1. Trang chủ
  2. » Luận Văn - Báo Cáo

Comparison of alternatives to passive surveillance to detect foot and mouth disease incursions in victoria, australia

9 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Comparison of alternatives to passive surveillance to detect foot and mouth disease incursions in Victoria, Australia
Tác giả M.G. Garner, I.J. East, T. Kompas, P.V. Ha, S.E. Roche, H.T.M. Nguyen
Trường học Australian National University
Chuyên ngành Veterinary Medicine
Thể loại Research article
Năm xuất bản 2016
Thành phố Canberra
Định dạng
Số trang 9
Dung lượng 552,38 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Table 2 The time delay until 20% of a herd shows clinical signs of infection with foot and mouth disease, the daily probability that each farm type will report the occurrence of clinical

Trang 1

Preventive Veterinary Medicine 128 (2016) 78–86

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / p r e v e t m e d

a Animal Health Policy Branch, Commonwealth Government – Department of Agriculture, GPO Box 858, Canberra, ACT 2601, Australia

b Crawford School of Public Policy, Crawford Building (132), Lennox Crossing, Australian National University, Canberra, ACT 0200, Australia

Article history:

Received 8 May 2015

Received in revised form 28 January 2016

Accepted 19 April 2016

Keywords:

Foot and mouth disease

Surveillance

Early detection

Simulation modelling

Thisstudyaimedtoevaluatestrategiestoenhancetheearlydetectionoffootandmouthdisease incur-sionsinAustralia.Twostrategieswereconsidered.First,improvingtheperformanceofthecurrent passivesurveillancesystem.Second,supplementingthecurrentpassivesystemwithactivesurveillance strategiesbasedontestinganimalsatsaleyardsorthroughbulkmilktestingofdairyherds.Simulation modellingestimatedtheimpactofproducereducationandawarenessbyeitherincreasingthedaily prob-abilitythatafarmerwillreportthepresenceofdiseasedanimalsorbyreducingtheproportionoftheherd showingclinicalsignsrequiredtotriggeradiseasereport.Bothincreasingtheprobabilityofreporting andreducingtheproportionofanimalsshowingclinicalsignsresultedinincrementaldecreasesinthe timetodetection,thesizeandthedurationoftheoutbreak.Agoldstandardsysteminwhichall pro-ducersreportedthepresenceofdiseaseonce10%oftheherdshowedclinicalsignsreducedthemedian timetodetectionoftheoutbreakfrom20to15days,thedurationofthesubsequentoutbreakfrom53

to42daysandthenumberofinfectedfarmsfrom46to32.Bulkmilktestingreducedthemediantime

todetectionbytwodaysandthenumberofinfectedfarmsbysixbuthadnoimpactontheduration

oftheoutbreak.Screeningofanimalsatsaleyardsprovidednoimprovementoverthecurrentpassive surveillancesystemalonewhilehavingsignificantresourceissues.Itisconcludedthatthemosteffective waytoachieveearlydetectionofincursionsoffootandmouthdiseaseintoVictoria,Australiaistoinvest

inimprovingproducerreporting

CrownCopyright©2016PublishedbyElsevierB.V.Allrightsreserved

1 Introduction

Footandmouth disease(FMD)isoneof themostinfectious

diseasesofdomesticlivestock(OIE,2012).FMDisendemicin

two-thirdsoftheworld(GrubmanandBaxt,2004;Kompasetal.,2015)

whereitcausesannuallossesofUS$6.5–21billion(Knight-Jones

andRushton,2013).Increasinginternationalmovementsandtrade

presentanon-goingthreattoFMD-freecountries.Inthepast15

years,therehave beena numberofoutbreaksofFMDin

previ-ouslyfreecountriesdespitetheapplicationofstringentquarantine

measures.Theseoutbreaksresultedinestimatedfinanciallosses

ofmorethanUS$1.5billion(Knight-JonesandRushton,2013)and

Abbreviations: CVO, Chief Veterinary Officer; FMD, foot and mouth disease;

GSAT, general surveillance assessment tool; IP, infected premises; PCR, polymerase

chain reaction.

∗ Corresponding author.

