c o m / l o c a t e / p o r g c o a t To Thi Xuan Hanga,∗, Ngo Thanh Dunga, Trinh Anh Truca, Nguyen Thuy Duonga, Bui Van Truoca, Pham Gia Vua, Thai Hoanga, Dinh Thi Mai Thanha, Marie-Geo
Trang 1jou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / p o r g c o a t
To Thi Xuan Hanga,∗, Ngo Thanh Dunga, Trinh Anh Truca, Nguyen Thuy Duonga,
Bui Van Truoca, Pham Gia Vua, Thai Hoanga, Dinh Thi Mai Thanha,
Marie-Georges Olivierb
a Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanọ, Viet Nam
b Université de Mons (UMONS), Faculté Polytechnique, Service de Science des Matériaux, 20 Place du Parc, Mons, Belgium
Article history:
Received 8 May 2014
Received in revised form
25 September 2014
Accepted 10 November 2014
Keywords:
Polyurethane coatings
Silane modified nano ZnO
UV resistance
Electrochemical impedance spectroscopy
NanosizedZnOmodifiedby2-aminoethyl-3-aminopropyltrimethoxysilane(APS)waspreparedusingthe precipitationmethod.ModifiednanoZnObysilane(ZnO-APS)wascharacterizedbyXRD,SEM,TEMand UV–vismeasurements.Thedegradationofthepolyurethanecoating,thepolyurethanecoatings contain-ing0.1wt%nanoZnOandthepolyurethanecoatingscontainingnanoZnO-APSattwoconcentrations(0.1 and0.5wt%)duringQUVtestwasevaluatedbyglossmeasurementandelectrochemicalimpedance spec-troscopy.ThecoatingsurfaceafterQUVtestwasobservedwithSEM.TheresultsshowthatnanoZnO-APS hassphericalstructurewithparticlesizearound10–15nm.NanoZnOimprovedtheUVresistanceofthe
PUcoatingandsurfacetreatmentbyAPSenhancedtheeffectofnanoZnO.ThepresenceofnanoZnO-APS
at0.1wt%concentrationsignificantlyimprovedtheUVresistanceofpolyurethanecoating
©2014ElsevierB.V.Allrightsreserved
1 Introduction
Themainfactorsoftheenvironmentwhichcausetheweather
degradationoforganiccoatingsareultravioletradiation,oxygen
andwater.ToreducedamagesduetoUVradiation,UVabsorbers
areoftenincorporatedinorganiccoatings.Organicabsorbers
suf-ferfrom migration and degradation over time, so theydo not
exhibitlong-termstabilityincoatings.InorganicUVabsorbersdo
notmigratesotheycanprovidelong-termprotectionandaremore
andmorewidelyused.Duetotheirsmallsize,thenanoparticlescan
beusedatlowconcentrationwithoutdisturbingtheothercoating
properties
ZincoxideisaninorganicUVabsorberhavingawidebandgap
energyandusedasUVstabilizerinorganiccoatings[1–4].Thenano
ZnOwasinvestigatedasUVabsorberinapolyurethane/acrylicclear
topcoat.TheinfluenceofZnOconcentrationandfilmthicknesson
theUVprotectionwasinvestigatedandtheresultsshowthatthe
presenceofnanoZnO at2.0g/m2 can blockmorethan99% UV
radiation[1].ThenanoZnOandsilica-coatednanoZnOimproved
theexteriordurability and physic-mechanical propertiesof the
acrylicwaterbornecoatingsforwood[2,3].Thepresenceofnano
∗ Corresponding author Tel.: +84 0912178768; fax: +84 4 37564484.
