Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chu vi của chúng bằng nhau.. Lời giải Vì hai đoạn thẳng góc, tam giác đối xứng với nhau qua một đường thẳng thì chúng bằng nhau nê
Trang 1CÂU HỎI TRẮC NGHIỆM TOÁN LỚP 8
BÀI 6: ĐỐI XỨNG TRỤC Bài 1: Cho tam giác ABC cân tại A, các đường trung tuyến AA’, BB’, CC’ Trục đối xứng của tam giác ABC là:
A AA’ B BB’ C AA’ và CC’ D CC’
Lời giải
Do tam giác ABC cân tại A, nên đường trung tuyến AA’ đồng thời là đường trung trực
Do đó AA’ là trục đối xứng của tam giác ABC
Đáp án cần chọn là: A
Bài 2: Hãy chọn câu sai:
A Nếu hai góc đối xứng nhau qua một đường thẳng thì chúng bằng nhau
B Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chúng bằng nhau
C Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chu vi của chúng bằng nhau
D Nếu hai tia đối xứng với nhau qua một đường thẳng thì chúng bằng nhau
Lời giải
Vì hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau nên D sai
Đáp án cần chọn là: D
Trang 2A Điểm đối xứng với A qua đường thẳng d là A
B Điểm đối xứng với K qua đường thẳng d là K
C Điểm đối xứng với A qua đường thẳng d là K
D Điểm đối xứng với Q qua đường thẳng d là Q
Lời giải
Từ hình vẽ ta có đường thẳng d là đường trung trực của đoạn thẳng AK nên điểm đối xứng với A qua đường thẳng d là K
Đáp án cần chọn là: C
Bài 4: Cho hình vẽ Hãy chọn câu sai
A Điểm đói xứng với P qua đường thẳng QG là P’
B Điểm đối xứng với B qua đường thẳng QG là B’
Trang 3D Điểm đối xứng với G qua đường thẳng QG là G
Lời giải
Từ hình vẽ ta có đường thẳng QG là đường trung trực của đoạn thẳng DD’, BB’, PP’ nên
Điểm đối xứng với P qua đường thẳng QG là P’ nên B đúng
ĐIểm đối xứng với B qua đường thẳng QG là B’ nên B đúng
Điểm đối xứng với D qua đường thẳng QG là D’ nên C sai
Vì G Є QG nên điểm đối xứng với G qua QG là G nên D đúng
Đáp án cần chọn là: C
Bài 5: Hãy chọn câu sai
A Hai đoạn thẳng EB và E’B’ đối xứng nhau qua m
B Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m
C Hai tam giác DEB và D’E’B’ đối xứng nhau qua m
D Hai đoạn thẳng DE và D’B’ đối xứng nhau qua m
Trang 4Từ hình vẽ ta có A và A’ đối xứng nhau qua đường thẳng m; B và B’ đối xứng nhau qua đường thẳng m; C và C’ đối xứng nhau qua đường thẳng m
Suy ra hai đoạn thẳng EB và E’B’ đối xứng nhau qua m
Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m
Hai tam giác DEB và D’E’B’ đối xứng nhau qua m
Hai đoạn thẳng DE và D’E’ đối xứng nhau qua m nên D sai
Đáp án cần chọn là: D
Bài 6: Cho tam giác ABC, trong đó AB = 11cm, AC = 15cm Vẽ hình đối xứng với tam giác ABC qua trục là cạnh BC Chu vi của tứ giác tạo thành là:
A 52cm B 54cm C 26cm D 51cm
Trang 5Gọi A’ là điểm đối xứng với A qua BC Khi đó tam giác A’BC đối xứng với tam giác ABC qua BC
Tứ giác tạo thành là ABCA’
Ta có A’B = AB = 11cm (vì A’B và AB đối xứng nhau qua BC)
A’C = AC = 15cm (vì A’C và AC đối xứng nhau qua BC)
Chu vi tứ giác ABCA’ là
P = AB + AC + A’B + A’C = 11 + 15 + 11 + 15 = 52 cm
Đáp án cần chọn là: A
Bài 7: Cho tam giác ABC, trong đó AB = 8cm, AC = 10cm Vẽ hình đối xứng với tam giác ABC qua trục là cạnh BC Chu vi của tứ giác tạo thành là:
A 38cm B 54cm C 36cm D 18cm
Trang 6Gọi A’ là điểm đối xứng với A qua BC Khi đó tam giác A’BC đối xứng với tam giác ABC qua BC
Tứ giác tạo thành là ABCA’
Ta có A’B = AB = 8cm (vì A’B và AB đối xứng nhau qua BC)
