1. Trang chủ
  2. » Giáo án - Bài giảng

giáo án môn toán lớp 9 giải hệ phương trình bằng phương pháp cộng đại số

6 1,2K 10
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 183 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Về kiến thức: Học sinh hiểu cách biến đổi hệ phương trình bằng quy tắc cộng đại số.. Về kỹ năng: Học sinh cần nắm vững cách giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộn

Trang 1

Tiết 40

Ngày dạy:

Lớp 9A: /…./

Lớp 9B: /…./

GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG

ĐẠI SỐ

A MỤC TIÊU:

1 Về kiến thức: Học sinh hiểu cách biến đổi hệ phương trình bằng quy tắc cộng đại số.

2 Về kỹ năng: Học sinh cần nắm vững cách giải hệ hai phương trình bậc nhất hai ẩn bằng

phương pháp cộng đại số Có kĩ năng giải hệ hai phương trình bậc nhất hai ẩn và bắt đầu nâng cao dần lên

3 Về tư duy - thái độ: Rèn kỹ năng giải hệ phương trình kỹ năng trình bày lời giải.

B CHUẨN BỊ CUẢ THẦY VÀ TRÒ:

- GV: Bảng phụ

- HS: Bảng phụ tóm tắt cách giải hệ phương trình bằng phương pháp cộng đại số

C PHƯƠNG PHÁP DẠY HỌC: Gợi mở – Vấn đáp

D TIẾN TRÌNH BÀI HỌC:

1 Ổn định lớp: 9A: …./… 9B: …./…

2 Kiểm tra bài cũ:

Giải hệ phương trình sau bằng phương pháp thế: 3 2

x y

x y

 

(Nghiệm: 1

1

x y



3 Bài mới:

Hoạt động của giáo viên và học sinh Kiến thức cơ bản cần nắm vững

1 Quy tắc cộng đại số

GV-Giới thiệu quy tắc cộng đại số gồm hai

bước thông qua ví dụ 1

?Cộng từng vế hai phương trình với nhau ta

được pt nào?

?Dùng pt mới thay cho một trong hai pt của

hệ (I) ta được hệ pt nào?

HS: -Nghe và trả lời câu hỏi

GV -Phép biến đổi hệ pt như trên gọi là quy

tắc cộng đại số

Lưu ý: ta có thể trừ từng vế hai pt trong hệ

cho nhau => cho Hs làm ?1

HS: -Làm ?1 dưới lớp sau đó tại chỗ nêu hệ

pt mới thu được

?Hãy nhắc lại quy tắc cộng đại số

-Ta có thể sử dụng quy tắc cộng trên để giải

hệ pt => đó là phương pháp cộng đại số

2 Áp dụng

?Hệ số của y trong hai phương trình có đặc

điểm gì => h.dẫn Hs làm bài

HS : -Hệ số của y trong hai phương trình là

đối nhau

1 Quy tắc cộng đại số:

*Quy tắc: Sgk/16 +VD1: Xét hệ pt : (I) 2 1

2

x y

x y

B1: Cộng từng vế hai pt của hệ (I) ta được: (2x – y) + (x + y) = 1 + 2

 3x = 3

B2: Dùng pt mới thay cho một trong hai pt của hệ (I) ta được hệ:

2

x

x y

x y x

?1

2

x y

x y

x y

x y

2 Áp dụng:

a, Trường hợp 1: Hệ số của một ẩn bằng nhau hoặc đối nhau.

+VD2: Xét hệ pt: (II) 2 3

6

x y

x y

Trang 2

? Cộng hai vế của hai phương trình trong hệ

(II) ta được pt nào

HS : -Ta được 3x = 9

? Ta được hệ phương trình mới nào

? Giải hệ pt này ntn

HS: -Tìm x > tìm y

GV -Cho Hs giải hệ (III) thông qua ?3

?Hãy giải hệ (III) bằng cách trừ từng vế hai

pt

GV-Hd Hs làm bài, gọi Hs nhận xét bài làm

của Hs trên bảng

GV-Nêu t.hợp 2 và đưa ra vd4

- Ychs nhận xét hệ số của x trong hai pt

HS: Nhận xét

GV-Yêu cầu hs nhắc lại cách biến đổi

tương đương pt

?Hãy đưa hệ (IV) về t.hợp 1

HS: -Nhắc lại cách biến đổi tương đương pt

=> biến đổi đưa hệ (IV) về t.hợp 1

(nhân hai vế của pt (1) với 2, của pt (2) với

3)

GV-Gọi một Hs lên bảng giải tiếp

HS: Một Hs lên bảng làm tiếp

?Còn cách nào khác để đưa hệ (IV) về t.hợp

1 hay không?

