1. Trang chủ
  2. » Luận Văn - Báo Cáo

Effect of silane modified nano zno on UV degradation of polyurethane coatings

7 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Effect of Silane Modified Nano ZnO on UV Degradation of Polyurethane Coatings
Tác giả To Thi Xuan Hang, Ngo Thanh Dung, Trinh Anh Truc, Nguyen Thuy Duong, Bui Van Truoc, Pham Gia Vu, Thai Hoang, Dinh Thi Mai Thanh
Trường học Vietnam Academy of Science and Technology
Chuyên ngành Organic Coatings, Materials Science, Surface Chemistry
Thể loại Research article
Năm xuất bản 2015
Thành phố Hanoi
Định dạng
Số trang 7
Dung lượng 0,95 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

c o m / l o c a t e / p o r g c o a t To Thi Xuan Hanga,∗, Ngo Thanh Dunga, Trinh Anh Truca, Nguyen Thuy Duonga, Bui Van Truoca, Pham Gia Vua, Thai Hoanga, Dinh Thi Mai Thanha, Marie-Geo

Trang 1

jou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / p o r g c o a t

To Thi Xuan Hanga,∗, Ngo Thanh Dunga, Trinh Anh Truca, Nguyen Thuy Duonga,

Bui Van Truoca, Pham Gia Vua, Thai Hoanga, Dinh Thi Mai Thanha,

Marie-Georges Olivierb

a Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanọ, Viet Nam

b Université de Mons (UMONS), Faculté Polytechnique, Service de Science des Matériaux, 20 Place du Parc, Mons, Belgium

Article history:

Received 8 May 2014

Received in revised form

25 September 2014

Accepted 10 November 2014

Keywords:

Polyurethane coatings

Silane modified nano ZnO

UV resistance

Electrochemical impedance spectroscopy

NanosizedZnOmodifiedby2-aminoethyl-3-aminopropyltrimethoxysilane(APS)waspreparedusingthe precipitationmethod.ModifiednanoZnObysilane(ZnO-APS)wascharacterizedbyXRD,SEM,TEMand UV–vismeasurements.Thedegradationofthepolyurethanecoating,thepolyurethanecoatings contain-ing0.1wt%nanoZnOandthepolyurethanecoatingscontainingnanoZnO-APSattwoconcentrations(0.1 and0.5wt%)duringQUVtestwasevaluatedbyglossmeasurementandelectrochemicalimpedance spec-troscopy.ThecoatingsurfaceafterQUVtestwasobservedwithSEM.TheresultsshowthatnanoZnO-APS hassphericalstructurewithparticlesizearound10–15nm.NanoZnOimprovedtheUVresistanceofthe

PUcoatingandsurfacetreatmentbyAPSenhancedtheeffectofnanoZnO.ThepresenceofnanoZnO-APS

at0.1wt%concentrationsignificantlyimprovedtheUVresistanceofpolyurethanecoating

©2014ElsevierB.V.Allrightsreserved

1 Introduction

Themainfactorsoftheenvironmentwhichcausetheweather

degradationoforganiccoatingsareultravioletradiation,oxygen

andwater.ToreducedamagesduetoUVradiation,UVabsorbers

areoftenincorporatedinorganiccoatings.Organicabsorbers

suf-ferfrom migration and degradation over time, so theydo not

exhibitlong-termstabilityincoatings.InorganicUVabsorbersdo

notmigratesotheycanprovidelong-termprotectionandaremore

andmorewidelyused.Duetotheirsmallsize,thenanoparticlescan

beusedatlowconcentrationwithoutdisturbingtheothercoating

properties

ZincoxideisaninorganicUVabsorberhavingawidebandgap

energyandusedasUVstabilizerinorganiccoatings[1–4].Thenano

ZnOwasinvestigatedasUVabsorberinapolyurethane/acrylicclear

topcoat.TheinfluenceofZnOconcentrationandfilmthicknesson

theUVprotectionwasinvestigatedandtheresultsshowthatthe

presenceofnanoZnO at2.0g/m2 can blockmorethan99% UV

radiation[1].ThenanoZnOandsilica-coatednanoZnOimproved

theexteriordurability and physic-mechanical propertiesof the

acrylicwaterbornecoatingsforwood[2,3].Thepresenceofnano

∗ Corresponding author Tel.: +84 0912178768; fax: +84 4 37564484.