A’C = AC = 10cm (vì A’C và AC đối xứng nhau qua BC)
Chu vi tứ giác ABCA’ là
P = AB + AC + A’B + A’C = 8 + 10 + 8 + 10 = 36 cm
Đáp án cần chọn là: C
Bài 8: Cho hình vuông ABCD cạnh bằng a M và N là hai điểm lưu động lần lượt trên cạnh AB và AD sao cho 𝐌𝐂𝐍 ̂ = 45 0 Vẽ tia Cx vuông góc với CN,
Cx cắt đường thẳng AB tại E
1 Chọn kết luận đúng nhất
A E là điểm đối xứng của N qua CM
B Tam giác CEN là tam giác cân tại C
C Cả A, B đều đúng
D Cả A, B đều sai
Trang 7Ta có CN ⊥ CE (gt) mà MCN̂ = 450 nên MCÊ = 450 hay Ĉ + C2 ̂ = 453 0
Mà Ĉ + C1 ̂ = 453 0 (vì MCN̂ = 450) nên Ĉ = C1 ̂ 2
Xét tam giác CDN và tam giác CBE có:
BC = DC (do ABCD là hình vuông);
D̂ = B̂ = 900;
C1
̂ = Ĉ (cmt) 2
Suy ra ΔCDN = ΔCBE (g.c.g)
Suy ra CN = CE
Xét tam giác CEN có CN = CE (cmt) nên tam giác CEN là tam giác cân tại C Suy ra phân giác CM đồng thời là đường trung trực của NE
Vậy E là điểm đối xứng của N qua CM
Đáp án cần chọn là: C
2 Tính chu vi của tam giác AMN theo a
A 4a B 3a C a D 2a
Trang 8Ta có: ΔCMN = ΔCME (do tính đối xứng qua CM)
Nên MN = ME
Suy ra chu vi tam giác AMN là:
AM + AN + MN = AM + AN + ME
= AM + AN + MB + BE = AM + AN + MB + ND (vì ΔCDN = ΔCBE (theo câu trước) nên BE = ND)
= (AM + MB) + (AN + ND)
Vậy chu vi tam giác AMN bằng 2a
Đáp án cần chọn là: D
Bài 9: Cho hai điểm A, B nằm trên cùng một nửa mặt phẳng bờ là đường thẳng d Gọi B’ là điểm đối xứng của B qua đường thẳng d Tìm trên đường
thẳng d điểm M sao cho tổng MA + MB nhỏ nhất Chọn khẳng định đúng
nhất
A M là giao điểm của đoạn thẳng AB và đoạn thẳng d
B M là giao điểm của đoạn AB’ và đường thẳng d
C Cả A, B đều đúng
D Cả A, B đều sai
Trang 9Gọi B’ là điểm đối xứng của B qua đường thẳng d B’ cố định
Ta có: MB = MB’ (tính chất đối xứng trục)
Xét ba điểm M, A, B’ ta có MA + MB’ ≥ AB’
Do đó MA + MB ≥ AB’
Dấu “=” xảy ra khi và chỉ khi A, M, B thẳng hang theo thứ tự đó hay M là giao điểm của đoạn AB’ và đường thẳng d
Vậy khi M ≡ M’ là giao điểm của đoạn thẳng AB’ và đường thẳng d thì tổng
MA + MB nhỏ nhất, trong đó B’ là điểm đối xứng của B qua d
Đáp án cần chọn là: B
Bài 10: Trên tia phân giác góc ngoài tại đỉnh C của tam giác ABC, lấy điểm
M (M khác C) Chọn câu đúng
A MA + MB = AC + BC B MA + MB > AC + BC
C MA + MB < AC + BC D Chưa đủ điều kiện để so sánh
Trang 10Trên tia đối của tia CB lấy điểm A’ sao cho CA = CA’
Khi đó ta có: ΔCAA’ cân tại A có CM là phân giác góc ACA’ nên CM cũng là đường trung trực của AA’
Từ đó ta có: MA = MA’
Nên MA + MB = MA’ + MB
Xét tam giác MA’B có MA’ +MB > A’B MA + MB > A’C + BC
Hay MA + MB > AC + BC (vì CA = CA’)
Đáp án cần chọn là: B
Bài 11: Hãy chọn câu đúng Trục đối xứng của hình thang cân là:
A Đường thẳng đi qua trung điểm hai cạnh bên của hình thang cân
B Đường chéo của hình thang cân
C Đường thẳng vuông góc với hai đáy của hình thang cân
D Đường thẳng đi qua trung điểm hai đáy của hình thang cân
Lời giải
Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó
Đáp án cần chọn là: D
Bài 12: Hãy chọn câu đúng
Trang 11B Tam giác có trục đối xứng là đường trung tuyến
C Tam giác có trục đối xứng là đường cao
D Hình thang vuông có đối xứng là đường trung bình của nó
Lời giải
Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó
Như vậy hình thang cân có trục đối xứng là đường trung trực của hai đáy
Đáp án cần chọn là: A
Bài 13: Hãy chọn câu đúng?
