Sampath, Selective determination of uric acid in presence of ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes, Electroanalysis 16 2004 866–869.. Lin, Simulta
Trang 1jo u rn al h om epa g e :w w w e l s e v i e r c o m / l o c a t e / c o l s u r f b
Do Phuc Quana,∗∗, Do Phuc Tuyena, Tran Dai Lamb,∗, Phan Thi Ngoc Trama, Nguyen Hai Binhb,
Pham Hung Vieta
a Research Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai Road, Ha Noi, Viet Nam
b Institute of Materials Science, Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Road, Ha Noi, Viet Nam
Article history:
Received 13 May 2011
Received in revised form 11 August 2011
Accepted 12 August 2011
Available online 22 August 2011
Keywords:
Nafion (NF)
Single-walled carbon nanotubes (SWCNT)
Poly(3-methylthiophene) (PMT)
Dopamine (DA)
Electrochemical methods
AvoltammetricmethodbasedonacombinationofincorporatedNafion,single-walledcarbonnanotubes andpoly(3-methylthiophene)film-modifiedglassycarbonelectrode(NF/SWCNT/PMT/GCE)hasbeen successfullydevelopedforselectivedeterminationofdopamine(DA)intheternarymixtureofdopamine, ascorbicacid(AA)anduricacid(UA)in0.1Mphosphatebuffersolution(PBS)pH4.Itwasshownthat
todetectDAfrombinaryDA–AAmixture,theuseofNF/PMT/GCEwassufficient,buttodetectDAfrom ternaryDA–AA–UAmixtureNF/SWCNT/PMT/GCEwasrequired.Thelatermodifiedelectrodeexhibits superiorelectrocatalyticactivitytowardsAA,DAandUAthankstosynergiceffectofNF/SWCNT (com-bininguniquepropertiesofSWCNTsuchashighspecificsurfacearea,electrocatalyticandadsorptive properties,withthecationselectivityofNF).OnthesurfaceofNF/SWCNT/PMT/GCEAA,DA,UAwere oxidizedrespectivelyatdistinguishablepotentialsof0.15,0.37and0.53V(vs.Ag/AgCl),toform well-definedandsharppeaks,makingpossiblesimultaneousdeterminationofeachcompound.Also,ithas severaladvantages,suchassimplepreparationmethod,highsensitivity,lowdetectionlimitand excel-lentreproducibility.Thus,theproposedNF/SWCNT/PMT/GCEcouldbeadvantageouslyemployedforthe determinationofDAinrealpharmaceuticalformulations
© 2011 Elsevier B.V All rights reserved
1 Introduction
3,4-Dihydroxyphenyl ethylamine, commonly known as
dopamine (DA), has been of interest to neuroscientists and
chemistssinceitsdiscoveryinthe1950s[1].Asthemost
signifi-cantneurotransmitter,theamountofDAdistributedinorganshas
greatinfluencesonhumanemotionsandis directlyrelatedtoa
varietyofdiseasesderivingfromtheabnormallowconcentration
levelofDAwhichhasbeenlinkedtoseveralneurological
disor-ders, e.g., schizophrenia, Huntington’s disease, and Parkinson’s
disease(thethirdmostpopularoneintheworld),andeventhe
HIVinfection[2–4].ElectrochemicaldetectionofDAisafeasible
approachbecauseofitsgoodelectroactivityand easyoxidation
It hasbeen shown that the oxidation of DA is a two-electron
irreversibleprocesswithtransferoftwoprotons.Uricacid(UA)
isthemajorfinalproductofpurinecatabolisminhumanbody.In
∗ Corresponding author Tel.: +84 4 37564129; fax: +84 438360705.
∗∗ Corresponding author Tel.: +84 4 38588152; fax: +84 438587964.
E-mail addresses: doquan@vnu.edu.vn (D.P Quan), lamtd@ims.vast.ac.vn
(T.D Lam).
ahealthyhuman,thenormallevelofUAinurineisinmMrange whereasinserumitisinMrange.AbnormallevelsofUAare symptomsofseveraldiseasessuchasgout,hyperuricemina,and Lesch–Nyan disease [5] Ascorbicacid (AA)is present in many vegetables,citrusfruitsand biologicalfluidswhereitactsasan anti-oxidantandfree-radicalscavenger.AAconcentrationinthe bodyfluidscanbeusedtoassessthelevelofoxidativestressis related to diseases like cancers, diabetes mellitus and hepatic disorders UA and AA is co-present in biological fluids suchas bloodandurine
Fromtheabovereasons,itisessentialtodeveloprapidand sim-plemethodstodetect/determinetheDAconcentration.Oneofthe biggestchallengesofelectrochemicaldetectionofDAinreal bio-logicalmatrixesisthecoexistenceofmanyinterferingcompounds
Inbiologicalsystems,AAusuallycoexistswithDAin extracellu-larfluidata highconcentrationlevel,nearly1000timeshigher thanDA.Moreover,DA,AAandUAcanbeoxidizedatpractically thesamepotentialatbareelectrodes,resultinginthepeak over-lappingaswellaspoorresponseresolutioninDAdetermination HomogeneouscatalyticoxidationofAAbyoxidizedDA,interaction
ofAAandtheproductsofDAoxidationareotherdifficultiesinthe
DAdetermination,severelylimitingtheaccuracyofdetection 0927-7765/$ – see front matter © 2011 Elsevier B.V All rights reserved.