E-mail address: ttxhang@itt.vast.vn (T.T.X Hang).

zincoxideparticlesreducesthephoto-degradationofthearomatic polyurethanecoating[4].TheeffectofnanoZnOonthe proper-tiesofpoly(styrenebutylacrylate)latex/nanoZnOcompositeswas alsopreviouslystudied.TheresultsshowthatincreasingnanoZnO contentanditsdispersibilitycouldenhancetheUVshielding prop-ertiesofthenanocompositesandthat60nmZnOparticlescould shieldUVraysmoreeffectivelythan100nmZnOparticles[5] NanoZnOatlow concentrationsimprovedcorrosion,scratch and abrasion resistances of coatingssuch as alkyd, epoxy and polyurethane coatings [6–8] However, the nanoparticles tend

to produce someagglomerates and migrate to coating bulk at highloadings[9–11].Theenhancement ofphysico-thermaland mechanicalpropertiesisstronglyconnectedwiththeinterfacial interactions with the binder and the dispersion degree of the nanoparticlesinnanocompositecoatings[3]

Inordertoimprovethedispersioninpolymermatrix,thesurface

ofnanoZnOcanbefunctionalizedbysilanecompounds[12,13] ModificationofnanoZnOsurfaceby3-aminopropyltriethoxysilane improveddispersionofnanoZnOparticlesinepoxycoatingandits anti-corrosionandanti-bacterialproperties.NanoZnO nanopar-ticlesmodifiedby3-(trimethoxysilyl)propylmethacrylatecanbe homogeneouslydispersedinthepolyurethaneacrylatematrix[13]

In this work nano ZnO modified by 2-aminoethyl-3-aminopropyltrimethoxy silane (ZnO-APS) as UV absorber for organiccoatings was prepared.The synthesized nano ZnO-APS

http://dx.doi.org/10.1016/j.porgcoat.2014.11.008

0300-9440/© 2014 Elsevier B.V All rights reserved.

Trang 2

thepolyurethanecoatingscontainingdifferentconcentrationsin

nanoZnO-APSwasevaluatedandcomparedtothepolyurethane

coatingandthepolyurethanecoatingscontainingnanoZnOafter

differentexposuretimestoQUVtestbyglossmeasurementand

electrochemicalimpedancespectroscopy.Thesurfaceofcoatings

afterQUVtestwasobservedbySEM

2 Experimental

2.1 Materials

Sodiumhydroxide, Zn(CH3COO)2,

2-aminoethyl-3-aminopro-pyltrimethoxysilane(APS)werepurchasedfromMerck

The used bicomponent polyurethane coating was based on

DesmophenA160withequivalentweightof1065andDesmodure

N75hardenerwiththeequivalentweightof255.Thetwo

compo-nentsweresuppliedbyBayer

2.2 PreparationofnanoZnO

NanoZnOwaspreparedbyusingtheprecipitationmethod[14]

Asolutioncontaining10mlofethanoland0.2gofNaOHwasslowly

addedundervigorouslystirringtoasolutionof30mlofethanol

and0.51gofZn(CH3COO)2.Theresultingsolutionwasmaintained

at70◦Cfor90min.Thenthesolutionwascooledbyusinganice

bathandstirredfor2hat0◦C.Theresultingwhiteprecipitatewas

agedfor12hat0◦C,andthenfilteredandwashedseveraltimes

withdistilledwaterandethanol.TheZnOprecipitatewasdriedat

50◦Cinavacuumovenfor24h

2.3 ModificationofnanoZnOby

2-aminoethyl-3-aminopropyltrimethoxysilane

ThefunctionalizationbyAPSwasperformedbymixingunder

vigorousstirringethanolsolutioncontaining0.15gofnanoZnOand

0.015gAPS.Thetemperaturewasmaintainedat60◦Cfor3h.The

whiteprecipitatewaswashedseveraltimeswithethanol.Silane

modifiednanoZnO(ZnO-APS)wasdriedat50◦Cinavacuumoven

for24h

2.4 Polyurethanecoatingpreparation

Carbonsteel sheets (150mm×10mm×2mm)were usedas

substrates.Sheetswerepolishedwithabrasivepapersfrom80to

600gradesandcleanedwithethanol

Polyuretane coating and polyuretane coatings containing

0.1wt%nanoZnOandnanoZnO-APSattwoconcentrations(0.1wt%

and0.5wt%)werepreparedandappliedoncarbonsteel.Thenano

ZnOandZnO-APSweredispersedbymagneticstirringandthen

sonicationwithultrasonicwavesat35kHzfrequencyfor20min

Theliquidpaintwasappliedbyspincoatingat600rpmfor1min

anddriedatambienttemperaturefor7days.Thedryfilm

thick-ness was30±3␮m (measured by Minitest 600Erichen digital

meter)