E-mail addresses: iain.j.east@agriculture.gov.au , iain.east@gmail.com (I.J East).

substantialdisruptiontotheinternationallivestocktrade(Blayney

etal.,2006)

InthefaceofthecontinuingthreatofFMDintroduction,early detectionofanincursionisofparticularimportancebecausethe longerthetimetodetectionandthelargerthesizeoftheoutbreak

at detection, the more difficult is the task of disease eradica-tion(Carpenteretal.,2011;Matthews,2011).Acommonformof surveillanceusedtodetectdiseaseincursionsispassive surveil-lance;theobservationand reportingof clinicalsignsofdisease

inanimalsbyanimalhealthprofessionals,para-professionals, ani-malowners,producers,processorsandothersacrossthelivestock industries(Hoinville,2011).Keyobservationpointsforlivestock include thefarm, themarket/saleyardand theabattoir Passive surveillancetendstodetectdiseasesassociatedwithunusualor obviousclinicalsigns.Whileithasitslimitationsintermsof pro-vidingrepresentativeinformationonpopulations,intimelinessof detectionandinhavingpoorsensitivity,itcanbeaveryeffective methodofidentifyingnewandemergingdiseases(Langstaff,2008) Previousqualitativestudieshavealsoshownthatthetimebetween firstclinicalappearanceofdiseaseandtheactualreportingofthat http://dx.doi.org/10.1016/j.prevetmed.2016.04.009

0167-5877/Crown Copyright © 2016 Published by Elsevier B.V All rights reserved.

Trang 2

Fig 1 Map of Victoria (the study area) showing major dairying areas (shaded areas) and the location of smaller pig farms (•).

diseasebyfarmersisoftentoolong,resultinginextensivespread

ofthedisease(Elbersetal.,1999;Elbersetal.,2010).Reportingof

diseasebyproducersislimitedbyanumberoffactorsincluding

inabilitytorecognisethedisease(Hoppetal.,2007),the

poten-tialdeleteriousimpactofreportingdiseaseontheindividualfarm

throughquarantine,stampingout,etc.(Elbersetal.,2010)anda

lackoftrustingovernment(Palmeretal.,2009;Elbersetal.,2010)

Anyactionsthatcouldovercomethesebarrierstoreportingcould

wellbeeffectiveinenhancingtheefficacyofpassivesurveillance

fordetectingdiseaseincursions

Theperformanceandreliabilityofthepassivesurveillance

‘sys-tem’inAustraliahasbeenofconcernforanumberofyears,largely

owingtoreductionsingovernmentexpenditureonagricultureand

areductionintheveterinaryservicesinruralareas(Nairnetal.,

1996;Frawley,2003;Matthews,2011).Similarconcernshavebeen

expressedinother countriesincludingtheUnitedStates (Bates

etal.,2003)andTheNetherlands(Klinkenbergetal.,2005)

ArecentreviewofAustralia’spreparednessforFMD(Matthews,

2011)foundthatthereisastrongpossibilitythatanincursionof

FMDmaynotbereadilydetectedduetoarangeoffactors

Mod-ellingstudiesinAustralia(Martinetal.,2015;Eastetal.,2016)have

indicatedthatexpectedtimestodetectionwouldbe20–33days

withanupper 90thconfidenceinterval of 22–47days,

depend-ingonregion.Thepredicteddelaytodetectionissimilartothose

observedinrecentoutbreaksinothercountries(Anderson,2002;

Boumaetal.,2003;Yoon etal.,2013).It isthereforeofinterest

toexamine whetherpotentialexiststoimprove time to

detec-tionthroughintroducingactivesurveillance,usingnewmethodsof

surveillanceorenhancingtheexistingpassivesurveillancesystem

Saleyards and markets have been recognised as important

amplifying points for FMD because of their potential facilitate

rapidspreadof infectionover wideareas(Mansleyetal.,2003;

Animal Health Australia 2014a) Activesurveillance using

real-timedetectionsystemstoidentifyFMDatsaleyardswasproposed

byBatesetal.(2003)asawaytopreventdisseminationof

dis-easethroughtransportofinfectedanimalsawayfromthesaleyard

Hernández-Joveretal.(2011)estimatedthesensitivityofthe

cur-rentsurveillancesysteminplaceatAustralianpigsaleyardsand

abattoirsfordetectingFMDasnomorethan0.35indicatingthat

potentialforimprovementtosaleyardsurveillanceexists

Newmethodsofsurveillancemayarisethroughdevelopment

ofnewtechnologiesandoneexampleofthisisthedevelopmentof

bulkmilktestingforFMD(Reidetal.,2006;ThurmondandPerez,

2006).Footandmouthdiseasevirusisdetectableinthemilkof infectedcowsfor1–3daysbeforeclinicalsignsofinfectionappear (Blackwellet al.,1982;Reid etal.,2006).Thisobservation pro-videspotentialtodetectdairycows infectedwithFMDprior to theappearanceofclinicalsigns;anearliertimepointthan pos-siblethroughpassivesurveillance.Thetestsdevelopedallowfor thedetectionofFMDvirusinsamplesdilutedupto1in104(Reid