E-mail address: ttxhang@itt.vast.vn (T.T.X Hang).
zincoxideparticlesreducesthephoto-degradationofthearomatic polyurethanecoating[4].TheeffectofnanoZnOonthe proper-tiesofpoly(styrenebutylacrylate)latex/nanoZnOcompositeswas alsopreviouslystudied.TheresultsshowthatincreasingnanoZnO contentanditsdispersibilitycouldenhancetheUVshielding prop-ertiesofthenanocompositesandthat60nmZnOparticlescould shieldUVraysmoreeffectivelythan100nmZnOparticles[5] NanoZnOatlow concentrationsimprovedcorrosion,scratch and abrasion resistances of coatingssuch as alkyd, epoxy and polyurethane coatings [6–8] However, the nanoparticles tend
to produce someagglomerates and migrate to coating bulk at highloadings[9–11].Theenhancement ofphysico-thermaland mechanicalpropertiesisstronglyconnectedwiththeinterfacial interactions with the binder and the dispersion degree of the nanoparticlesinnanocompositecoatings[3]
Inordertoimprovethedispersioninpolymermatrix,thesurface
ofnanoZnOcanbefunctionalizedbysilanecompounds[12,13] ModificationofnanoZnOsurfaceby3-aminopropyltriethoxysilane improveddispersionofnanoZnOparticlesinepoxycoatingandits anti-corrosionandanti-bacterialproperties.NanoZnO nanopar-ticlesmodifiedby3-(trimethoxysilyl)propylmethacrylatecanbe homogeneouslydispersedinthepolyurethaneacrylatematrix[13]
In this work nano ZnO modified by 2-aminoethyl-3-aminopropyltrimethoxy silane (ZnO-APS) as UV absorber for organiccoatings was prepared.The synthesized nano ZnO-APS
http://dx.doi.org/10.1016/j.porgcoat.2014.11.008
0300-9440/© 2014 Elsevier B.V All rights reserved.
Trang 2thepolyurethanecoatingscontainingdifferentconcentrationsin
nanoZnO-APSwasevaluatedandcomparedtothepolyurethane
coatingandthepolyurethanecoatingscontainingnanoZnOafter
differentexposuretimestoQUVtestbyglossmeasurementand
electrochemicalimpedancespectroscopy.Thesurfaceofcoatings
afterQUVtestwasobservedbySEM
2 Experimental
2.1 Materials
Sodiumhydroxide, Zn(CH3COO)2,
2-aminoethyl-3-aminopro-pyltrimethoxysilane(APS)werepurchasedfromMerck
The used bicomponent polyurethane coating was based on
DesmophenA160withequivalentweightof1065andDesmodure
N75hardenerwiththeequivalentweightof255.Thetwo
compo-nentsweresuppliedbyBayer
2.2 PreparationofnanoZnO
NanoZnOwaspreparedbyusingtheprecipitationmethod[14]
Asolutioncontaining10mlofethanoland0.2gofNaOHwasslowly
addedundervigorouslystirringtoasolutionof30mlofethanol
and0.51gofZn(CH3COO)2.Theresultingsolutionwasmaintained
at70◦Cfor90min.Thenthesolutionwascooledbyusinganice
bathandstirredfor2hat0◦C.Theresultingwhiteprecipitatewas
agedfor12hat0◦C,andthenfilteredandwashedseveraltimes
withdistilledwaterandethanol.TheZnOprecipitatewasdriedat
50◦Cinavacuumovenfor24h
2.3 ModificationofnanoZnOby
2-aminoethyl-3-aminopropyltrimethoxysilane
ThefunctionalizationbyAPSwasperformedbymixingunder
vigorousstirringethanolsolutioncontaining0.15gofnanoZnOand
0.015gAPS.Thetemperaturewasmaintainedat60◦Cfor3h.The
whiteprecipitatewaswashedseveraltimeswithethanol.Silane
modifiednanoZnO(ZnO-APS)wasdriedat50◦Cinavacuumoven
for24h
2.4 Polyurethanecoatingpreparation
Carbonsteel sheets (150mm×10mm×2mm)were usedas
substrates.Sheetswerepolishedwithabrasivepapersfrom80to
600gradesandcleanedwithethanol
Polyuretane coating and polyuretane coatings containing
0.1wt%nanoZnOandnanoZnO-APSattwoconcentrations(0.1wt%
and0.5wt%)werepreparedandappliedoncarbonsteel.Thenano
ZnOandZnO-APSweredispersedbymagneticstirringandthen
sonicationwithultrasonicwavesat35kHzfrequencyfor20min
Theliquidpaintwasappliedbyspincoatingat600rpmfor1min
anddriedatambienttemperaturefor7days.Thedryfilm
thick-ness was30±3m (measured by Minitest 600Erichen digital
meter)
2.5 Analyticalcharacterizations
FouriertransforminfraredspectrawereobtainedusingtheKBr