2.5 Analyticalcharacterizations

FouriertransforminfraredspectrawereobtainedusingtheKBr

methodonaNexus670Nicoletspectrometeroperatedat1cm−1

resolutioninthe400–4000cm−1region

X-ray diffraction measurements were performed with a

SiemensdiffractometerD5000withCuK␣X-raydiffraction

FE-SEMobservationswerecarriedoutusingaHitachi4800

spec-trometer

TEMobservationswerecarriedoutusingJEM1010transmission electronmicroscopyoperatingat80kV

UV–visspectrawereobtainedusingaGBCCintra40 spectrom-eter

2.6 QUVtestofcoatings The coatings were tested in the UV-condensation chamber ATLAS UVCON UC-327-2 with fluorescent UV lamps UVB 313 accordingtoASTMstandardG53-96(4hUVat70◦C+8hof con-densationat50◦C)

2.7 Glossmeasurements Theglossofcoatingswasmeasuredat60◦ witha Micro-TRI-glossfromBYK-Gardner

2.8 Electrochemicalimpedancemeasurements Theelectrochemicalimpedancemeasurementswereperformed usinganAutolabPGSTAT30overafrequencyrangeof100kHzto

10mHzwithsixpointsperdecadeusing30mVpeak-to-peak sinu-soidalvoltage

Theassessment of thecoating performancewasdetermined afterQUVtestbyEIS after1hofimmersionin3%Na2SO4 elec-trolytesolution.Theexposedareawas12.56cm2.Foreachsystem, threesamplesweretestedtoensurereproducibility

3 Resultsanddiscussion 3.1 CharacterizationofnanoZnO-APS Fouriertransformationinfraredspectroscopy(FT-IR)wasused

toconfirmthepresenceofAPSinmodifiedZnO.Fig.1shows

FT-IRspectraofAPS,nanoZnOandsilanemodifiedZnO(ZnO-APS) ThespectrumofAPSshowsabandat3370cm−1characteristicof

OHand NH2groups.Thebandsat2940cm−1and2840cm−1are

Wavenumber / cm-1

500 1000 1500 2000 2500 3000 3500 4000

(a)

(b)

(c)

Fig 1 FTIR spectra of (a) 2-aminoethyl-3-aminopropyltrimethoxysilane (APS); (b)

Trang 3

Fig 2 XRD patterns of (a) nano ZnO and (b) nano ZnO-APS.

attributedtothevibrationof CH3and CH2groups.Thebandat

1083cm−1isrelativetoSi Ovibrationandcharacteristicbandat

818cm−1originatesfromthesymmetricstretchofSi O CH3[15]

FT-IR spectrum of ZnO nanoparticles shows the peaks at

3451cm−1and1636cm−1duetothestretchingvibrationsofthe

OHgrouponthesurfaceofZnOnanoparticlesandahighintensity

broadbandaround455cm−1duetotheZn Ovibration[16]

FT-IRspectrumof ZnO-APSdisplaysthebands characteristic

of OHand NH2groupsandZn Oat3433cm−1and440cm−1

Thebandatabout1633cm−1canbeassignedtothedeformation

vibrationof OHgroup.Thebandat1041cm−1 isattributedto

Si O Si.Thedisappearanceofthepeakat818cm−1, characteris-ticofSi O CH3,andthepresenceofnewpeakat873cm−1which couldbeassignedtotheSi O Znbond,indicatethecomplete reac-tionbetweentheZnOnanoparticlesandthehydrolyzedAPS[15] Thebandsat2922cm−1and1384cm−1dueto CH2groupsofAPS TheseresultsindicatethatAPShasbeensuccessfullygraftedonto thesurfaceofZnOnanoparticles