etal.,2006)andthiswouldallowtestingofbulkmilksamplesafter arrivalatamilkprocessingfacility.Giventhesedevelopmentsin PCRdiagnostictechnologyfordetectingFMDvirusinmilk sam-ples,thefeasibilityoftestingmilksamplesforFMDisofparticular interestbecausesamplingschemestocollectbulkmilkarealready

inplaceforanumberofqualityassuranceprograms

Thispaperaimstoexaminethepotentialforimprovingearly detectionofFMDinVictoria,Australiathrough:

1.Enhancingtheperformanceofthecurrentpassivesurveillance system througheducation campaigns that increase producer awarenessofdiseaseandthecapacitytorecognisediseased ani-mals

2.Activesurveillanceprogramsatsaleyards

3.Activesurveillanceusingbulkmilktesting

Todoso,weusedaspatiallydynamicepidemiologicalmodelfor FMDinAustralia(GarnerandBeckett,2005)toassesstheimpactof theseprogramsonthetimetodetectionbeforeanFMDoutbreak

isreportedandthesizeanddurationoftheoutbreakatthetime

ofreporting.Issuesinfluencingtheeffectivenessofthesestrategies arealsodiscussed

2 Materialsandmethods 2.1 Studyarea

ThestudyareaforthisprojectisthestateofVictoria(Fig.1) wherethetemperate,climateandhigherrainfallallowmore inten-sivefarmingthanmuchoftherestofAustralia.VictoriaisAustralia’s largestfoodandfibreexportingstateandisthecentreofAustralia’s dairyproduction.Ithas9.2%ofthenationalbeefcattlepopulation, 63.6%ofthedairycattlepopulation,24.8%ofthepigpopulation and21.3%ofthesheeppopulation(ABARES,2014).Thestudyarea contains42,279farmswithFMDsusceptiblespeciescategorised intooneofeightdifferenttypes(seebelow)forthepurposesof

Trang 3

80 M.G Garner et al / Preventive Veterinary Medicine 128 (2016) 78–86

Table 1

The number of farms by type in the study area.

dis-creteareasofthestate(Fig.1).Becauseofthemildclimate,higher

stockingrates,relativelyhighhumanpopulationdensityand

prox-imitytoairportsandseaports,Victoriaisconsideredtobeahigher

risk area of Australia for FMD introduction,establishment and

spread(Eastetal.,2013)

2.2 Diseasespreadmodelling

The Australian Department of Agriculture’s FMD model

AusSpreadwas used tosimulate outbreaks of FMD.AusSpread

(GarnerandBeckett,2005;Eastetal.,2014a,b;Garneretal.,2014)