methodonaNexus670Nicoletspectrometeroperatedat1cm−1
resolutioninthe400–4000cm−1region
X-ray diffraction measurements were performed with a
SiemensdiffractometerD5000withCuK␣X-raydiffraction
FE-SEMobservationswerecarriedoutusingaHitachi4800
spec-trometer
TEMobservationswerecarriedoutusingJEM1010transmission electronmicroscopyoperatingat80kV
UV–visspectrawereobtainedusingaGBCCintra40 spectrom-eter
2.6 QUVtestofcoatings The coatings were tested in the UV-condensation chamber ATLAS UVCON UC-327-2 with fluorescent UV lamps UVB 313 accordingtoASTMstandardG53-96(4hUVat70◦C+8hof con-densationat50◦C)
2.7 Glossmeasurements Theglossofcoatingswasmeasuredat60◦ witha Micro-TRI-glossfromBYK-Gardner
2.8 Electrochemicalimpedancemeasurements Theelectrochemicalimpedancemeasurementswereperformed usinganAutolabPGSTAT30overafrequencyrangeof100kHzto
10mHzwithsixpointsperdecadeusing30mVpeak-to-peak sinu-soidalvoltage
Theassessment of thecoating performancewasdetermined afterQUVtestbyEIS after1hofimmersionin3%Na2SO4 elec-trolytesolution.Theexposedareawas12.56cm2.Foreachsystem, threesamplesweretestedtoensurereproducibility
3 Resultsanddiscussion 3.1 CharacterizationofnanoZnO-APS Fouriertransformationinfraredspectroscopy(FT-IR)wasused
toconfirmthepresenceofAPSinmodifiedZnO.Fig.1shows
FT-IRspectraofAPS,nanoZnOandsilanemodifiedZnO(ZnO-APS) ThespectrumofAPSshowsabandat3370cm−1characteristicof
OHand NH2groups.Thebandsat2940cm−1and2840cm−1are
Wavenumber / cm-1
500 1000 1500 2000 2500 3000 3500 4000
(a)
(b)
(c)
Fig 1 FTIR spectra of (a) 2-aminoethyl-3-aminopropyltrimethoxysilane (APS); (b)
Trang 3Fig 2 XRD patterns of (a) nano ZnO and (b) nano ZnO-APS.
attributedtothevibrationof CH3and CH2groups.Thebandat
1083cm−1isrelativetoSi Ovibrationandcharacteristicbandat
818cm−1originatesfromthesymmetricstretchofSi O CH3[15]
FT-IR spectrum of ZnO nanoparticles shows the peaks at
3451cm−1and1636cm−1duetothestretchingvibrationsofthe
OHgrouponthesurfaceofZnOnanoparticlesandahighintensity
broadbandaround455cm−1duetotheZn Ovibration[16]
FT-IRspectrumof ZnO-APSdisplaysthebands characteristic
of OHand NH2groupsandZn Oat3433cm−1and440cm−1
Thebandatabout1633cm−1canbeassignedtothedeformation
vibrationof OHgroup.Thebandat1041cm−1 isattributedto
Si O Si.Thedisappearanceofthepeakat818cm−1, characteris-ticofSi O CH3,andthepresenceofnewpeakat873cm−1which couldbeassignedtotheSi O Znbond,indicatethecomplete reac-tionbetweentheZnOnanoparticlesandthehydrolyzedAPS[15] Thebandsat2922cm−1and1384cm−1dueto CH2groupsofAPS TheseresultsindicatethatAPShasbeensuccessfullygraftedonto thesurfaceofZnOnanoparticles
3.1.1 XRDanalysis TheXRDpatternsofthenanoZnOandnanoZnO-APSare pre-sented in Fig 2 For nanoZnO the XRD pattern shows typical peaksat2=31.7◦,33.9◦,36.2◦,47.3◦,56.4◦,62.7◦and67.8◦ corre-spondingto(100),(002),(101),(102),(110),(103)and(112) respectively,whichcanbeindexedtohexagonalwurtziteZnOin thestandarddata(JCPDS,36-1451).ThepatternofnanoZnO-APS presentsthesamepeaksasnanoZnO.ThepatternofnanoZnOis shaperthanthatofnanoZnO-APS.Thisresultcanbeexplainedby thenanoZnOfunctionalizationsurfacebyAPS
3.1.2 SEMimages SEMimagesofnanoZnOandnanoZnO-APSareshowninFig.3
It canbeseen that theypresenta spherical shapewithsize in 10–15nmrange.AsobservedinFig.3a,thenanoZnOare agglom-eratedinclustershavingsizearound20–40nm
AlthoughthemorphologyofnanoZnO-APSissimilartonano ZnOwithasphericalshape,thecorrespondingnanoparticlesare wellseparatedwithoutformationofagglomerates
3.1.3 TEMimages Fig.4showstheTEMimageofnanoZnOandnanoZnO-APS TheseresultsconfirmtheZnOsphericalshapewithasizeinthe 10–15nmrange.ThemorphologyofnanoZnO-APSissimilarto nanoZnO
Fig 3 SEM images of (a) nano ZnO and (b) nano ZnO-APS.