3.1.1 XRDanalysis TheXRDpatternsofthenanoZnOandnanoZnO-APSare pre-sented in Fig 2 For nanoZnO the XRD pattern shows typical peaksat2=31.7◦,33.9◦,36.2◦,47.3◦,56.4◦,62.7◦and67.8◦ corre-spondingto(100),(002),(101),(102),(110),(103)and(112) respectively,whichcanbeindexedtohexagonalwurtziteZnOin thestandarddata(JCPDS,36-1451).ThepatternofnanoZnO-APS presentsthesamepeaksasnanoZnO.ThepatternofnanoZnOis shaperthanthatofnanoZnO-APS.Thisresultcanbeexplainedby thenanoZnOfunctionalizationsurfacebyAPS

3.1.2 SEMimages SEMimagesofnanoZnOandnanoZnO-APSareshowninFig.3

It canbeseen that theypresenta spherical shapewithsize in 10–15nmrange.AsobservedinFig.3a,thenanoZnOare agglom-eratedinclustershavingsizearound20–40nm

AlthoughthemorphologyofnanoZnO-APSissimilartonano ZnOwithasphericalshape,thecorrespondingnanoparticlesare wellseparatedwithoutformationofagglomerates

3.1.3 TEMimages Fig.4showstheTEMimageofnanoZnOandnanoZnO-APS TheseresultsconfirmtheZnOsphericalshapewithasizeinthe 10–15nmrange.ThemorphologyofnanoZnO-APSissimilarto nanoZnO

Fig 3 SEM images of (a) nano ZnO and (b) nano ZnO-APS.

Trang 4

Wavelength / nm

0.0

0.5

1.0

(a)

(b)

Fig 5 UV–vis spectra of (a) nano ZnO and (b) nano ZnO-APS.

3.1.4 UV–visanalysis

TheUVabsorptionpropertiesofnanoZnO-APSwereevaluated

andcompared tothoseofnanoZnO.UV–vis absorptionspectra

of0.01wt%nanoZnO-APSandnanoZnOethanolicsolutionsare

presented in Fig 5 For nanoZnO theabsorption in the range

of 360–230nm wasobserved This resultis in agreement with

literature[15,17].BycomparisonwithnanoZnO, nanoZnO-APS

absorbedinthesamerangeofwavelengthsbutthecorresponding

absorbanceislower.Theseresultsindicatethataftersilane

modi-fication,nanoZnO-APScanalsobeusedasUVabsorberinorganic

coatingstoblockUVradiation

3.2 QUVtestofcoatings

ThecoatingswereexposedinQUVtestchamberupto216h

and the degradation of coatings was evaluated by gloss

mea-surement and electrochemical impedance measurements after

differentexposuretimes,thesurfaceofcoatingsafterQUVtestwas

analyzedbySEM

3.2.1 Glossmeasurement

Coatingglosswasmeasuredafterdifferentexposuretimesto

QUVtest and thecoatingglossretentionis presentedin Fig.6

Glossretentionisdefinedasthepercentagechangeinthe

spec-imenglossduringQUVtestrelativetoitsinitialglossvalue.The

glossofcoatingsincreasedslightlyduringfirst96hofQUVtest

Thentheglossretentionofcoatingsdecreasedwhentheexposure

timeincreased.Theincreaseofcoatingsglossatthebeginningof

exposurecanbeexplainedbyinterchaincrosslinkingbetweenfree

radicalofadjacentchainsofresinsformedbyUVradiation[18]

Thelossofglossofcoatingsisrepresentativeofthedegradation

ofcoatingsduetoeffectsofultravioletradiation.TheUVradiation

causespolymerchainbreakdownandasaresultadecreaseof

coat-inggloss.After216hofQUVtest,glossretentionsofPUcoatings

containingnanoZnO-APSornanoZnOwerehigherthanoneofthe

Ucoating.Thehighestglossretentionwasobtainedwithcoatings

containing0.1wt%ofnanoZnO-APS(99.5%)after216hof

expo-sureincomparisonwiththeglossretentionofPUcoatingswhich

wasonly82.2%.After216hofexposuretheglossretentionsofPU

coatingscontaining0.1wt%ofnanoZnOwaslowerthanoneofthe

PUcoatingcontaining0.1wt%ofnanoZnO-APS,buthigherthan

oneofthePUcoatingcontaining0.5wt%ofnanoZnO-APS

TheseresultsshowthatnanoZnOimprovedtheUVresistance

ofPUcoatingsandsurfacetreatmentbyAPSenhancedtheeffectof

nanoZnO.TheeffectofnanoZnO-APSdependsonitsconcentration

80 85 90 95 100 105 110

QUV test time / h

Fig 6 Gloss retention versus exposure time to QUV test of () Pure PU coating; (△)