Trang 2elec-trodesinsteadofbareonesispreferred.Variousmaterials,such
asmetalormetaloxidenanoparticles(NPs)andmetalcomplexes
(AuNPhybridfilmandnanogoldmodifiedcarbonfiberelectrodes,
palladium nanoparticle loaded carbon nanofibers, zinc oxide
compositefilm,rutheniumoxide,magneticFe3O4 NPsdeposited
on gold electrode, titanate nanotubes, LaFeO3 nanoparticles
[6–15]); organic polymers and composites (polymeric films of
aniline, pyrrole, 3-methylthiophene and p-nitrobenzene
resor-cinolarereported tobeusefulin theselectivedetectionof DA
in excess of AA [16–19], poly(cresol-red) modified
electrode-spoly(oracet blue) modified electrode, poly(eriochrom black T)
modified electrode, poly(naphthalene sulfunic acid) modified
electrode,poly(Evansblue)modifiedelectrode,poly(vinylalcohol)
and poly(chromotrope 2B)-modified electrodes are also used
to detect DA and/or DA, AA and UA, simultaneously;
poly(4-amino-1,1′-azobenzene-3,4′-disulfonic acid)-coated electrode
hasbeenreportedfortheselectivedetectionofDAinthe
pres-enceofAA, UAand NADH, poly(3-(3-pyridyl) acrylicacid), and
3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid have been reported for simultaneous
determination of AA, DA and UA [20–26])can be used to
fab-ricate modified electrode due to their excellent properties to
decrease the over-potential, accelerate the electron and mass
transfer rate or greatly enrich the substrates onthe electrode
surface
This article reports the successful combination of
poly(3-methylthiophene) (PMT) with Nafion (NF) and single wall
carbonnanotubes(SWCNTs)inordertoprovideNF/SWCNT/PMT
modified electrodes with enhanced sensitivity and
selectiv-ity towards DA in the presence of high excess of AA and
UA
Glassycarbonelectrodes(GCE)areveryversatileaselectrode
materialfortraceleveldeterminationoforganicmoleculesasthey
providehighsensitivity,negligibleporosity,andgoodmechanical
rigidity.GCEshavebeenmodifiedbymeansofvariousnanosized
additives[27,28]
PMTis a widelyinvestigated electronicallyconducting
poly-mer,whichcanbeeasilyelectrodepositedontoelectrodesurface
byelectro-oxidationofitsmonomer.TheapplicationsofPMThave
beenextensivelyreportedandshowedexcellentelectrocatalytic
effect,neurotransmitterspecies[29,30]
ThechoiceofSWCNTtodevelopelectrochemicaltransducers
is based on its subtle electronic properties, strong
electrocat-alyticeffect,rapidelectrontransferrate,hightensilestrengthand
chemicalstability,andultra-smallsizeeffect[27].AsforNafion,
aperfluorinatedsulfonatedcationexchanger,havinghydrophilic
andhydrophobicdomains(inwhichthelaterconsistsprimarily
ofTeflonwhiletheformerconsistsofsulfonicgroups,presented
attheendof theside chainsof theTeflonbackbone), excellent
antifoulingcapacity,chemicalinertnessandhighpermeabilityto
cations,hasbeenextensivelyemployedasanelectrodemodifier
fororganicmolecules[31,32].Thesensitivityenhancementofthe
NFmembraneisbelievedtoassociatewithaccumulationsofDA
inthehydrophilicregionsortheionchannelsofNF.Thankstoits
amphiphilicstructure, SWCNTcanbehomogeneouslydispersed
inNF solution.Thus,asynergisticeffectofbothNF-SWCNTfilm
modified can beexpected tofurther enhance sensitivity in DA
determination
The primary objective of this work is not to introduce
novel materials for modified electrodes but to emphasize the
efforts ondesigning/optimizing a sensitive and selective
inter-facefor simultaneouslyelectrochemicaldetermination ofDA in
thepresenceofAAandUAbydifferentvoltammetrictechniques
likecyclicvoltammetry(CV)anddifferentialpulsevoltammetry
(DPV)
2 Experimental 2.1 Chemicals 3-methylthiophene (MT), 5% Nafion® 117 and tetrabuthy-lammoniumperchlorate (TBAP)were fromFluka (Switzerland) Ascorbic acid, dopamine hydrochloride (DA·HCl), uric acid and otherchemicalswerefromSigma(Germany)andwereused with-out further purification SWCNT was purchased from Chengdu OrganicChemicals Co.Ltd (Chengdu,China).Aqueoussolutions werepreparedwithde-ionized(DI)water.Theotherreagentswere
ofanalyticalreagentgrade.Highlypuritynitrogenwasusedfor deaeration
2.2 Electrodepreparation Priortotheelectropolymerization,thesurfaceoftheGlassy car-bonelectrodewaspolishedwith15mand0.3maluminaslurry andcleanedbyultrasonicationinDIwater PMTwas electrode-positedonaGCE(togetPMT/GCE)fromasolutioncontaining0.1M