Trang 4Wavelength / nm
0.0
0.5
1.0
(a)
(b)
Fig 5 UV–vis spectra of (a) nano ZnO and (b) nano ZnO-APS.
3.1.4 UV–visanalysis
TheUVabsorptionpropertiesofnanoZnO-APSwereevaluated
andcompared tothoseofnanoZnO.UV–vis absorptionspectra
of0.01wt%nanoZnO-APSandnanoZnOethanolicsolutionsare
presented in Fig 5 For nanoZnO theabsorption in the range
of 360–230nm wasobserved This resultis in agreement with
literature[15,17].BycomparisonwithnanoZnO, nanoZnO-APS
absorbedinthesamerangeofwavelengthsbutthecorresponding
absorbanceislower.Theseresultsindicatethataftersilane
modi-fication,nanoZnO-APScanalsobeusedasUVabsorberinorganic
coatingstoblockUVradiation
3.2 QUVtestofcoatings
ThecoatingswereexposedinQUVtestchamberupto216h
and the degradation of coatings was evaluated by gloss
mea-surement and electrochemical impedance measurements after
differentexposuretimes,thesurfaceofcoatingsafterQUVtestwas
analyzedbySEM
3.2.1 Glossmeasurement
Coatingglosswasmeasuredafterdifferentexposuretimesto
QUVtest and thecoatingglossretentionis presentedin Fig.6
Glossretentionisdefinedasthepercentagechangeinthe
spec-imenglossduringQUVtestrelativetoitsinitialglossvalue.The
glossofcoatingsincreasedslightlyduringfirst96hofQUVtest
Thentheglossretentionofcoatingsdecreasedwhentheexposure
timeincreased.Theincreaseofcoatingsglossatthebeginningof
exposurecanbeexplainedbyinterchaincrosslinkingbetweenfree
radicalofadjacentchainsofresinsformedbyUVradiation[18]
Thelossofglossofcoatingsisrepresentativeofthedegradation
ofcoatingsduetoeffectsofultravioletradiation.TheUVradiation
causespolymerchainbreakdownandasaresultadecreaseof
coat-inggloss.After216hofQUVtest,glossretentionsofPUcoatings
containingnanoZnO-APSornanoZnOwerehigherthanoneofthe
Ucoating.Thehighestglossretentionwasobtainedwithcoatings
containing0.1wt%ofnanoZnO-APS(99.5%)after216hof
expo-sureincomparisonwiththeglossretentionofPUcoatingswhich
wasonly82.2%.After216hofexposuretheglossretentionsofPU
coatingscontaining0.1wt%ofnanoZnOwaslowerthanoneofthe
PUcoatingcontaining0.1wt%ofnanoZnO-APS,buthigherthan
oneofthePUcoatingcontaining0.5wt%ofnanoZnO-APS
TheseresultsshowthatnanoZnOimprovedtheUVresistance
ofPUcoatingsandsurfacetreatmentbyAPSenhancedtheeffectof
nanoZnO.TheeffectofnanoZnO-APSdependsonitsconcentration
80 85 90 95 100 105 110
QUV test time / h
Fig 6 Gloss retention versus exposure time to QUV test of () Pure PU coating; (△)
PU coating containing 0.1 wt% nano ZnO; (䊉) PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt% nano ZnO-APS.