A Tam giác đều có ba trục đối xứng
B Tam giác cân có hai trục đối xứng
C Hình tam giác có ba trục đối xứng
D Hình thang cân có hai trục đối xứng
Lời giải
+ Hình thang cân có trục đối xứng là đường thẳng đi qua trung điểm hai đáy nên hình thang cân có một trục đối xứng Do đó A sai
+ Tam giác cân có một trục đối xứng là đường trung trực hạ từ đỉnh cân nên B sai
+ Tam giác thường thì không có trục đối xứng nên C sai
+ Tam giác đều có ba trục đối xứng là ba đường trung trực của tam giác nên D đúng
Đáp án cần chọn là: A
Bài 14: Cho tam giác ABC cân tại B, các đường trung tuyến AA’, BB’, CC’ Trục đối xứng của tam giác ABC là:
A AA’ B BB’ C AA’ và CC’ D CC’
Trang 12Do tam giác ABC cân tại B, nên đường trung tuyến BB’ đồng thời là đường trung trực
Do đó BB’ là trục đối xứng của tam giác ABC
Đáp án cần chọn là: B
Bài 15: Cho hình vẽ, AD = AE, AG là trung trực của DE Có bao nhiêu cặp đoạn thẳng đối xứng nhau qua trục AG (các đoạn thẳng thuộc đường thẳng
AD, AE)? Chọn câu đúng
A 1 B 2 C 3 D 4
Lời giải
Từ giả thiết ta thấy ΔADE cân tại A có AG là đường cao nên AG cũng là đường
Trang 13Nên điểm D và E đối xứng nhau qua AG
Lại có BC // DE (cùng vuông với AG) nên suy ra AB AC
AD AE (định lý Ta-lét)
Mà AD = AE (gt) => AB = AC
Do đó ΔABC cân tại A có AF là đường cao nên AF cũng là đường trung trực của BC
Từ đó điểm B, C đối xứng nhau qua AG
Như vậy:
+ Hai đoạn thẳng BD, CE đối xứng nhau qua AG
+ Hai đoạn thẳng AB, AC đối xứng nhau qua AG
+ Hai đoạn thẳng AD, AE đối xứng nhau qua AG
Đáp án cần chọn là: C
Bài 16: Cho đoạn thẳng AB có độ dài 3cm và đường thẳng d Đoạn thẳng A’B’ đối xứng với AB qua d Độ dài đoạn thẳng A’B’ là:
A 3cm B 6cm D 9cm D 12cm
Lời giải
Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 3cm
Đáp án cần chọn là: A
Bài 17: Cho đoạn thẳng AB có độ dài 6cm và đường thẳng d Đoạn thẳng A’B’ đối xứng với AB qua d Độ dài đoạn thẳng A’B’ là:
A 3cm B 6cm D 9cm D 12cm
Lời giải
Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 6cm
Đáp án cần chọn là: B
Bài 18: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 4cm, BC = 7cm và chu vi của tam giác ABC = 17cm Khi đó độ dài cạnh C’A’ của tam giác A’B’C’ là:
A 17cm B 6cm C 7cm D 4cm
Trang 14+ Xét tam giác ABC có chu vi PABC = AB + AC + BC => PABC = 6cm
+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên
AC = A’C’ = 6cm
Đáp án cần chọn là: B
Bài 19: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 8cm, BC = 11cm và chu vi của tam giác ABC = 30 cm Khi đó độ dài cạnh C’A’ của tam giác A’B’C’ là:
A 16cm B 15cm C 8cm D 11cm
Lời giải
+ Xét tam giác ABC có chu vi PABC = AB + AC + BC => PABC = 11cm
+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên
AC = A’C’ = 11cm
Đáp án cần chọn là: D
Bài 20: Cho tam giác ABC có 𝐀 ̂ = 20 0 ; 𝐁 ̂ = 80 0 , d là trung trực của cạnh AB Trên cạnh AC, lấy điểm M sao cho AM = BC và gọi M’ là điểm đối xứng của M qua d
1 Tam giác M’BC là tam giác gì? Chọn đáp án đúng nhất
A đều B cân tại B C cân tại C D vuông cân tại M’
Lời giải
Trang 15Do tính chất đối xứng qua d, ta có AM = BM’
Mà AM = BC (gt) nên BM’ = BC
Ta lại có: M′BÂ = MAB̂ (do MA đối xứng với M’B qua d)
Suy ra M′BĈ = B̂ – 200 = 800 – 200 = 600
Xét tam giác M’BC có BM’ = BC, M′BĈ = 600 do đó tam giác M’BC là tam giác đều
Đáp án cần chọn là: A
2 Tính góc BMC
A 450 B 300 C 600 D 400
Trang 16Ta cũng có: MCB̂ = 1800 – (Â + B̂) = 1800 – (200 + 800)
Suy ra MCM′̂ = MCB̂
Mà CMM′̂ = Â = 200 (góc đồng vị)
Nên MCM′̂ = CMM′̂ suy ra M’C = M’M = M’B
Ta lại có: M′MB̂ = M′BM̂ (tam giác M’MB cân tại đỉnh M’); M′MB̂ = MBÂ (so
le trong)
Nên M′BM̂ = MBÂ
Vậy BMĈ = CMM′̂ + M′MB̂
Đáp án cần chọn là: B