MTand0.1MTBAP(dissolvedinacetonitrile(CH3CN))for20sata constantpotentialof1.75V(vs.Ag/AgCl).Afterwards,itwastreated
at0.7Vfor10s
Twomaintypesofmodifiedelectrodes(denotedasNF/PMT/GCE andNF/SWCNT/PMT/GCE)areprepared.First,7Lof2.5%NF solu-tionwasscrupulously dropped onto thePMT/GCEsurfaces,the solventwasevaporatedinairtoobtainNF/PMT/GCE.Second,4L
ofSWCNTdispersion(pre-carboxylatedbythemixtureof concen-tratedH2SO4andHNO3(1/3,v/v),thenmixedultrasonicallywith 0.25wt%NFsolutionfor30min)wasscrupulouslydroppedonto thesurfacesofPMT/GCE,then,thesolventwasevaporatedinairto obtainNF/SWCNT/PMT/GCE.Allelectrodeswerecarefullyrinsed withDIbeforefurthercharacterization
2.3 Electrochemicalmeasurements
CV and DPV were performed with Autolab PGSTAT-30 Potentiostat/Galvanostat with GPES software (EcoChemie, The Netherlands) The three-electrode system was employed with Ag/AgCl/saturatedKClreferenceelectrodeandPtwireasauxiliary electrode,theworkingelectrodewaseitherabaredGCEora mod-ifiedGCE.Theelectrochemicaldetectionwasperformedin0.1M
pH4.0PBScontainingDA(inabsence/presenceofAA,UA),purged
byhigh-puritynitrogen.Allexperimentswerecarriedoutatroom temperature.AllDPVsweremeasured/recordedintriplicate(DPV peakheight(Ipa)remainsitsinitialvaluewitharelativestandard deviation(R.S.D)lessthan2–3%for3successivescans).Meanvalues wereusedforfurthercalculationsoflinearregressionequation
3 Resultsanddiscussion 3.1 ElectrochemicalbehaviorofDAatthemodifiedelectrode
NF/SWCNT/PMT/GCEwasstudiedbyCV.Fig.1showsthe voltam-mogramsof(a)bareGCE;(b)PMT/GCE;(c)NF/SWCNT/GCEand(d) NF/SWCNT/PMT/GCE,respectivelyin0.1MPBS(pH4.0),atscan rateof100mVs−1.Curves(a)and(b)confirmedthatthe electro-chemicalresponsetoDAatbareGCEandPMT/GCEwasverypoor, whilethatatNF/SWCNT/GCE(curvec)andNF/SWCNT/PMT/GCE (curve d) was much better: a well-defined redox couple was recorded, theanodic current value wasmuch higher than that
of thetwo previouscases (curvesa and b).The reason forthe peak currentenhancement mayoriginatein thefaster electron transferrateand/orlargersurfaceareaofSWCNTaswellaseasier masstransferthankstoaninclusioncomplexofNFandDA,which
Trang 30.8 0.6 0.4 0.2 0.0 -0.2
-40
-30
-20
-10
0
10
20
30
(a) GCE
E /V vs Ag/AgC l
Fig 1 CVs of 100 M DA at: (a) bare GCE; (b) PMT/GCE; (c) NF/SWCNT/GCE; (d),
NF/SWCNT/PMT/GCE in 0.1 M PBS of pH 4.0 with the scan rate of 100 mV s −1
couldbedissociatedandrapidlydiffusedmorerapidlythroughthe
porouslayerofSWCNTtothemodifiedelectrodesurface)
Next,toelucidatetheprocesskineticofDAelectro-oxidation
atelectrodesurface,theeffectofthescanrateonthepeak
cur-rentsattheNF/SWCNT/PMT/GCEwasinvestigated(Fig.2).Theinset
showedthatthecathodicandanodicpeakcurrentsincreased
lin-earlyalongwiththesquarerootofscan rates(v1/2), suggesting
thattheelectrochemicalelectro-oxidationofDAwasnon-surface
controlledbutdiffusion-controlledprocess,owingtoaslow
elec-tronhopingacrossthematrixofthecompositefilminthestudied
rangeofpotentialsweeprates,accordingtothefollowing
equa-tions:Ipa(A)=−13.3+3.03×v1/2andIpc(A)=10.3−2.30×v1/2(I
inAandv1/2inmV1/2s−1/2),withthecorrelationcoefficientsof
0.99815and0.99801,respectively.Thisresultwaswellconsistent
withotherpreviousstudies[30]
ItiswellknownthatinDPV,currentismeasuredattwopoints
foreach pulse,thefirstpoint just beforetheapplicationofthe
pulseandthesecondattheendofthepulse.Thesesamplingpoints
areselectedtominimizenonfaradiccurrent,thusDPVmethodis
consideredmoresensitivethanCV[33]).SoDPVwasusedhereto
detectDAatdifferentmodifiedelectrodes.Fig.3A–Cpresentsthe
relationshipbetweenDAconcentrationandcurrentsignalrecorded
at (a) PMT/GCE; (b) NF/PMT/GCE and (c) NF/SWCNT/PMT/GCE,
respectively It is clear that only at two later cases the linear
dependenceofcurrentIon[DA]concentrationwasobserved.The
0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0
-0,1
-40
-30
-20
-10
0
10
20
30
40
50
60
10
200
v (mV/s)
E /V vs Ag/AgCl
Fig 2 Electrochemical response of 100 M DA in 0.1 M pH 4.0 PBS at
NF/SWCNT/PMT/GCE with different scan rates, from 10 to 200 mV s −1 Inset: Ipa − v1/2
and Ipc 1/2 plots.