inPUcoating.ThehighestefficiencywasobtainedwiththeZnO-APS concentrationof0.1wt%
3.2.2 SurfaceobservationbySEM Thecoatingssurfacebeforeandafter216hexposuretoQUVtest wereobservedbySEM.Fig.7presentstheSEMmicrographsofpure
PUcoatingandPUcoatingscontainingnanoZnOandnano ZnO-APSatdifferentconcentrationsbeforeexposuretoQUVtest.Itcan
beseenthatthepurePUcoatingsurfaceissmoothand homoge-nous.ThePUcoatingcontaining0.1wt%ofnanoZnOshowsthe agglomerationofnanoZnO.ThePUcoatingcontaining0.1wt%nano ZnO-APShasuniformsurfacemorphologywithwelldispersednano ZnO-APS,whilethesurfaceofPUcoatingcontaining0.5wt%nano ZnO-APSshowstheagglomerationofnanoZnO-APS.Theseresults indicatethatthefunctionalizationsurfacebyAPSimprovedthe dispersionofnanoZnOinPUcoating,butthedispersiondegree decreasedwiththeincreaseofZnO-APSconcentration
Fig.8 shows thesurface micrographs of PUcoating and PU coatingscontainingnanoZnOandnanoZnO-APSafter216h expo-suretoQUV test ThepurePU coatingpresents largecracksof
100nmwidthatthesurface.Thisindicatesdrasticchangesof coat-ingduringexposuretoQUVtest.ForPUcoatingcontaining0.1wt% nanoZnOitisobservedasmallcrackonthesurface,butfailure degreewaslowerincomparisontopurePUcoating.ForPU coat-ingcontaining0.1wt%nanoZnO-APS,nocrackisobserved.With highernanoZnO-APSconcentrations(0.5wt%)itcanbeseenasmall crackonthesurface,butthefailuredegreewaslowerin compari-sontopurePUcoatingandPUcoatingcontaining0.1wt%nanoZnO ThisresultindicatestheimprovementinUVresistanceofthePU coatingswiththeincorporationofnanoZnOornanoZnO-APSin coatings.ThiscanbeattributedtotheUVblockingpropertyof nano-ZnO [4,5].ThesurfacetreatmentofnanoZnObyAPSenhanced itsefficiency TheefficiencynanoZnO-APS depends onits con-centrationand thebestUV resistantcoating wasobtainedwith concentrationof0.1wt%forwhichtheZnO-APSdispersionis ver-ified.TheincreaseofnanoZnO-APSconcentrationdidnotleadto highereffectonUVresistanceofPUcoating
3.2.3 Electrochemicalimpedancemeasurements
In ordertoassessthechangeofbarrierpropertyof coatings duringQUVtest,electrochemicalimpedancediagramsofcoatings weremeasuredbeforeandafterQUVtest.Figs.9and10presentthe
Trang 5Fig 7 SEM images before QUV test of (a) Pure PU coating; (b) PU coating containing 0.1 wt% nano ZnO; (c) PU coating containing 0.1 wt% nano ZnO-APS; (d) PU coating containing 0.5 wt% nano ZnO-APS.
