaud, E., Khalfa, S., Belzeaux, R., & Fakra, E (2014) Dissociating bottom-up and top-down mechanisms in the

cortico-limbic system during emotion processing European Psychiatry, 29 Corbetta, M., & Shulman, G L (2002) Control of goal-directed and stimulus-driven attention in the brain Nature Reviews Neuroscience, 3(3), 201–215.

Cremers, H R., Veer, I M., Spinhoven, P., Rombouts, S A., Yarkoni, T., Wager, T D., & Roelofs, K (2015) Altered cortical-amygdala coupling in social anxiety disorder during the anticipation of giving a public speech Psychological Medicine, 45(7), 1521–1529.

Cunningham, W A., & Brosch, T (2012) Motivational salience: amygdala tuning from traits, needs, values, and goals Current Directions in Psychological Science, 21(1), 54–59.

Davidson, R J (2002) Anxiety and affective style: role of prefrontal cortex and amygdala Biological Psychiatry, 51(1), 68–80.

Davis, M., Walker, D L., Miles, L., & Grillon, C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety.

Neuropsychopharmacology, 35(1), 105–135.

Deco, G., & Rolls, E T (2004) A neurodynamical cortical model of visual attention and invariant object recognition Vision Research, 44(6), 621–642.

de Gelder, B., Vroomen, J., Pourtois, G., & Weiskrantz, L (1999) Non-conscious recognition of affect in the absence of striate cortex Neuroreport, 10(18), 3759–3763.

de Lange, F P., Rahnev, D A., Donner, T H., & Lau, H (2013) Prestimulus oscillatory activity over motor cortex reflects perceptual expectations Journal of Neuroscience, 33(4), 1400–1410.

Della Libera, C., & Chelazzi, L (2006) Visual selective attention and the effects of monetary rewards Psychological Science, 17(3), 222–227.

Desimone, R., & Duncan, J (1995) Neural mechanisms of selective visual attention Annual Review of Neuroscience, 18, 193–222.

Dijksterhuis, A., & Aarts, H (2003) On wildebeests and humans: the preferential detection of negative stimuli Psychological Science, 14(1), 14–18.

Dolan, R J (2002) Emotion, cognition, and behavior Science, 298(5596), 1191–1194.

Dolcos, F., & McCarthy, G (2006) Brain systems mediating cognitive interference

by emotional distraction Journal of Neuroscience, 26(7), 2072–2079.

Duff, S C., & Logie, R H (2001) Processing and storage in working memory span Quarterly Journal of Experimental Psychology A, Human Experimental Psychology, 54(1), 31–48.

Eastwood, J D., Smilek, D., & Merikle, P M (2001) Differential attentional guidance by unattended faces expressing positive and negative emotion Perception and Psychophysics, 63(6), 1004–1013.

Egner, T (2008) Multiple conflict-driven control mechanisms in the human brain Trends in Cognitive Sciences, 12(10), 374–380.

Eldar, S., Apter, A., Lotan, D., Edgar, K P., Naim, R., Fox, N A., & Bar-Haim, Y (2012) Attention bias modification treatment for pediatric anxiety disorders: a randomized controlled trial American Journal of Psychiatry, 169(2), 213–220 Ellsworth, P C., & Scherer, K R (2003) Appraisal processes in emotion In H H G.

R J Davidson, & K R Scherer (Eds.), Handbook of affective sciences (pp 572–595) Oxford, UK: Oxford University Press.

Engelmann, J B., & Pessoa, L (2007) Motivation sharpens exogenous spatial attention Emotion, 7(3), 668–674.

Enns, J T., & Lleras, A (2008) What’s next? New evidence for prediction in human vision Trends in Cognitive Sciences, 12(9), 327–333.

Enns, J T., Austen, E L., Di Lollo, V., Rauschenberger, R., & Yantis, S (2001) New objects dominate luminance transients in setting attentional priority Journal of Experimental Psychology-Human Perception and Performance, 27(6), 1287–1302 Erickson, C A., & Desimone, R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning Journal of Neuroscience, 19(23), 10404–10416.

Esterman, M., & Yantis, S (2010) Perceptual expectation evokes category-selective cortical activity Cerebral Cortex, 20(5), 1245–1253.

Etkin, A., & Wager, T D (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia American Journal of Psychiatry, 164(10), 1476–1488.

Etkin, A., Klemenhagen, K C., Dudman, J T., Rogan, M T., Hen, R., Kandel, E R., & Hirsch, J (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces Neuron, 44(6), 1043–1055.

Etkin, A., Egner, T., Peraza, D M., Kandel, E R., & Hirsch, J (2006) Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala Neuron, 51(6), 871–882.

Eysenck, M W., Derakshan, N., Santos, R., & Calvo, M G (2007) Anxiety and cognitive performance: attentional control theory Emotion, 7(2), 336–353.

Ngày đăng: 20/10/2022, 16:12

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w