PU coating containing 0.1 wt% nano ZnO; (䊉) PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt% nano ZnO-APS.

inPUcoating.ThehighestefficiencywasobtainedwiththeZnO-APS concentrationof0.1wt%

3.2.2 SurfaceobservationbySEM Thecoatingssurfacebeforeandafter216hexposuretoQUVtest wereobservedbySEM.Fig.7presentstheSEMmicrographsofpure

PUcoatingandPUcoatingscontainingnanoZnOandnano ZnO-APSatdifferentconcentrationsbeforeexposuretoQUVtest.Itcan

beseenthatthepurePUcoatingsurfaceissmoothand homoge-nous.ThePUcoatingcontaining0.1wt%ofnanoZnOshowsthe agglomerationofnanoZnO.ThePUcoatingcontaining0.1wt%nano ZnO-APShasuniformsurfacemorphologywithwelldispersednano ZnO-APS,whilethesurfaceofPUcoatingcontaining0.5wt%nano ZnO-APSshowstheagglomerationofnanoZnO-APS.Theseresults indicatethatthefunctionalizationsurfacebyAPSimprovedthe dispersionofnanoZnOinPUcoating,butthedispersiondegree decreasedwiththeincreaseofZnO-APSconcentration

Fig.8 shows thesurface micrographs of PUcoating and PU coatingscontainingnanoZnOandnanoZnO-APSafter216h expo-suretoQUV test ThepurePU coatingpresents largecracksof

100nmwidthatthesurface.Thisindicatesdrasticchangesof coat-ingduringexposuretoQUVtest.ForPUcoatingcontaining0.1wt% nanoZnOitisobservedasmallcrackonthesurface,butfailure degreewaslowerincomparisontopurePUcoating.ForPU coat-ingcontaining0.1wt%nanoZnO-APS,nocrackisobserved.With highernanoZnO-APSconcentrations(0.5wt%)itcanbeseenasmall crackonthesurface,butthefailuredegreewaslowerin compari-sontopurePUcoatingandPUcoatingcontaining0.1wt%nanoZnO ThisresultindicatestheimprovementinUVresistanceofthePU coatingswiththeincorporationofnanoZnOornanoZnO-APSin coatings.ThiscanbeattributedtotheUVblockingpropertyof nano-ZnO [4,5].ThesurfacetreatmentofnanoZnObyAPSenhanced itsefficiency TheefficiencynanoZnO-APS depends onits con-centrationand thebestUV resistantcoating wasobtainedwith concentrationof0.1wt%forwhichtheZnO-APSdispersionis ver-ified.TheincreaseofnanoZnO-APSconcentrationdidnotleadto highereffectonUVresistanceofPUcoating

3.2.3 Electrochemicalimpedancemeasurements

In ordertoassessthechangeofbarrierpropertyof coatings duringQUVtest,electrochemicalimpedancediagramsofcoatings weremeasuredbeforeandafterQUVtest.Figs.9and10presentthe

Trang 5

Fig 7 SEM images before QUV test of (a) Pure PU coating; (b) PU coating containing 0.1 wt% nano ZnO; (c) PU coating containing 0.1 wt% nano ZnO-APS; (d) PU coating containing 0.5 wt% nano ZnO-APS.

impedancediagramsofcoatingsbeforeandafter216hofexposure

toQUVtest,respectively

The impedance modulus at low frequencies were high and

superiorto108cm2.Thebarrierpropertiesincreasedwiththe

incorporationofnanoZnOornanoZnO-APScomparedtotheclear

polyurethanecoating.Forthissystem,theinitialbehaviorisclose

toapurecapacitivebehaviorwithaphaseanglecloseto−90◦in

wholefrequencyrange.ForpurePUcoating,aresistivebehavioris

observedatlowfrequenciesbeforeQUVtest

Theimprovementofbarrierpropertiesofcoatingsbythe pres-enceof nano ZnO and nano ZnO-APS can beexplained bythe enhancementofcoatingdensityduetotheadsorptionoftheepoxy resinonthenanoZnO andnanoZnO-APS therebyreducingthe transportpathsforthecorrosiveelectrolytetopassthroughthe coatingsystem[7–9]