impedancediagramsofcoatingsbeforeandafter216hofexposure
toQUVtest,respectively
The impedance modulus at low frequencies were high and
superiorto108cm2.Thebarrierpropertiesincreasedwiththe
incorporationofnanoZnOornanoZnO-APScomparedtotheclear
polyurethanecoating.Forthissystem,theinitialbehaviorisclose
toapurecapacitivebehaviorwithaphaseanglecloseto−90◦in
wholefrequencyrange.ForpurePUcoating,aresistivebehavioris
observedatlowfrequenciesbeforeQUVtest
Theimprovementofbarrierpropertiesofcoatingsbythe pres-enceof nano ZnO and nano ZnO-APS can beexplained bythe enhancementofcoatingdensityduetotheadsorptionoftheepoxy resinonthenanoZnO andnanoZnO-APS therebyreducingthe transportpathsforthecorrosiveelectrolytetopassthroughthe coatingsystem[7–9]
After216hofQUVtest,theimpedancemodulusofallcoatings decreased.Theimpedancemodulusatlowfrequenciesofcoatings containingnanoZnOornanoZnO-APSweremuchhigherthanone
Fig 8 SEM images after 216 h of QUV test of (a) Pure PU coatings; (b) PU coating containing 0.1 wt% nano ZnO; (c) PU coating containing 0.1 wt% nano ZnO-APS; (d) PU
Trang 6104
105
106
107
108
109
1010
1011
0 15 30 45 60 75 90
10-3 10-2 10-1 100 101 102 103 104 105
Frequency / Hz
Fig 9 Electrochemical impedance diagrams (bode presentation) obtained before
QUV test of () Pure PU coating; (△) PU coating containing 0.1 wt% nano ZnO; (䊉)
PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt%
nano ZnO-APS.
ofthePUcoating.Theimpedancemodulusatlowfrequenciesof
coatingscontaining0.1wt%nanoZnO-APSwashigherthanoneof
thePUcoatingscontaining0.1wt%nanoZnO.Forcoatings
contain-ingZnO-APS,thePUcoatingcontaining0.1wt%nanoZnO-APSkept
aquitehighimpedancemodulusatlowfrequencies.Theincreaseof
concentrationofZnO-APSinPUcoatingsdecreasedtheimpedance
modulusofcoatings
It wasproposed byKittel et al [19] and the groupof
Bier-wagen[20–22]thattheimpedancemodulusatlow frequencies
measuredversusexposuretimecouldserveasanestimationof
thecorrosionprotectionofapaintedmetal.Fig.11plots|Z|100 mHz
versusQUVtesttime.Itisobservedthatthe|Z|100mHzvaluesofall
coatingsdecreasedrapidlyduringfirst72hofQUVtest.Thisresult
indicatesarapidlossoftheprotectivepropertiesofthefilm.The
fallof|Z|100mHz duringthefirst72hofQUVtestwasattributed
tothedegradationofcoatingsduetotheUVradiation.Afterthis
0 15 30 45 60 75 90
Fig 10 Electrochemical impedance diagrams obtained after 216 h of QUV test of
() Pure PU coating; (△) PU coating containing 0.1 wt% nano ZnO; (䊉) PU coating
QUV test time / h
l10
Fig 11 |Z| 100 mHz versus QUV test time of () Pure PU coating; (△) PU coating con-taining 0.1 wt% nano ZnO; (䊉) PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt% nano ZnO-APS.
exposuretimetoQUVtest,the|Z|100mHzvalueofpurePUcoating,
PUcoatingscontaining0.1wt%nanoZnOandPUcoating contain-ing0.5wt%nanoZnO-APScontinuedtodecrease.ForthePUcoating containing0.1wt%nanoZnO-APSthe|Z|100mHzvalueremained rel-ativelystableathighvalues.After216hofQUVtestthe|Z|100mHz valueofPUcoatingscontainingnanoZnOandZnO-APSweremuch higherthanoneofthepurePUcoating.The|Z|100mHzvalueofPU coatingcontaining0.1wt%nanoZnO-APSwashigherthanoneof thePUcoatingcontaining0.1wt%nanoZnO.AmongPUcoatings containing nanoZnO-APS, thecoating with 0.1wt% nano ZnO-APShasthehigher|Z|100mHz value.Theseresultsshowthat the presenceofnanoZnO-APSimprovedtheUVresistanceofPU coat-ingandthebestcoatingsperformancewasobtainedwith0.1wt% nanoZnO-APS.Theresultsobtainedbyimpedancemeasurements areinagreementwiththeglossmeasurementsandSEM observa-tions