0.8 0.6
0.4 0.2
0.0 -0.2
0 2 4 6 8 10 12 14 16 18 20 22
11.4 16.2 23.4 32.9 44.5 57.9 73.2 90.1 108
PMT/GCE
E /V vs Ag/AgCl
0.8 0.6
0.4 0.2 0.0 -0.2 0 2 4 6 8 10 12
1.5
2.5 4.5
7.5 11.4
23.4 32.9
NF/PMT/GCE
E /V vs Ag/AgCl
0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 -0,1 -2 0 2 4 6 8 10 12 14 16 18 20
NF/SWCNT/PMT/GCE
E /V vs Ag/AgCl
A
B
C
Fig 3 DPVs for different concentration of DA in 0.1 M PBS of pH 4.0 at (A) PMT/GCE; (B) NF/PMT/GCE; (C) NF/SWCNT/PMT/GCE; (D) the linear regression curve of peak current vs DA concentration at NF/SWCNT/PMT/GCE.
linearregressionequationswerewrittenasIpa(A)=0.267×[DA] (M)(R2=0.998)andIpa(A)=0.452×[DA](M)(R2=0.999)for NF/PMT/GCE and NF/SWCNT/PMT/GCE, respectively Moreover,
it is worth noting that NF/SWCNT/PMT/GCE is not only more sensitive (with higher slop value) but also more operational (withtwicebroaderlinearrangeofI–[DA])compared tothatof NF/PMT/GCE,Fig.3D).Tothebestofourknowledge,thevalueof sensitivity (0.452A×M−1)is comparable tothebestresults, recently reported in literature using polypyrrole film doped with sulfonated -cyclodextrins (0.886A×M−1) or poly(3, 4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid))modifiedelectrode(∼1A×M−1)[34,35]
Trang 40.8 0.6
0.4 0.2
0.0 -0.2
0
5
10
15
20
25
DA AA
a
c b
E /V vs Ag/AgCl
a: bare GCE b: PMT/GCE c: NF/PMT/GCE
Fig 4 DPVs of mixture of 100 M DA and 1000 M AA in 0.1 M PBS of pH 4.0 at (a)
bare GCE; (b) PMT/GCE; (c) NF/PMT/GCE.
3.2 SelectivedeterminationofDAinbinaryDA–AAmixtureon
NF/PMT/GCE
Asmentionedabove,AAcoexistswithDAintheextracellular
fluidofthecentralnervoussystemandtheirconcentrationsare
muchhigherthanthatofDA.TheinterferenceofAAtoDAdetection
arisesfromtwoaspects:oneistheverysimilaroxidationpotential
ofAAandDAatbareGCE;theotheristheelectrocatalytic
oxida-tionofDAbyAA.Thus,onecouldexpectthattheoxidationwaveof
DAwillbeaffectedbythepresenceofAA.Effectively,aspresented
inFig.4,currentpeaksofDAandAAwerepoorlydistinguishedat
bareGCE(curvea).However,thepeakoverlappingwasreduced
atPMT/GCE(curve b),whichcanbeassigned totherole ofthe
electroactivePMT.ThedifferentmechanismofinteractionofPMT
withDAandwithAAmadetheirdiffusiontotheelectrodesurface
differentiated.Further,withNFadditioninNF/PMT/GCE,the
inter-ferenceofAAtoDAcouldbesignificantlyeliminated,asshown
incurvec.AtpH4DA(pKa=8.87)exits incationicform,while
AA(pKa=4.17)canbefoundalmostequallyinanionicaswellas
cationicforms.EventheconcentrationofAAwas10timeslarger
thanthatofDA,muchsmallerdetectedpeakofAA,comparedtothat
ofDA(curvec),clearlydemonstratedthatpHof4isagoodchoice
Itshouldbeemphasizedthatinmanystudiesreportedinliterature