isastochasticspatialsimulationmodelinwhichFMD

transmis-sionis modelled through five discrete pathways:farm to farm

animalmovements,localspread(infectionoffarmswithinclose

geographical proximity by unspecifiedmeans), indirect contact

(viacontaminatedfomitesoranimalproducts),animalmovements

viasale-yardsormarketsandwind-bornespread.Eightdifferent

farmtypesarerecognisedinthemodelincludingspecialistbeef,

dairy,sheep,smallpig,largepig,mixedbeefand sheep,feedlot

producersandsmall-holders.Small-holdersaresmalllandowners

withlivestock,whoareoftensubcommercialandhavelifestyle

as a key motivator The model incorporates the attributes and

spatiallocationsofindividualfarms,saleyards,weatherstations,

localgovernmentareasandvariousotherfeaturesoftheregional

environment.AusSpreadisconfiguredtosupporttherangeof

con-trolmeasuresdescribedinAustralia’semergencyanimaldisease

responsearrangements(AnimalHealthAustralia,2014a).The

dis-ease control options available in themodel include a national

livestockstandstillperiodandsubsequentmovementrestrictions

inRestrictedAreas(arelativelysmalllegallydeclaredareaaround

infectedpremisesanddangerouscontactpremisesthatissubject

todiseasecontrols,includingintensesurveillanceandmovement

controls)andControlAreasalegallydeclareddisease-freebuffer

areabetweentheRestrictedArea anduninfected areas(Animal

HealthAustralia,2014b)aroundinfectedpremises(IPs),

surveil-lanceandtracing,andstampingoutofIPs.Pre-emptivecullingof

propertiesaroundIPsand/ortraceddangerouscontactpremises

orvaccinationmayalsobeconsidered.Tosupportthisstudy,an

additionalmodulewasaddedtoAusSpreadtosimulatedetection

ofFMDthroughthepassivesurveillancesystem.Thismodulehas

nowbeenincorporatedintoAusSpreadsotheuserhasachoice

ofdetermining when thefirst detection afteran incursionwill

bemade–eitherfixedtimeorthroughpassivereporting.Passive

reportingwasimplementedbyapplyingprobabilitiesthatsuspect

FMD,basedonclinicalsignsofdisease,wouldbereportedby

live-stockowners, inspectorsatsaleyardsor inspectorsatabattoirs

Theprobabilityofreportingwasconditionalonaminimum

clin-icalprevalenceonaninfectedfarm.Aseriesoftimestepstoallow

forinvestigation,confirmationandreportingtotheChief

Veteri-naryOfficer(CVO),wereaddedtodeterminewhenanemergency

diseaseresponsewouldbetriggered.Theapproachisdescribedin

moredetailbelow

Table 2 The time delay until 20% of a herd shows clinical signs of infection with foot and mouth disease, the daily probability that each farm type will report the occurrence

of clinical signs and the number of days for which more than 20% of the herd show clinical signs.

Farm type Minimum time

until 20% of herd shows clinical signs

Daily probability

of reporting

No days above 20% clinical threshold

authority

developmentofaspreadsheettool(GeneralSurveillance Assess-mentTool– GSAT)thathasbeenusedtoassesstheefficacyof generalsurveillancefordetectingincursionsoflivestockdiseases

inAustraliabasedoninputsfromjurisdictionalveterinaryservices Consistentwiththiswork,weassumedageneralthreshold clini-calprevalenceof20%inhisherdfortheownertonoticeandseek assistance.AsFMDspreadsatdifferentratesinthedifferentfarm typesthistranslatesintovaryingminimumtimestoreportand dailyprobabilitiesofreporting(0.005–0.884)byfarmtype.Table2 summarisesthedailyprobabilityofreportingbyfarmtype,the durationofperiodsoverwhichclinicalsignscouldbereportedand theexpectedtimefromfirstinfectionuntiltheclinicalthresholdfor possiblereportingisreached.Probabilityestimateswerederivedby

aseriesofexpertpanelsassembledtodevelopparametersforthe GSAT,withtheexpectedtimesandclinicalperiodsderivedfrom modellingFMDtransmissionwithintheherd(Martinetal.,2015) Foreach ofthetwelveproductionregionsfoundinAustralia (East et al., 2013), a separate expert panel was convened and wascomprisedofsixtoeightanimalhealthspecialistsfromeach

ofthestate\territorygovernmentswithlandlocatedwithinthat

Trang 4

Table 3

The probabilities that an inspector would notice and report an FMD infected

con-signment (assuming ≥ 20% clinical prevalence in the source farm).

Abattoirs

Saleyards

Table 4

The estimated probabilities and times for individual steps of the reporting chain

for foot and mouth disease being reported to the chief veterinary officer

(assum-ing ≥ 20% clinical prevalence in the source farm).

Farmer observes stock 0.142–0.959 1–30 days

Farmer recognises clinical signs 0.30–0.97 1 day

Farmer contacts vet 0.55–0.95 1 day

Vet investigates 0.95 1–2 days

Vet suspects EAD 0.92 –

Samples submitted to lab 0.84 1

samples tested 0.84 2

FMD detected 0.96 –

a Variable by animal species and by herd type, for detailed figures see Martin et al.

