-The reactor-based radioisotope production advantage lies in its large production capacity, comfortable targetry and robustness.. - SA assessment becomes a lot more serious than reaction
Trang 4Conference Presentation
Trang 54th Asia-Pacific Symposium on Radiochemistry ’09November 29 – December 4, 2009 Napa Valley, California, U.S.A.
Trang 6-The reactor-based radioisotope production advantage lies in its
large production capacity, comfortable targetry and robustness
However, the specific activity is a subject to be concerned.
- SA assessment becomes a lot more serious than reaction yield
which is a conventional concern for radioisotope producers.
Trang 7- Neuron capture reactions
- Reaction yield assessment vs Cross section & Neutron flux
Present issues and requirements:
-Very high specific radioactivity radioisotope & reasonable reaction yield
Problem
Specific radioactivity
Neutron parameters &
characteristics
elemental impurities
Activation and post-irradiation time
Yield build-up Target burn-up
Unwanted nuclear reactions
for optimization and quality assurance purposes.
- SA assessment approaches formulated in mathematical equations
to get the highest standardization
Trang 8Three main nuclear reactions for reactor based radioisotope production
For lower
SA isotope production
Trang 9Simple Target System: For lower SA radioisotope production
S t S
. − ∆
=
Un-burned atom numbers of S
Burned-up atom numbers of Sg,A
A g A
, 0 ,
, ,
,
irr A g A
g A
g
t S
/ 693 0
2 /
Reaction yield of Sg,Afor Ri
) (
.
.
,
1
, 1
,
i R irr
A S
A i
S R
i th S
Ω
, 1
,
1 1 , ,
max
h p
S R
i th
S o
N
A i
∆
− Λ
Ω
Trang 10Specific Radioactivity (SA) in Simple Target System
)
.
, 2 ,
2
, 1 ,
1
irr A g A
g
irr A S A
irr A S A i
i irr
i
t S
t S
t S
R R
t
irr A S irr
A S A
i
j m
m m R i c
irr i R irr
A S
j m
m m R i c
irr i R irr
A S
c
i
t t
i th S
R
t t
t
t t
t
t
R
e P P b e
e e
e
e e
e SA
1
2
,
1
.
.
.
.
,
, 2 ,
1 ,
1
1 ,.
, 1
1 ,.
, 1
).
/ (
).
/ ) ((
−
∆
−
+ Ω
∆
− Λ +
) 1
(
100 ( 1 , ). . ( 1 , ). .,
irr A S i R irr
A S i R irr
i
t t
=
irr
t R
dt
SA d
irr i
0 ) ).
/ (
.
.
).(
(
) ).
/ (
).(
.
(
max , , 2 ,
2
max , , 1 ,
1
max , max
, max
,
,
1
max , , 2
max , , 1
max ,
max , max
, , 1
,
1
1
2
.
.
1
2
.
.
−
−
−
− Λ
− Λ
− Λ
−
∆
−
SA irr A S A
SA irr A S A
SA irr i R i
SA irr i R SA
irr
A
S
SA irr A S SA
irr A S SA
irr i R SA
irr i R i
SA irr A S
A
t S
t S
t R
t t
t t
t t
R
t S
e P P b e
a e
e e
e P P b e
a e
e e
If the differential of SARi
No maximum SA
Trang 11SA of 177 Lu in 176/ 175 Lu target ( A typical 2- isotope target system)
Trang 13SA of 177 Lu in 176/ 175 Lu target ( A typical 2- isotope target system)
100% 176 Lu
74% 176 Lu +
74% 176 Lu + 26% 175 Lu
t Y t SA
26% 175 Lu
Trang 15Complex Target System: For higher SA radioisotope production
Trang 16c j m
m m R i irr
irr irr
B c
t
t t
d t
d t
d S
d d d d
e d
d d d
e d
d d d
e f
f N
N
.
3 2 3 1
.
2 3 2 1
.
1 3 1 2
.