Thedecreaseof|Z|100mHzvaluesinthecaseofpurePUcoating,
PUcoatingcontaining0.1wt%nanoZnOandPUcoatingcontaining 0.5wt%nanoZnO-APScanbeexplainedbythepresenceofcracks
inthecoatingsafterexposuretoQUVtest.Forcoatingcontaining 0.1wt%nanoZnO-APS,nocrackappeared,sothatthecoatinghas thehighestglossretentionand|Z|100mHzvalueafter216hexposure
toQUVtest
4 Conclusion Nano ZnO modified by 2-aminoethyl-3-aminopropyl-trimethoxysilane (ZnO-APS)was successfully synthesized ZnO-APShassphericalstructureanditsparticlesizeisabout10–15nm ThedegradationofPUcoatingscontaining0.1wt%nanoZnOand nanoZnO-APSattwoconcentrations(0.1wt%and0.5wt%)dueto exposureinQUVtestwasstudied.ThepresenceofnanoZnOand ZnO-APSimprovedtheUVresistanceofPUcoatings.Thesurface modificationofnanoZnObyAPSenhanceditsefficiencyandthe efficiencyof nanoZnO-APSdepends onitsconcentration.Nano ZnO-APSat lowconcentrationof0.1wt%enhancedsignificantly
UVresistanceofPUcoating.TheincreaseofZnO-APSconcentration didnot improvevery much theUV resistanceofPUcoating It willbenecessarytoimprovethedispersionofnanoZnO-APSand optimizeitsconcentrationinthecoating
Trang 7TheauthorsgratefullyacknowledgethesupportofMinistryof
ScienceandTechnologyofVietnamthroughproject
132/2013/HÐ-NÐT and Wallonie-Bruxelles International (WBI) of Belgium
throughproject28
References
[1] M.S Lowry, D.R Hubble, A.L Wressell, M.S Vratsanos, F.R Pepe, C.R Hegedus,
J Coat Technol Res 5 (2008) 233–239.
[2] M.V Cristea, B Riedl, P Blanchet, Prog Org Coat 69 (2010) 432–441.
[3] M.V Cristea, B Riedl, P Blanchet, Prog Org Coat 72 (2011) 755–762.
[4] M Rashvand, Z Ranjbar, S Rastegar, Prog Org Coat 71 (2011) 362–368.
[5] M.N Xiong, G.X Gu, B You, L.M Wu, J Appl Polym Sci 90 (2003) 1923–1931.
[6] S.K Dhoke, A.S Khanna, T.J.M Sinha, Prog Org Coat 64 (2009) 371–382.
[7] S.K Dhoke, A.S Khanna, Corros Sci 51 (2009) 6–20.
[8] B Ramezanzadeh, M.M Attar, M Farzam, Prog Org Coat 72 (2011) 410–422.
[9] A Anand, R.D Kulkarni, V.V Gite, Prog Org Coat 74 (2012) 764–767.
[10] M Rashvand, Z Ranjbara, Prog Org Coat 76 (2013) 1413–1417.
[11] M Kathalewar, A Sabnis, G Waghoo, Prog Org Coat 76 (2013) 1215–1229.
[12] D Duraibabu, T Ganeshbabu, R Manjumeena, S.A Kumar, P Dasan, Prog Org Coat 77 (2014) 657–664.
[13] D Kim, K Jeon, Y Lee, J Seo, K Seo, H Han, S Khan, Prog Org Coat 74 (2012) 435–442.
[14] J Bang, H Yang, P.H Holloway, J Chem Phys 123 (2005), 084709-084705.
[15] Z Guo, S Wei, B Shedd, R Scaffaro, T Pereira, H.T Hahn, J Mater Chem 17 (2007) 806–813.
[16] Aldrich Library of FT-IR Spectra, 2nd ed., Aldrich Chemical Co., Milwaukee, WI, 1997.
[17] S Mallakpour, M Madani, Bull Mater Sci 35 (2012) 333–339.
[18] J Pospısil, S Nespurek, Prog Polym Sci 25 (2000) 1261–1335.
[19] J Kittel, N Celati, M Keddam, H Takenouti, Prog Org Coat 46 (2003) 135–147.
[20] G.P Bierwagen, D Tallman, J Li, L He, C Jeffcoate, Prog Org Coat 46 (2003) 148–158.
[21] R.L De Rosa, D.A Earl, G.P Bierwagen, Corros Sci 44 (2002) 1607–1620.
[22] B.R Hinderliter, S.G Croll, D.E Tallman, Q Su, G.P Bierwagen, Electrochim Acta
51 (2006) 4505–4515.