(2015) Supplementary data Table 1.

b Time from becoming infectious to reaching 20% clinical prevalence.

productionregion.For thestudyareautilisedinthis paper,the

VictorianGovernment,DepartmentofPrimaryIndustriesalso

con-ductedaproducersurveytoinformtheprobabilityestimatesused

inthisstudy(resultsnotpublished)

Inadditiontoon-farmreportingbytheowner/manager,

suspi-cionofFMDassociatedwithclinicalsignscouldalsobereported

byanabattoirorsaleyardinspectoraspartoftheirnormal

inspec-tionrole.Probabilitiesthataninspectorwouldnotice,recognise

andreportanFMDinfectedconsignment(Table3)werederivedby

aseriesofexpertpanelsassembledtodevelopparametersforthe

GSAT(Martinetal.,2015)

Tables2and3providethebasisfordeterminingwhether

sus-pectFMDwillberecognisedandinvestigated.However,several

additionalstepsarenecessarytoensurethatFMDisconfirmedand

reportedtotheCVO.TheseadditionalstepsarelistedinTable4

Again,theseestimatesforthesestepswerederivedbyaseriesof

expertpanelsassembledtodevelopparametersfortheGSATand

wereassumedtobeconstantforallfarm typesandgeographic

regions(Martinetal.,2015)

Estimatesofthetimeelapsedateachstepofthepassive

surveil-lancechainwerederivedfroma reviewoftheliteratureandby

theseriesofexpertpanelsassembledtodevelopparametersfor

theGSAT (Martin etal., 2015).Thisexpected timerequired for

investigationandnotificationoftheCVOwillvarydependingon

thenatureofthereportandthefollowingvalueshavebeenused:

Farmerreport–5days,Saleyardinspection–4daysandAbattoir

inspection–3days.ThefinalvaluesusedareshowninTable4.In

Australia,ifanotifiablediseaselikeFMDissuspected,jurisdictional

animalhealthserviceshavethelegalinstrumentstoquarantine

thesuspectedpremises.Australia’spolicyistoalsoimplementa

nationallivestockstandstillfromthetimeofdiagnosisofFMDor

onstrongsuspicionofthedisease(AnimalHealthAustralia,2015)

2.4 Enhancingthe‘passive’surveillancesystem The reporting of suspect disease by livestock owners could

beimprovedbyincreasingtheirawarenessofseriousdisease,by increasingthefrequency and extentof livestockinspectionsby owners,andbyimprovingwillingnessofownerstohaveproblems investigated(e.g.byagovernmentorprivateveterinarian) Educa-tionandawarenessprogramscouldbegeneralisedortargetedto specificindustrysectors.Fromamodellingperspective,thiscanbe representedbyareducedclinicalthresholdforreportingtooccur and/oranincreaseddailyprobabilitythatalivestockownerwith clinicallyaffectedlivestockwouldreport.However,itisdifficultto predicttheimpactofawarenessprogramsonproducerbehaviour

Areviewofextensionandproducereducationprogramsconducted

inAustraliainrecentyearssuggeststhatthebestprogramsresult

inanuptakeofnewfarmingpracticesofonly30–40%of partici-pants(Larsenetal.,2002;PriceandHacker,2009;Huntetal.,2011) Althoughitcannotbeassumedthatproducerswouldrespondinthe samewaytobiosecurityawareness,intheabsenceofother infor-mationwebelievethatthisprovidesaplausibleupperestimate

ofwhatmightbeexpected.Swillfeedingtopigsisthemostlikely opportunityforFMDtoestablishinAustralia(Matthews,2011),we evaluatedaneducationcampaigntargetedatthesmall-to-medium pigproducerstowhich30%ofproducersresponded;thedaily prob-abilityofreportingbyapigproducerwithaherdshowingclinical signsconsistentwithFMDincreasedfromabaselineof0.18to0.48 2.5 Activesurveillanceatsaleyards

Activesurveillance programsfor diseaseslikeFMD couldbe basedontestingsamplesofanimalssubmittedforsale.Thistesting couldbebasedonrandomortargetedsamplingregimes.Inthe for-mercaseanimalswouldbeselectedatrandomfromthepopulation

onanygivensaleday.Inthelattercase,animalswouldbeselected forsamplingonthebasisofsomeformofscreeningproceduree.g animalsshowingsignslikelamenessorthroughinfra-red thermog-raphy(Rainwater-Lovettetal.,2009).Theprobabilitythatasingle infectedfarmsubmittinganimalstoasalewouldbedetectedwas estimated,basedonsimplerandomsampling,assuming20,50or

