1. Trang chủ
  2. » Giáo án - Bài giảng

giáo án bài tính chất ba đường trung trực của tam giác - hình học 7 - gv.v.c.vinh

5 3,8K 14
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 201 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiến thức: - Học sinh nắm được đường trung trực của tam giác, một tam giác có ba đường trung trực, ba đường trung trực của tam giác cắt nhau tại một điểm, điểm này cách đều ba đỉnh của

Trang 1

Giáo án Hình học 7

Tuần 33

Tiết 61 §8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM

GIÁC

A Mục tiêu: Sau khi học song bài này, học sinh cần nắm được:

1 Kiến thức: - Học sinh nắm được đường trung trực của tam giác, một tam

giác có ba đường trung trực, ba đường trung trực của tam giác cắt nhau tại một

điểm, điểm này cách đều ba đỉnh của tam giác

- Học sinh nắm được: Trong một tam giác cân đường trung trực của cạnh đáy đồng thời là đường cao, đường trung tuyến, đường phân giác

2 Kĩ năng: - Biết cách vẽ các đường trung trực của tam giác

- Biết dùng định lí để chứng minh các định lí và giải bài tập

3 Thái độ: - Rèn tính cẩn thận, chính xác

B Chuẩn bị: - Giáo viên & hs - Thước thẳng, com pa, bảng phụ.

Phương pháp: Vấn đáp gợi mở kết hợp với hoạt động nhóm

C Tiến trình dạy học

1 ổn định tổ chức: (1’)

2 Bài mới:

HOẠT ĐỘNG CỦA GV &

HS

NỘI DUNG GHI BẢNG

HOẠT ĐỘNG 1: KIỂM TRA (5’) Phát biểu tính chất đường trung trực của một đoạn thẳng

Cho ABC hãy dùng thước và compa dựng ba đường trung trực của ba cạnh AB,

AC và BC Em có nhận xét gì về ba đường trung trực ấy?

HOẠT ĐỘNG 2: KHÁI NIỆM ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC (12’) GV: Vẽ tam giác ABC và vẽ đường

trung trực của cạnh BC rồi giới thiệu

trong một tam giác đường trung trực

của mỗi cạnh gọi là đường trung trực

của tam giác

? Vậy trong một tam giác có mấy

đường trung trực?

? Trong một tam giác bất kỳ đường

trung trực có nhất thiết phải qua đỉnh

đối diện với cạnh ấy hay không ?

? Trường hợp nào thì đi qua đỉnh đối

1) Đường trung trực cuả tam giác:

A a

B D C

- a là đường trung trực của ABC

- Mỗi tam giác có 3 đường trung trực

* Nhận xét: SGK/78.

* Tính chất: SGK/78

Trang 2

? Từ đó ta rút ra tính chất nào?

? Em nào có thể chứng minh được tính

chất này?

A

?1:

gt: ABC (AB = AC)

AD là đường trung trực

Kl: AD là đường trung tuyến B D C

Chứng minh:

Vì AD là đường trung trực của BC nên AD đi qua trung điểm của BC hay BD = DC  AD là trung tuyến của 

HOẠT ĐỘNG 3: TÍNH CHẤT CỦA BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC

(15’)

GV: ở phần KTBC các em đã có nhận

xét ba đường trung trực của tam giác

cùng đi qua một điểm Ta sẽ chứng

minh điều này

GV: Yêu cầu học sinh đọc nội dung

định lý

? Một em vẽ hình và ghi gt, kl?

GV: Để chứng minh định lý này ta dựa

trên hai định lý thuận và đảo tính chất

đường trung trực của một đoạn thẳng

? Một em hãy trình bày cách chứng

minh định lý?

Vì O thuộc trung trực AC

 OC = OA

Vì O thuộc trung trực AB

 OB = OA

 OB = OC  O thuộc trung trực

BC

cũng từ (1)  OB = OC = OA

tức ba trung trực đi qua 1 điểm, điểm

này cách đều 3 đỉnh của tam giác

? Nhận xét cách chứng minh của bạn?

? Từ đó ta có kết luận gì?

? O là điểm cách đều ba đỉnh, vậy O

còn được gọi là gì?

Để xác định tâm của đường tròn ngoại

tiếp tam giác cần vẽ mấy đường trung

2) Tính chất ba đường trung trực của tam giác:

* Định lý: SGK/78.

O B

c

A C Gt: ABC; b

b là đường trung trực của AC

c là đường trung trực của AB

b  c = O

kl: O nằm trên trung trực của BC

OA = OB = OC

Chứng minh:

Ta có: vì O nằm trên đường trung trực b của

AC nên: OA = OC (1)

Vì O nằm trên đường trung trực c của AB nên:

OA = OB (2)

Từ (1) và (2)  OB = OC hay O nằm trên đường trung trực của BC

Vậy ba đường trung trực cùng đi qua điểm O

và ta có: OA = OB = OC

* Chú ý: SGK/79.

O là tâm của đường tròn ngoại tiếp ABC

Trang 3

trực của tam giác?

Vì sao?

GV: Treo bảng phụ vẽ đường tròn

ngoại tiếp tam giác trong ba trường

hợp (Nhọn-Vuông-Tù)

Hãy nhận xét vị trí tâm O trong ba

trường hợp?

HOẠT ĐỘNG 4: CỦNG CỐ - LUYỆN TẬP (10’)

- Phát biểu tính chất trung trực của

tam giác

?Đọc đề bài 52 SGK

Vẽ hình, ghi giả thiết và kết luận

của bài vào vở?

Muốn chứng minh  ABC cân chỉ

cần chứng minh điều gì?