HS: Làm ?5

GV-Cho Hs đọc tóm tắt

HS : Đọc tóm tắt

Vậy hệ (II) có nghiệm duy nhất: (3;-3)

+VD3: Xét hệ pt: (III) 2 2 9

x y

x y

7

2

Vậy : (7

2;1)

b, Trường hợp 2: Hệ số của cùng một ẩn không bằng nhau, không đối nhau

+VD4: Xét hệ pt: (IV) 3 2 7

x y

x y

(2)

Vậy nghiệm của hệ (IV) là: (3;-1)

*Tóm tắt cách giải hệ pt bằng pp cộng : (SGK/18)

4 Củng cố:

-Bài 20/19: Giải hệ phương trình bằng phương pháp cộng

a, 3 3 2

(gọi 2 Hs lên bảng làm, dưới lớp làm vào vở sau đó nhận xét)

?Hãy nhắc lại quy tắc cộng đại số

?Nêu các bước giải hệ pt bằng phương pháp cộng đại số

5 Hướng dẫn về nhà:

-Học kỹ quy tắc cộng đại số, biết áp dụng vào giải hệ pt

-Xem lại các VD, bài tập đã làm

-BTVN: 20b, 21, 22/19-Sgk

-Chuẩn bị tiết sau luyện tập

Trang 3

-Tiết 41

Ngày dạy:

Lớp 9A: /…./

Lớp 9B: /…./

LUYỆN TẬP

A MỤC TIÊU:

1 Về kiến thức: Ôn tập các phương pháp giải hệ phương trình

2 Về kỹ năng: Rèn kĩ năng giải hệ phương trình bằng phương pháp thế

3 Về tư duy - thái độ: Giới thiệu phương pháp đặt ẩn phụ

B CHUẨN BỊ CUẢ THẦY VÀ TRÒ:

- GV : Bảng phụ

- HS : Học thuộc cách giải hệ phương trình bằng phương pháp thế và phương pháp cộng đại số

C PHƯƠNG PHÁP DẠY HỌC: Gợi mở – Vấn đáp

D TIẾN TRÌNH BÀI HỌC:

1 Ổn định lớp: 9A: …./… 9B: …./…

2 Kiểm tra bài cũ:

Giải hệ phương trình bằng phương pháp thế:

5 3 8

2 4

y x y x

3 Bài mới:

Hoạt động của giáo viên và học sinh Kiến thức cơ bản cần nắm vững

GV gọi 2 HS lên bảng làm bài tập 22(b)

và 22(c)

GV nhận xét và cho điểm HS

GV:qua hai bài tập mà hai bạn vừa làm,

các em cần nhớ khi giải một hệ phương

trình mà dẫn đến một phương trình trong

đó các hệ số của cả hai ẩn đều bằng 0,

nghĩa là phương trình có dạng 0x+0y=m

thì hệ sẽ vô nghiệm nếu m  0 và vô số

nghiệm nếu m = 0

GV tiếp tục cho HS làm

Giải hệ phương trình:

Giải hệ phương trình bằng phương pháp thế Bài 22(b)

2x – 3y = 11(nhân với 2) -4x + 6y = 5

 4x – 6y = 22 -4x + 6y = 5

 0x + 0y = 27 -4x + 6y = 5 Phương trình 0x + 0y = 27 vô nghiệm hệ phương trình vô nghiệm

Bài tập 22 c 3x – 2y = 10

x -

3

2

y =

3

1 3

 3x – 2y = 10  x  R 3x – 2y = 10 y =

2

3

x – 5 Vậy hệ pt vô số nghiệm:

x  R

y =

2

3

x – 5

Bài 23 SGK Giải hệ pt.

Trang 4

(I) (1+ 2)x + (1 – 2)y = 5

(1 + 2)x + (1 + 2)y = 3

Gv: Em có nhận xét gì về các hệ số của

ẩn x trong hệ phương trình trên ? khi đó

em biến đổi hệ như thế nào ?