100animalsaretestedpersaleandFMDtestsensitivityof97%(King

etal.,2006).Theprobabilitythatasingleinfectedfarmwouldbe detectedwasalsoestimatedassumingthesaleyardpopulationis firstscreenedwithinfraredthermography,whichwasassumedto haveasensitivityof61.1%andaspecificityof87.7%( Rainwater-Lovettetal.,2009)

2.6 Bulkmilktesting Althoughbulkmilktestingshowsgoodpotentialasascreening testforFMD,thereisnocommerciallyavailabletestatthistime Forthisstudy,wemadethefollowingassumptions:

•alldairyfarmswillbetestedeveryday(milkiscollecteddaily fromdairyfarmsinthestudyregion).Aresultisavailablethe nextdayafterthemilkiscollected

•testingisatthetankerlevel

•thePCRhasananalyticalsensitivityof10−2.5or10−3.Withan averagemilkingherdsizeof225,thismeansfourortwoinfected cowsperherd,assumingaminimumofoneinfectedherd con-tributingtoatanker.Ourmodellingusedthreeinfectedcowsas thefarmlevelthresholdfordetection(∼10−2.6)

•thediagnosticsensitivityofthemilkPCRtestis95%

•thereisatwodaydelayfromwhenmilkistesteduntilFMDis confirmed–toallowfortracebackofindividualfarmsand con-firmatoryinvestigation/testing

Trang 5

82 M.G Garner et al / Preventive Veterinary Medicine 128 (2016) 78–86

2.7 Outbreakscenarios

ThesourceoftheFMDintroductionwasassumedtobe

contam-inatedfoodbroughtintoAustraliabyatravellerreturningfrom

overseasandthen(illegally)fedtopigs.Thisisconsideredtobe

themostlikelywayforFMDtoestablishinAustralia(Matthews,

2011).Thiswasassumedtooccuronasmallerpigfarmsincein

Australialargerpigfarmstypicallyhavehighlevelsofbiosecurity

(Hernández-Joveretal.,2012).Theintroductionwasassumedto

occurinMay,whencoldandwetconditionswouldfavourFMD

virussurvivaloutsideahost.Foreachmodeliteration,apigfarm

oftheappropriatetypewasrandomlyselectedasthesourcefarm

toinitiateanoutbreak.Thedistributionofsmallerpigfarmsinthe

studyareaisshowninFig.1

2.8 Studydesign

AusSpreadwasconfiguredsothatthefirstdetectionofFMDwas

dynamicallydetermined,takingintoaccounttheabovedetection

parameters.Diseasewasintroducedintoarandomlyselectedsmall

pigfarm(<500pigs)andthemodelwasrununtileitherdisease

wasdetectedandadiseaseresponseprograminitiatedordisease

spontaneouslydiedout

Elevenpotentialsurveillancestrategieswereexamined:

1.Baselinepassivesurveillance–thestatusquowherethereisa

dailyprobabilityofareportingbyaproducerwithaninfected

herd,when20%ormoreoftheanimalsshowingclinicalsigns

ofinfection.Thedailyprobabilityisafunctionoffarmtypeand

isshowninTable2

2.Goldstandard –a hypothetical‘perfect’surveillancesystem

wherethedailyprobabilityofreportingbyallfarmersis1.0

when10%ormoreoftheiranimalsshowclinicalsignsof

infec-tion

3.Passive120 –thedailyprobabilityof small-to-mediumpig

farmersreportingsuspectdiseaseis1.0,ifaminimumof20%

oftheiranimalsshowclinicalsigns

4.Passive110 –thedailyprobabilityof small-to-mediumpig

farmersreportingsuspectdiseaseis1.0,ifaminimumof10%

oftheiranimalsshowclinicalsigns

5.Passive15 – the daily probability of small-to-medium pig

farmersreportingsuspectdiseaseis1.0,ifaminimumof5%

oftheiranimalsshowclinicalsigns

6.Enhanced passive surveillance – 30% of producers in the

small-to-mediumpigproductionsectorrespondtoan

aware-ness/educationcampaignandthedailyprobabilityofreporting

byasmall-to-mediumpigproducerwithaherdshowing

clin-icalsignsconsistentwithFMDincreasesfrom0.18to0.48

7.Saleyard20 –anactivesurveillance systemis implemented

where20 randomlyselectedanimalsat eachcattlesale are

testedbyPCRforinfectionwithFMD.Thetesthasasensitivity

of0.97andaspecificityof1.0

8.BMT1–bulkmilktestingeveryday

9.BMT2–bulkmilktestingeverysecondday

10.BMT3–bulkmilktestingeverythirdday

11.Integratedsurveillance(BMT1indairyareas,enhancedpassive

surveillanceinnon-dairyareas)