thedetectionoccursinPBSmediumofpH6.5–7[29,35].Exceptfor
maintainingthephysiologicalenvironment,theimportantreason
fortheirchoicewasgenerallybasedonpurelyelectrostatic
inter-action,suggestingthatatthispHthenegativelychargedNFwill
excludeAAanions(pKa=4.17<pH7)andprovidesapreferential
transportchannelforDAcations(pKa=8.87>pH7)
Further,thequalitativedeterminationofDAinthepresenceof
AAcouldbeexcellentlyperformedintherangeof5.0–177.0M
ofDA(Fig.5,inset).Thelinearregressionequationwascalculated
as:Ipa (A)=−0.13+0.26488×[DA](M)withR2=0.999
More-over,thepeakintensityandpositionofAAdidnotchangewiththe
variationoftheconcentrationofDAintheabovementionedrange,
signifyingthatAAcouldnotinterferetothesensitivityoftheDA
atNF/PMT/GCEandtheselectivedetectionofDAispossiblefrom
binaryDA–AAmixtureatthemodifiedNF/PMT/GCE
3.3 SelectivedeterminationofDAinternaryDA–AA–UAmixture
onNF/SWCNT/PMT/GCE
LikeAA,UAalsocoexistswithDAintheextracellularfluidof
thecentralnervoussystem.UAisthesecondmajorinterference
forDAdetectionastheybothareoxidizedatthesamepotential
0,8 0,6
0,4 0,2
0,0 -0,2
10 20 30 40 50 60 70
200 150 100 50 0
0 10 20 30 40
50
R = 0.99921
C
DA /µM
[AA] = 3.7 mM 5 µM
DA
E /V vs Ag/AgCl
Fig 5 DPVs for different concentration of DA in 0.1 M PBS of pH 4.0 at NF/PMT/GCE Inset: the linear regression curve of peak current vs DA concentration.
[25].Hence,thisinvestigationfurtherextended,ontheverification
ofUAeffectontheDAoxidationatmodifiedelectrodes
FromFig.6A, itcan beseenthat theoxidationpotentials of
AAand UAatPMT/GCEwerequiteclosetoeachother,making theoxidationpeaksofAA–DAandDA–UAmergedsignificantly
AtNF/PMT/GCE,theoverlappingwaslesspronouncedbutstill pre-sented(Fig.6B),implyingthatpurelyelectrostaticrepulsion,based
onNF component wasnotenough toavoid theinterferenceof
0.8 0.6
0.4 0.2
0.0 -0.2
0 1 2 3 4
DA
UA AA
E /V vs Ag/AgCl
0.8 0.6
0.4 0.2
0.0 -0.2
4 6 8 10 12 14 16 18
5 µM
3 µM
7 µM
DA + UA
AA
E /V vs Ag/AgCl
A
B
Fig 6 (A) DPVs for 1 mM AA, 1 mM UA and 50 M DA, in 0.1 M PBS of pH 4.0, at PMT/GCE (B) DPVs for different concentrations (2–60 M) of DA, 2 mM of AA and
Trang 5DA
UA
0.700 0.600 0.500 0.400 0.300 0.200 0.100 0
-4
0.20x10
-4
0.23x10
-4
0.25x10
-4
0.28x10
-4
0.30x10
-4
0.33x10
-4
0.35x10
-4
0.38x10
-4
0.40x10
-4
0.43x10
-4
0.45x10
E / V
0.700 0.450
0.200 -0.050
-0.300
-4
-0.03x10
0
-4
0.03x10
-4
0.05x10
-4
0.08x10
-4
0.10x10
-4
0.13x10
-4
0.15x10
E / V
pH7
pH3
4
5
6
A
B
Fig 7 (A) DPVs of mixture solution of 0.1 mM DA, 2.5 mM AA and 0.415 mM UA in
0.1 M PBS of pH 4.0 at NF/SWCNT/PMT/GCE (B) DPVs of mixture solution of 0.1 mM
DA, 2.5 mM AA and 0.415 mM UA in 0.1 M PBS at NF/SWCNT/PMT/GCE, in function
of pH.