3 2 ,
0
1 ,3
2 1
, 1
) )(
( ) )(
( ) )(
(
.[
.
−
∆ Λ
− Λ
−
∆ Λ
−
∆ +
∆
− Λ
×
∆ Λ
∆
− Λ
Ω
=
→
− Λ
, 2 ,
2 ,
2 ,
2 ,
,
2 ,
2 , ,
2 , ,
, 2 ,
2
, 2 ,
.
.
.
, 2 ,
,
).
.(
).
.
(
).
.
( )
(
) (
.
c A g y R irr
y R irr
B S B
y
irr B S B
y y
A g y
irr y R B
y B
A g y B
A g y y
A g y
B y
B y
B c
A g
t t
t S
R
t S
R R
S R
t S
R S
S R S
S R R
S R
S R S
R
y th
S o t
S
e e
e e
e
N N
λλ
λ λ
λ
φ
) (
) ) (
/(
) (
, 1
, ,
k
Ri k
n j
j
Ri j Ri
j
n j
j
Ri j Ri
) / (
).
/ ) ((
,
1
.
.
.
,
, 1 ,
1
1 ,.
, 1
1 ,.
, 1
P P
b e
e e
e
e e
e SA
A imp
t i
th S
R
t t
t
t t
t t
R
irr A S A
i
j m
m m R i c
irr i R irr
A S
j m
m m R i c
irr i R irr
A S
c i
+ Ω
∆
− Λ +
Trang 17SA of 177 Lu in 176/ 175 Yb target ( A typical multi- isotope target system)
Nuclear characteristics of radionuclides produced in 176 Yb target matrix [3]
( * Elemental Lu content being of natural isotopic abundance in 176 Yb target is assumed as 97.41 % 175 Lu and 2.59 % 176 Lu)
Trang 18SA of 177 Lu in 176/ 175 Yb target ( A typical multi- isotope target system)
SA of 177 Lu radioisotope in the 176 Yb target vs.
irradiation time and content of 174 Yb- and elemental Lu- impurities.
A : SA of 177 Lu isotope in impurity-free 176 Yb target
B : SA of 177 Lu isotope in the 176 Yb target containing 1.93% 174 Yb
C : SA of 177 Lu isotope in the 176 Yb target containing 50 p.p.m Lu impurities.
D : SA of 177 Lu isotope in the 176 Yb target containing 1.93% 174 Yb and 50 p.p.m Lu impurity.
150
Trang 19A : SA of 177 Lu isotope in the impurity-free 176 Yb target
B : SA of 177 Lu isotope in the 176 Yb target containing 1.93% 174 Yb
C : SA of 177 Lu isotope in the 176 Yb target containing 50 p.p.m Lu impurities.
D : SA of 177 Lu isotope in the target containing 1.93% 174 Yb and 50 p.p.m Lu impurity.
(*) is the experimental measurement result for this type of target.
Trang 20SA assessment methods have been established and
equations formulated for SA calculation of different target
SA assessment is an effective tool for optimization and
quality assurance in the radioisotope production
Trang 21Radioisotope Development Facilities
• Nuclear Reactor at Lucas Heights
– HIFAR (10MW) in operation since 1958
– OPAL (20 MW) inauguration in 2008
• Low Enriched Uranium (LEU)
• National Medical Cyclotron (NMC)
– Based at Camperdown
– Based at Camperdown
– Commissioned in 1992
– 30 MeV from IBA
– Versatile: Production & Research
• Further investment in Automation
• Full GMP Facilities
Trang 22New OPAL reactor core
Trang 23Large Volume Irradiation Facilities
Storage Rack
for Irradiation
for Irradiation Facilities
Irradiation RIGs
Bulk Irradiation Facilities
Pneumatic
Transfer
System Tubes
Trang 24Hot Labs
Trang 25176Lu /176Yb target irradiation can
Trang 26Automated separation of 177Lu from 176Yb target