Twohundrediterations of each strategy wererun.For each

iteration,thefarmtowhichdiseasewasintroducedwasselected

randomlyfromamongthe163small-to-mediumpigfarmsin

Vic-toria.WhenFMDwasconfirmedaneradicationprogramconsistent

withAustralia’sresponsepolicyforFMD(AnimalHealthAustralia,

2014a)wasimplemented

Theoutputvariablesrecordedforeachiterationwere:

•TimefromintroductionuntilFMDconfirmedandtheCVOis noti-fied

•ProbabilitythatFMDestablishesandspreads(i.e.itdoesnotdie outbeforeitcanbereported)

•Durationoftheoutbreak(untildiseaseiseradicated)

•Numberofinfectedpremises

•Totalfarmsandanimalsculledtoachieveeradication 2.9 Statistics

All statistical calculations were conducted in STATA Inter-cooledsoftwarev11.0(StataCorpLP,CollegeStation,TX,USA).The surveillancestrategieswerecomparedusingtheFriedmantestfor comparisonofmultiplegroupsofmatcheddata.Posthocanalysisto identifydifferencesbetweenpairsofindividualstrategieswas con-ductedusingtheWilcoxonsignedrankstestwiththesignificance leveladjustedusingtheBonferronicorrection.Inaproportionof themodellingiterations,theFMDoutbreakdiedoutbeforethe out-breakwasobserved.Thisvariedfrom11%forthebaselinepassive surveillancetozerofortheGoldstandard.IterationswhereFMD diedoutbeforetheoutbreakwasobservedandreportedwerenot includedintheanalysis

3 Results 3.1 Currentandgoldstandardpassivesurveillancesystems ThecurrentBaselinepassivesurveillancesystemresultedina mediandelayfromdiseaseentryontotheindexfarmuntil detec-tionoftheoutbreakof20days.Themedianoutbreak lastedfor

53daysandresultedin46infectedfarms(Table5).Incontrast,a Goldstandardsystemwhereeveryfarmerreporteddiseaseassoon

as10%ormoreoftheiranimalsshowedclinicalsignsresultedina reductioninthemediandelaytodetectionof5days,inoutbreak durationof11daysandintotalfarmsculled(IPsanddangerous contactpremises)of14(Table5)comparedwithBaseline.These reductionswerestatisticallysignificant(p<0.05)

3.2 Enhancedpassivesurveillance Increasingtheprobabilityofreportingfrom0.18to0.48reduced themediandelaytooutbreakdetectionbythreedays(p<0.05), themediandurationoftheoutbreakbysixdays(p=N.S.)andthe mediannumberoffarmsrequiringcullingby11(p<0.05)(Table5)

Afurtherincreaseinthedailyprobabilityofreportingto1.0 (Pas-sive120)resultedinareductionofanadditionalonedayinthe delaytoreportingbutthesizeanddurationoftheoutbreakwere unchanged.Reducingthetriggerpointforreportingfrom20%of animalsshowingclinicalsignsto5%(Passive15)resultedinasix dayreductioninthedelaytooutbreakdetection,a12day reduc-tioninthedurationoftheoutbreakandareductionof20inthe numberoffarmsrequiredtobeculled(all,p<0.05)comparedto theBaselinestrategy

Ourmodellingresultsshowedthatwhenthevariousenhanced surveillancestrategiesarecompared withtheBaselinestrategy, theobservedreductionsindurationandsizeoftheoutbreakswere associatedpredominantlywiththeabsenceofverylargeoutbreaks (Fig.2).Thatis,inmanycases,outbreaksweresmallwithlimited spreadsoreducing timetodetectionhadlittleeffect.However, earlydetectionwasvery effectivein reducing thelikelihood of gettingalargeoutbreak.Ifthefourthquartileofresultsonlyare compared (Baseline passivewith Passive120 and Passive15), thenthetimetodetectionisreducedbytwoweeks,theduration

oftheoutbreakisreducedby24and33daysrespectivelyandthe

Trang 6

Table 5

The delay to detection, duration and size of foot and mouth disease outbreaks [median (95% probability interval)] in Australia as a function of small pig producer reporting behaviour.