UAtothedetectionofDAinthemixturesolution(effectively,in
termsofpurelyelectrostaticinteraction,thenegativelychargedNF
cannotexcludeUA(pKa=5.4>pH4).Therefore,itisimpossibleto
determinetheindividualconcentrationofeachcompoundfromthe
mergedvoltammetricpeakonthesurfaceofNF/PMT/GCE
In contrast to NF/PMT/GCE, the situation was substantially
improvedwhenNF/SWCNT/PMT/GCE wasused.Fig.7Ashowed
thatallthreecompoundsofAA,DAandUAwereoxidizedat
distin-guishablepotentialsof0.15,0.37and0.53Vvs.Ag/AgCl,forAA,DA
andUA,respectivelytoformwell-definedandsharppeaks.This
largepeakseparationisexpectedtoallowtheselective
determi-nationofDAevenattheconcentrationofAAandUAof20times
largerthanthatofDA.Asmentionedabove,thesefindingscannot
beinterpretedonthebasisoftheaboveelectrostaticinteraction
mechanism.Themoreprobableexplanationforthisisthe
syner-geticeffectofNFandSWNTatNF/SWCNT/PMT/GCEwhichcontains
thecationexchanger,NF,havingaselectivecationexchange
enrich-ingpropertyduetotheelectrostaticinteractionaswellasSWCNT,
displaying attractive characteristics, such as much larger
spe-cificsurfacearea,excellentadsorptiveabilityandcatalyticability
Thus,itcanbeinferredthattheelectro-oxidationoftheanalyzed
moleculesbecamefacileatthesurfaceofNF/SWCNT/PMT/GCE
ItisclearthatultimatepurposeofDAdetectionistoeffectively discriminateitagainstAAandUA.Inourstudy,weemphasizethe effortsonmaximizingthepeakseparationthusminimizingpeak overlapping.TwoimportantexperimentalparameterssuchasNF amountandpHwillbediscussedandtheirchosenvalueswillbe justifiedbelow
First,itshouldberemindedthatNFhastheabilitynotonlyto extractDAbutalsotodecreasethemasstransferrate.Thus,the additionofasmallamountofNFformsathinfilmresultinginpoor sensitivitytoDA,whilealargeramountofNFformsarelatively thickfilm,decreasingthemasstransferrateofDAandthetransfer rateofelectronswithintheNFfilm.Thusinordertoenhancethe performanceofthehybridfilmmodifiedelectrodetheNFamount shouldbeoptimized.Investigatingtherelationshipbetweenpeak currentsandtheamountofNF,experimentallyvariedfrom0%to 2.5% incan beinferredthat atthe beginning,thepeak current increases withincreasingamountof NF, but whenthe amount exceeds0.25%thepeakcurrentdecreases(figurenotshown).With increasingamountofNF,thesitesofionexchangeincrease,and theadsorptionontheNF-SWCNTmodifiedelectrodeisalso ampli-fied.Hence,thepeakcurrentincreases.But,whentheamountof
NFisincreasedbeyondacertainvalue,theNFthicknesswillinduce higherresistancefortheelectrochemicalprocess,thereforehinder theelectronexchangebetweenDAandNF/SWCNT/PMT/GCE, lead-ingtoadecreaseoftheelectrodesensitivity.Thus,inourstudy, 4.0Lof1.0mgmL−1NF-SWCNT(0.25wt.%)wasconsideredasan optimalvalueandwaschosenforNF/SWCNT/PMT/GCEpreparation
inallfurtherexperiments
Second,thepHoftheelectrolytesolutionhasastrong influ-enceontheoxidationofAA,DAandUAatelectrodesurface,when varyingboththepeakcurrentandpotential.TheeffectofpHofthe electrolytesolutiononthepeakcurrentandpeakpotentialwas examinedbyrecordingDPVofAA, DAandUAof concentration 0.1mM,2.5mMand0.415mM,respectivelyinaseriesinthepH rangefrom3to7.TheresponseofpeakcurrenttopHisshownin Fig.7B.ForDAtheanodicpeakcurrentwashigheratpH3and decreasesgraduallywithincreasingpH.Similarly,UA alsogave higherpeakcurrentatpH4.ThepeakpotentialofDAandUAwere linearlyshiftedtopositivesidewithdecreasingpHasshownin Table1withaslopeof−55.3mVperpHunitforDAconfirming twoprotonsandtwoelectronswereinvolvedinoxidationprocess respectively.Fromthistable,inviewofsimultaneous determina-tionofAA,DAandUA,itisobviousthatthelowerpHvalue,the largerpeakseparationandthesharperpeakformsthushigher sen-sitivityandhigherselectivitywillbe.Forabovereasons,pH4was preferredtophysiologicalpH7
Next, the typical DPVs of the ternary mixture at the NF/SWCNT/PMT/GCE for the DA concentrationrange from 2 to
120MwereshowninFig.8.ItcanbefoundthattheDPVpeak height was linearly related to the DA concentration over two concentrationregions,namely,of1.5–20Mand20–120M,for whichthelinearregressionequationswerewrittenrespectivelyas follows:
Ipa1(A)=0.37+0.42×[DA](M) (R2=0.9974), (1.5−20M)
Ipa2(A)=0.9+0.14×[DA](M) (R2=0.9897) (20−50M)
It is interesting tonotethat theslope variation for thetwo regionsmaybeanevidenceofmechanismchangeofDAtransport towardstheelectrodesurface,fromadsorptivetodiffusionalmode, accordinglycharacterizedforthelowerandhigherregionsofDA concentration(Fig.8,inset)
3.4 InterferencestudiesontheNF/SWCNT/PMT/GCE Theinterferencefromselectedorganiccompoundsandmetal ionswasevaluated.InterferencetestswereinvestigatedbyDPV,at
Trang 6Table 1
Epa,DA–AA and Epa,DA–UA (mV) in function of pH.