After216hofQUVtest,theimpedancemodulusofallcoatings decreased.Theimpedancemodulusatlowfrequenciesofcoatings containingnanoZnOornanoZnO-APSweremuchhigherthanone

Fig 8 SEM images after 216 h of QUV test of (a) Pure PU coatings; (b) PU coating containing 0.1 wt% nano ZnO; (c) PU coating containing 0.1 wt% nano ZnO-APS; (d) PU

Trang 6

104

105

106

107

108

109

1010

1011

0 15 30 45 60 75 90

10-3 10-2 10-1 100 101 102 103 104 105

Frequency / Hz

Fig 9 Electrochemical impedance diagrams (bode presentation) obtained before

QUV test of () Pure PU coating; (△) PU coating containing 0.1 wt% nano ZnO; (䊉)

PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt%

nano ZnO-APS.

ofthePUcoating.Theimpedancemodulusatlowfrequenciesof

coatingscontaining0.1wt%nanoZnO-APSwashigherthanoneof

thePUcoatingscontaining0.1wt%nanoZnO.Forcoatings

contain-ingZnO-APS,thePUcoatingcontaining0.1wt%nanoZnO-APSkept

aquitehighimpedancemodulusatlowfrequencies.Theincreaseof

concentrationofZnO-APSinPUcoatingsdecreasedtheimpedance

modulusofcoatings

It wasproposed byKittel et al [19] and the groupof

Bier-wagen[20–22]thattheimpedancemodulusatlow frequencies

measuredversusexposuretimecouldserveasanestimationof

thecorrosionprotectionofapaintedmetal.Fig.11plots|Z|100 mHz

versusQUVtesttime.Itisobservedthatthe|Z|100mHzvaluesofall

coatingsdecreasedrapidlyduringfirst72hofQUVtest.Thisresult

indicatesarapidlossoftheprotectivepropertiesofthefilm.The

fallof|Z|100mHz duringthefirst72hofQUVtestwasattributed

tothedegradationofcoatingsduetotheUVradiation.Afterthis

0 15 30 45 60 75 90

Fig 10 Electrochemical impedance diagrams obtained after 216 h of QUV test of

() Pure PU coating; (△) PU coating containing 0.1 wt% nano ZnO; (䊉) PU coating

QUV test time / h

l10

Fig 11 |Z| 100 mHz versus QUV test time of () Pure PU coating; (△) PU coating con-taining 0.1 wt% nano ZnO; (䊉) PU coating containing 0.1 wt% nano ZnO-APS; (♦) PU coating containing 0.5 wt% nano ZnO-APS.

exposuretimetoQUVtest,the|Z|100mHzvalueofpurePUcoating,

PUcoatingscontaining0.1wt%nanoZnOandPUcoating contain-ing0.5wt%nanoZnO-APScontinuedtodecrease.ForthePUcoating containing0.1wt%nanoZnO-APSthe|Z|100mHzvalueremained rel-ativelystableathighvalues.After216hofQUVtestthe|Z|100mHz valueofPUcoatingscontainingnanoZnOandZnO-APSweremuch higherthanoneofthepurePUcoating.The|Z|100mHzvalueofPU coatingcontaining0.1wt%nanoZnO-APSwashigherthanoneof thePUcoatingcontaining0.1wt%nanoZnO.AmongPUcoatings containing nanoZnO-APS, thecoating with 0.1wt% nano ZnO-APShasthehigher|Z|100mHz value.Theseresultsshowthat the presenceofnanoZnO-APSimprovedtheUVresistanceofPU coat-ingandthebestcoatingsperformancewasobtainedwith0.1wt% nanoZnO-APS.Theresultsobtainedbyimpedancemeasurements areinagreementwiththeglossmeasurementsandSEM observa-tions