GV yêu cầu HS lên bảng giải hệ phương

trình

Bài tập1:

Giải hệ phương trình sau bằng phương

pháp thế:

a) x + y = 3

x - y = 1

Gv hướng dẫn HS xét 2 trường hợp:

x  0 và x <0

Bài tập 2:

Giải hệ phương trình sau:

1 5 1 2

1 3

1 2

y x

y x

(II)

GV gợi ý cách đặt ẩn phụ, gọi HS lên

bảng thực hiện

(1 2) (1 2) 5 2 2 2 (1 2) (1 2) 3 (1 2)( ) 3

2 2

2 2

3

y y

x y

 Vậy nghiệm của hệ đã cho là:

7 2 6 2 2 2

x y

 

Bài tập 1: Giải hệ pt sau bằng pp thế:

a) x + y = 3

x - y = 1

 Giải

x y 3 x x 1 3 x x 4

(I)

+ Víi x  0 hệ (I)<=> 

1 2 1

4

y x x

y x x

+ Víi x <0 hệ (I) <=> x x 4 0x 4

(Vô nghiệm)

Vậy nghiệm của hệ phương trình là: (x = 2; y = 1)

Bài tập 2:

Giải: Đặt x = y y

x

1

; 2

1

Nghiệm của hệ phương trình là:

4 Củng cố:

?Có những cách nào để giải hệ phương trình

?Nêu cách giải hệ phương trình bằng phương pháp đặt ẩn phụ

5 Hướng dẫn về nhà:

-Xem lại các bài tập đã chữa

-BTVN: 24b, 25, 26/19-Sgk

  

  

  

2 / 3 9 2 1 1 1 5 2 2 2 1 5 2 1 3

x x y y x y x

2

3

y x

Trang 5

-Tiết 42

Ngày dạy:

Lớp 9A: /…./

Lớp 9B: /…./

LUYỆN TẬP

A MỤC TIÊU:

1 Về kiến thức: Ôn tập các phương pháp giải hệ phương trình

2 Về kỹ năng: Rèn kĩ năng giải hệ phương trình bằng phương pháp cộng đại số

3 Về tư duy - thái độ: Củng cố phương pháp đặt ẩn phụ

B CHUẨN BỊ CUẢ THẦY VÀ TRÒ:

- GV : Bảng phụ

- HS : Học thuộc cách giải hệ phương trình bằng phương pháp thế và phương pháp cộng đại

số

C PHƯƠNG PHÁP DẠY HỌC: Gợi mở – Vấn đáp

D TIẾN TRÌNH BÀI HỌC:

1 Ổn định lớp: 9A: …./… 9B: …./…

2 Kiểm tra bài cũ:

-HS1 : Giải hệ pt sau bằng phương pháp thế:

-HS2 : Giải hệ pt sau bằng phương pháp cộng đại số:

2

3

x

x y

x y

y

 

3 Bài mới:

Hoạt động của giáo viên và học sinh Kiến thức cơ bản cần nắm vững

GV yêu cầu 1HS lên bảng làm bài tập

22(c)1

GV kết luận

Các HS nhận xét

GVgợi ý HS giải hệ phương trình

Bài 22(c) /19

2 10 3

10 2 3 10 2 3 10 2 3 3 3 10 2 3

x y

y x y x y x y x y x

Hệ phương trình có vô số nghiệm

) 2

10 3

;

y R x

HS thảo luận làm bài tập 25/19

Bài 25/19

Đa thức bằng 0 khi và chỉ khi

2 34

17

4 20 12

30 3 12

4 20 12 0 10 4

0 1 5 3

n m n

n m

n m n m n

m n m

Bài26/19

HS thành lập hệ phơng trình hai ẩn a và b

HS giải hệ phơng trình

Trang 6

0 10 4

0 1 5

3

n

m

n

m

GV gợi ý HS làm bài tập 26/19

a) Đồ thị của hàm số đi qua hai điểm A và

B thì giá trị hoành độ và tung độ điểm đó

phải thoả mãn hàm số

Ta có : a.2 b 2

a.( 1) b 3

 

   

   

3 3 3 2 3 ) 1 (

2 2

b a b a b a b a b a

HS kết luận

4 Củng cố:

?Có những cách nào để giải hệ phương trình

?Nêu cách giải hệ phương trình bằng phương pháp đặt ẩn phụ

5 Hướng dẫn về nhà:

1 Nhắc lại cách giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số và phương pháp thế

2 Đa thức không là gì ?

3 Hướng dẫn học sinh về nhà làm các bài tập còn lại

Ngày đăng: 14/03/2014, 08:49

HÌNH ẢNH LIÊN QUAN

Bảng thực hiện - giáo án môn toán lớp 9 giải hệ phương trình bằng phương pháp cộng đại số
Bảng th ực hiện (Trang 4)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w