(mV)
E pa,DA–UA
(mV)
electrode
peakcurrentandDAconcentration,demonstratedthatthecontent
ofDA·HClinthedrugwas39.851±0.213mgmL−1.Theaverage
contentofDA·HCl, calculatedas 39.851mgmL−1,wasless than
0.4%differentfromthelabeledcontent,meaningthattheproposed
NF/SWCNT/PMT/GCEcouldbeapplicablefordirectDA
determina-tioninrealsamples
0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0
-0,1
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
50 40 30 20 10 0
-10
0
2
4
6
8
10
12
14
UA DA
AA
E /V vs Ag/AgCl
Fig 8 DPVs of mixture solution of different concentration of DA, 1 mM AA, 1 mM
UA in 0.1 M PBS of pH 4.0 at NF/SWCNT/PMT/GCE Inset: the linear regression curve
0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 -1 0 1 2 3 4 5 6 7 8 9
Sample 1st Add 2nd Add 3rd Add 4th Add
E /V vs Ag/AgCl
Fig 9 DPVs for dopamine injection drug sample Inset: the linear regression curve
of peak current vs DA concentration.
4 Conclusions
Inthepresentstudy,NF/PMTandNF/SWCNT/PMTwere syn-thesized at thesurface of GCE By means of theCV and DPV, theselective DAdetermination in thesolution withtheexcess
AAandUAofbinary(DA–AA)andternary(DA–AA–UA)mixtures hasbeenshown.Itwasfoundthatowingtothesynergeticeffect
ofNFandSWNTatNF/SWCNT/PMT/GCEtheelectro-oxidationof each moleculebecamefacileand distinguishable at thesurface
ofNF/SWCNT/PMT/GCEand thebiosensor showedtheexcellent features,suchaswidelinearresponserange,highsensitivityand selectivity,goodreproducibilityandlongtimestability.Thissensor provedtobesuccessfullyusedforDAdeterminationin pharmaceu-ticalandclinicalpreparations
Acknowledgements ThisworkwassupportedbyVietnam’sNationalFoundationfor Scienceand TechnologyDevelopment (NAFOSTED)under Grant 107.04.108.09
References [1] F.M Benes, Carlsson and the discovery of dopamine, Trends in Pharmacological Sciences 22 (1) (2001) 46–47.
[2] P.E.M Phillips, G.D Stuber, M Heien, R.M Wightman, R.M Carelli, Subsecond dopamine release promotes cocaine seeking, Nature 422 (2003) 614–618 [3] G.S Wilson, M.A Johnson, In-vivo electrochemistry: what can we learn about living systems? Chemical Reviews 108 (2008) 2462–2481.
[4] J Smythies, The neurotoxicity of glutamate, dopamine, iron and reac-tive oxygen species: functional interrelationships in health and disease: a review—discussion, Neurotoxicity Research 1 (1999) 27–39.
[5] P Ramesh, S Sampath, Selective determination of uric acid in presence of ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes, Electroanalysis 16 (2004) 866–869.
[6] P Zhang, F.-H Wu, G.-C ZhaoT, X.-W Wei, Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold
Trang 7[7] R.K Shervedani, M Bagherzadeh, S.A Mozaffari, Determination of dopamine
in the presence of high concentration of ascorbic acid by using gold
cys-teamine self-assembled monolayers as a nanosensor, Sensors and Actuators
B 115 (2006) 614–621.
[8] J Li, X Lin, Simultaneous determination of dopamine and serotonin on gold
nanocluster/overoxidized-polypyrrole composite modified glassy carbon
elec-trode, Sensors and Actuators B 124 (2007) 486–493.
[9] S.-Y Yi, H.-Y Chang, H.-H Cho, Y.-C Park, S.H Lee, Z.-U Bae, Resolution of
dopamine and ascorbic acid using nickel(II) complex polymer-modified
elec-trodes, Journal of Electroanalytical Chemistry 602 (2) (2007) 217–225.
[10] J Huang, Y Liu, H Hou, T You, Simultaneous electrochemical determination of
dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded
car-bon nanofibers modified electrode, Biosensors and Bioelectronics 24 (4) (2008)
632–637.
[11] F Wang, S Hu, Electrochemical sensors based on metal and semiconductor
nanoparticles, Microchimica Acta 165 (1) (2009) 1–22.
[12] B Fang, G Wang, W Zhang, M Li, X Kan, Fabrication of Fe3O4 nanoparticles
modified electrode and its application for voltammetric sensing of dopamine,
Electroanalysis 17 (2005) 744–748.
[13] R.N Goyal, V.K Gupta, M Oyama, N Bachheti, Gold nanoparticles modified
indium tin oxide electrode for the simultaneous determination of dopamine
and serotonin: application in pharmaceutical formulations and biological
flu-ids, Talanta 72 (2007) 976–983.
[14] L Niu, M Shao, S Wang, L Lu, H Gao, J Wang, Titanate nanotubes:
prepara-tion, characterization, and application in the detection of dopamine, Journal of
Materials Science 43 (5) (2008) 1510–1514.