Thedecreaseof|Z|100mHzvaluesinthecaseofpurePUcoating,

PUcoatingcontaining0.1wt%nanoZnOandPUcoatingcontaining 0.5wt%nanoZnO-APScanbeexplainedbythepresenceofcracks

inthecoatingsafterexposuretoQUVtest.Forcoatingcontaining 0.1wt%nanoZnO-APS,nocrackappeared,sothatthecoatinghas thehighestglossretentionand|Z|100mHzvalueafter216hexposure

toQUVtest

4 Conclusion Nano ZnO modified by 2-aminoethyl-3-aminopropyl-trimethoxysilane (ZnO-APS)was successfully synthesized ZnO-APShassphericalstructureanditsparticlesizeisabout10–15nm ThedegradationofPUcoatingscontaining0.1wt%nanoZnOand nanoZnO-APSattwoconcentrations(0.1wt%and0.5wt%)dueto exposureinQUVtestwasstudied.ThepresenceofnanoZnOand ZnO-APSimprovedtheUVresistanceofPUcoatings.Thesurface modificationofnanoZnObyAPSenhanceditsefficiencyandthe efficiencyof nanoZnO-APSdepends onitsconcentration.Nano ZnO-APSat lowconcentrationof0.1wt%enhancedsignificantly

UVresistanceofPUcoating.TheincreaseofZnO-APSconcentration didnot improvevery much theUV resistanceofPUcoating It willbenecessarytoimprovethedispersionofnanoZnO-APSand optimizeitsconcentrationinthecoating

Trang 7

TheauthorsgratefullyacknowledgethesupportofMinistryof

ScienceandTechnologyofVietnamthroughproject

132/2013/HÐ-NÐT and Wallonie-Bruxelles International (WBI) of Belgium

throughproject28

References

[1] M.S Lowry, D.R Hubble, A.L Wressell, M.S Vratsanos, F.R Pepe, C.R Hegedus,

J Coat Technol Res 5 (2008) 233–239.

[2] M.V Cristea, B Riedl, P Blanchet, Prog Org Coat 69 (2010) 432–441.

[3] M.V Cristea, B Riedl, P Blanchet, Prog Org Coat 72 (2011) 755–762.

[4] M Rashvand, Z Ranjbar, S Rastegar, Prog Org Coat 71 (2011) 362–368.

[5] M.N Xiong, G.X Gu, B You, L.M Wu, J Appl Polym Sci 90 (2003) 1923–1931.

[6] S.K Dhoke, A.S Khanna, T.J.M Sinha, Prog Org Coat 64 (2009) 371–382.

[7] S.K Dhoke, A.S Khanna, Corros Sci 51 (2009) 6–20.

[8] B Ramezanzadeh, M.M Attar, M Farzam, Prog Org Coat 72 (2011) 410–422.

[9] A Anand, R.D Kulkarni, V.V Gite, Prog Org Coat 74 (2012) 764–767.

[10] M Rashvand, Z Ranjbara, Prog Org Coat 76 (2013) 1413–1417.

[11] M Kathalewar, A Sabnis, G Waghoo, Prog Org Coat 76 (2013) 1215–1229.

[12] D Duraibabu, T Ganeshbabu, R Manjumeena, S.A Kumar, P Dasan, Prog Org Coat 77 (2014) 657–664.

[13] D Kim, K Jeon, Y Lee, J Seo, K Seo, H Han, S Khan, Prog Org Coat 74 (2012) 435–442.

[14] J Bang, H Yang, P.H Holloway, J Chem Phys 123 (2005), 084709-084705.

[15] Z Guo, S Wei, B Shedd, R Scaffaro, T Pereira, H.T Hahn, J Mater Chem 17 (2007) 806–813.

[16] Aldrich Library of FT-IR Spectra, 2nd ed., Aldrich Chemical Co., Milwaukee, WI, 1997.

[17] S Mallakpour, M Madani, Bull Mater Sci 35 (2012) 333–339.

[18] J Pospısil, S Nespurek, Prog Polym Sci 25 (2000) 1261–1335.

[19] J Kittel, N Celati, M Keddam, H Takenouti, Prog Org Coat 46 (2003) 135–147.

[20] G.P Bierwagen, D Tallman, J Li, L He, C Jeffcoate, Prog Org Coat 46 (2003) 148–158.

[21] R.L De Rosa, D.A Earl, G.P Bierwagen, Corros Sci 44 (2002) 1607–1620.

[22] B.R Hinderliter, S.G Croll, D.E Tallman, Q Su, G.P Bierwagen, Electrochim Acta

51 (2006) 4505–4515.

Ngày đăng: 18/10/2022, 17:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w