? Hãy chứng minh

Nhận xét?

Bài 52 ( SGK-79)

M

A

AM là trung trực của BC => AB = AC

=> ABC cân tại A

Bài 53 (SGK - 80)

HOẠT ĐỘNG 5: HƯỚNG DẪN HỌC BÀI Ở NHÀ (2’)

- Làm bài tập 54; 55; 56 (SGK)

HD 54:   0

DBAADC180

Tuần 33

Tiết 62 LUYỆN TẬP

A Mục tiêu: Sau khi học song bài này, học sinh cần nắm được:

1 Kiến thức: - Củng cố lại cho học sinh tính chất đường trung trực của đoạn

thẳng, tính chất ba đường trung trực của tam giác

2 Kĩ năng: - Rèn kĩ năng kĩ năng vẽ hình, chứng minh một đường thẳng là

trung trực của một đoạn thẳng

3 Thái độ: - Rèn tính cẩn thận, tinh thần hợp tác

B Chuẩn bị: *Thầy: Thước thẳng, thước đo góc, compa, bảng phụ.

*Trò: Thước thẳng, êke, thớc đo góc, compa

Phương pháp: Vấn đáp gợi mở kết hợp với hoạt động nhóm

C Tiến trình dạy học

Trang 4

1 ổn định tổ chức: (1’)

2 Bài mới:

HOẠT ĐỘNG CỦA GV &

HS

NỘI DUNG GHI BẢNG

HOẠT ĐỘNG 1: KIỂM TRA (8’) Phát biểu định lí t/c ba đường trung trực của tam giác ?

? Vẽ các đường trung trực của tam giác trong các trường hợp sau:

HS1: ABC có ba góc nhọn

HS2: Â= 900

HS3: Â > 900

HOẠT ĐỘNG 2: TỔ CHỨC LUYỆN TẬP (34’)

HĐ 1: Luyện tập:

? Yêu cầu học sinh đọc hình vẽ 51

SGK/80

? Bài toán yêu cầu điều gì?

? Một em lên bảng ghi giả thiết và

kết luận của bài toán?

? Để chứng minh B, C, D thẳng

hàng ta

có thể chứng minh như thế nào?

? Hãy tính góc BDA theo góc A1?

? Tương tự góc ADC theo góc A2?

? Suy ra góc BDC?

* Bài tập 55/80:

B Gt: Đoạn thẳng AB  AC

ID là trung trực của AB I D

KD là trung trực của AC

kl: B, D, C thẳng hàng

Chứng minh: A K

C

D thuộc đường trung trực của đoạn AB nên:

DA = DB  B ˆ Aˆ 1, do đó:

D thuộc trung trực của đoạn AC nên:

DA = DC  C ˆ Aˆ 2, do đó:

2

Từ (1) và (2) suy ra:

1 2

Vậy ba điểm B, C, D thẳng hàng

GV: Theo bài 55 thì D chính là giao

điểm các đường trung trực trong 

vuông ABC nằm trên cạnh huyền

BC

? Vậy điểm cách đều ba đỉnh củ tam

giác vuông là điểm nào?

GV: Đó chính là nội dung bài 56

* Bài tập 56/80:

Trong một tam giác vuông, theo bài 55 ta đã chứng minh được giao điểm của hai đường trung trực của hai cạnh góc vuông nằm trên cạnh huyền Từ đó suy ra giao điểm này chính là trung điểm của cạnh huyền

* Bài tập 57/80: B

1 2

Trang 5

? Một em hãy đọc nội dung bài tập

57/80?

? Muốn xác định được bán kính

trước hết ta cần xác định điểm nào?

? Làm thế nào để xác định được tâm

của đường tròn?

? Bán kính đường tròn được xác

định như thế nào?

C A

O Lấy ba điểm phân biệt A, B, C trên cung tròn đường viền Nối AB, BC Vẽ các đường trung trực của hai đoạn thẳng AB,

BC Giao điểm của hai đường trung trực đó

là tâm của đường tròn viền bị gãy, khoảng cách từ giao điểm đến bất một điểm nào của cung tròn là bán kính của đường viền

HOẠT ĐỘNG 3: HƯỚNG DẪN HỌC BÀI Ở NHÀ (2’)

- Xem lại các bài tập đã chữa

Làm bài tập - Làm bài tập 68, 69 (SBT)

HD68: AM cũng là trung trực

Ngày đăng: 14/03/2014, 01:29

HÌNH ẢNH LIÊN QUAN

Giáo án Hình học 7 - giáo án bài tính chất ba đường trung trực của tam giác - hình học 7 - gv.v.c.vinh
i áo án Hình học 7 (Trang 1)
? Một em vẽ hình và ghi gt, kl? - giáo án bài tính chất ba đường trung trực của tam giác - hình học 7 - gv.v.c.vinh
t em vẽ hình và ghi gt, kl? (Trang 2)
GV: Treo bảng phụ vẽ đường tròn ngoại tiếp tam giác trong ba trường  hợp (Nhọn-Vuông-Tù) - giáo án bài tính chất ba đường trung trực của tam giác - hình học 7 - gv.v.c.vinh
reo bảng phụ vẽ đường tròn ngoại tiếp tam giác trong ba trường hợp (Nhọn-Vuông-Tù) (Trang 3)
NỘI DUNG GHI BẢNG HOẠT ĐỘNG 1: KIỂM TRA  (8’) - giáo án bài tính chất ba đường trung trực của tam giác - hình học 7 - gv.v.c.vinh
1 KIỂM TRA (8’) (Trang 4)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w