[15] G Wang, J Sun, W Zhang, S Jiao, B Fang, Simultaneous determination of
dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified
electrode, Microchimica Acta 164 (3–4) (2009) 357–362.
[16] J.B Raoof, R Ojani, S Rashid-Nadimi, Voltammetric determination of ascorbic
acid and dopamine in the samesample at the surface of a carbon paste electrode
modified with polypyrrole/ferrocyanide films, Electrochimica Acta 50 (2005)
4694–4698.
[17] J.W Mo, B Ogorevc, Simultaneous measurement of dopamine and ascorbate
at their physiological levels using voltammetric microprobe based on
overox-idized poly(1,2-phenylenediamine)-coated carbon fiber, Analytical Chemistry
73 (6) (2001) 1196–1202.
[18] W Schuhmann, R Lammert, M Hammerle, H.L Schmidt, Electrocatalytic
prop-erties of polypyrrole in amperometric electrodes, Biosensors and Bioelectronics
6 (1991) 689–697.
[19] X Lin, Y Zhang, W Chen, P Wu, Electrocatalytic oxidation and determination
of dopamine in the presence of ascorbic acid and uric acid at a
poly(p-nitrobenzenazo resorcinol) modified glassy carbon electrode, Sensors and
Actuators B 122 (2007) 309–314.
[20] L Lin, J Chen, H Yao, Y Chen, Y Zheng, X Lin, Simultaneous determination
of dopamine, ascorbic acid and uric acid at poly(Evans Blue) modified glassy
carbon electrode, Bioelectrochemistry 73 (2008) 11–17.
[21] X Cao, L Luo, Y Ding, X Zou, R Bian, Electrochemical methods for
simul-taneous determination of dopamine and ascorbic acid using cetylpyridine
bromide/chitosan composite film-modified glassy carbon electrode, Sensors
and Actuators B 129 (2008) 941–946.
[22] A Liu, I Honma, H Zhou, Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode, Biosensors and Bioelectronics 23 (2007) 74–80.
[23] X Tu, Q Xie, S Jiang, S Yao, Electrochemical quartz crystal impedance study
on the overoxidation of polypyrrole–carbon nanotubes composite film for amperometric detection of dopamin, Biosensors and Bioelectronics 22 (2007) 2819–2826.
[24] Y Zhao, Y Gao, D Zhan, H Liu, Q Zhao, Y Kou, Y Shao, M Li, Q Zhuang, Z Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid
by a carbon nanotubes-ionic liquid gel modified electrode, Talanta 66 (2005) 51–57.
[25] Y Li, X Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly(vinyl alcohol) covalently modified glassy carbon electrode, Sensors and Actuators B 115 (2006) 134–139.
[26] U Yogeswaran, S.M Chen, Separation and concentration effect of f-MWCNTs
on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly(neutral red) composite films, Electrochimica Acta 52 (2007) 5985–5996.
[27] S Jiao, M Li, C Wang, D Chen, B Fang, Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA, Electrochimica Acta 52 (2007) 5939–5944.
[28] S Thiagarajan, T.H Tsai, S.M Chen, Easy modification of glassy carbon elec-trode for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosensors and Bioelectronics 24 (2009) 2712–2715.
[29] H Wang, T.H Li, W.L Jia, H.Y Xu, Highly selective and sensitive determination
of dopamine using a NF/carbon nanotubes coated poly(3-methylthiophene) modified electrode, Biosensors and Bioelectronics 22 (2006) 664–669 [30] F Sekli-Belaidi, D Evrard, P Gros, Evidence of an EC’ mechanism occurring during the simultaneous assay of ascorbic and uric acids on poly(3,4-ethylenedioxythiophene) modified gold microsensor, Electrochem-istry Communications 13 (2011) 423–425.
[31] V.T Huong, T Shimanouchi, D.P Quan, H Umakoshi, P.H Viet, R Kuboi, Polymethylthiophene/NF-modified glassy carbon electrode for selective detec-tion of dopamine in the presence of ascorbic acid, Journal of Applied Electrochemistry 39 (10) (2009) 2035–2042.
[32] S.M Chen, J.Y Chen, V.S Vasantha, Electrochemical preparation of epinephrine/NF chemically modified electrodes and their electrocat-alytic oxidation of ascorbic acid and dopamine, Electrochimica Acta 52 (2006) 455–465.
[33] S Guo, X Wu, J Zhou, J Wang, B Yang, B Ye, MWNT/Nafion composite modified glassy carbon electrode as the voltammetric sensor for sensitive determination
of 8-hydroxyquinoline in cosmetic, Journal of Electroanalytical Chemistry 655 (2011) 45–49.
[34] C.C Harley, A.D Rooney, C.B Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated -cyclodextrins, Sensors and Actuators
B 150 (2010) 498–504.
[35] A Balamurugan, S.M Chen, Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid, Analytica Chimica Acta 596 (2007) 92–98.