Surveillance PerformanceThreshold prevalence of diseaseDaily probability of reportingDelay to detection (days)Duration of outbreak (days) Number of properties culled

Gold standard 10 1 15 (15–18) b 42 (32–73) b 32 (5–199) b

Enhanced Passive 20 0.48 17 (15–24) b 47 (32–88) a,b 35 (6–254) b

Passive 1 20 20 1 16 (16–20) c 45 (33–70) b,c 37 (4–184) b

Passive 1 10 10 1 15 (15–18) d 42 (32–74) b,c 32 (5–183) b

Passive 1 5 5 1 14 (13–16) e 41 (31–67) c 26 (9–123) c

* Within each column, figures with the same superscript are not significantly different.

Fig 2 The number of farms culled during foot and mouth disease incursions in Australia when different methods of surveillance are applied.

Table 6

The delay to detection, duration and size [median (95% probability interval)] of the largest quartile of foot and mouth disease outbreaks in Australia using different surveillance systems.

Enhanced Passive 16 (15–25) b 53 (35–98) b 74 (18–360) b

Passive 1 5 14 (14–17) c 44 (32–77) c 57 (11–137) c

* Within each column, figures with the same superscript are not significantly different.

numberofpropertiesrequiringtobeculledreducedby64%and

72%respectively(p<0.05)(Table6)

3.3 Saleyardtesting

Testingof20randomlyselectedanimalsateachcattlesaledid

notimprovethemediantimetodetectionorthemediandurationor

sizeoftheoutbreakcomparedtotheBaselinepassivesurveillance

strategy(Table7)

Foranaveragesaleof1350animalswith72vendors,theaverage

consignmentsizewas19animals.Assumingonlyoneinfectedherd

withawithinherdprevalenceof20%(abovethis,baselinepassive

surveillancewouldtriggerareport),therewouldbefourinfected

animalsatthesale.DirectscreeningbyPCRwithasensitivityof

0.97andaspecificityof1.0requiredasamplesizeof733animals

toachieve95%confidenceofdetectinganFMDinfectedanimal

Initial screening with thermography (Se=0.611, Sp=0.877)

wouldresultinselectionofagroupoftwotothreeFMDpositive

animalsand165FMDnegativeanimals.SubsequentPCRtestingof

thissub-groupofcattlewouldrequireasamplesizeof109animals

toachieve95%confidenceofdetectingaFMDinfectedanimal These two strategies would require either 1.23 million or 183,000on-site,PCRtestsinrealtimeannually.Takingintoaccount logisticalissues,coverageandpossiblecostsassociatedwith sam-plecollectionandtesting,weconcludedthatanactivesurveillance programbasedontestingindividualanimalsatsaleyardswasnot practicalandthereforewasnotconsideredfurtherinthisstudy 3.4 Bulkmilktesting

Applicationofbulkmilktesting,reducedthemediantimeto detectionbytwodaysandthenumberoffarmsrequiringcullingby six(p<0.05)comparedtotheBaselinesurveillancestrategy how-everthedurationoftheoutbreakwasnotsignificantlydifferent (p>0.05)(Table7).Therewasnodifferenceintheefficacyofbulk milktestingwhethersamplingwasconducteddaily,everytwodays

oreverythreedays(Table7)

Deployinganintegratedsurveillancesystemwherebulkmilk testingonlywasusedinthedairyingareasandproducereducation

Trang 7

84 M.G Garner et al / Preventive Veterinary Medicine 128 (2016) 78–86

Table 7

The delay to detection, duration and size of foot and mouth disease outbreaks [median (95% probability interval)] in Victoria, Australia using different surveillance systems.

Saleyard 20 20 (16–42) a 53 (34–99) a 46 (5–310) a

BMT1 18 (9–40) c 46 (14–78) a,b 40 (5–183) c

BMT2 18 (9–40) c 46 (14–76) a,b 43 (5–181) c

BMT3 18 (9–40) c 47 (14–76) a,b 40 (5–178) c

integrated 17 (12–24) b,c 45 (32–76) b 37 (6–176) b,c

* Within each column, figures with the same superscript are not significantly different.

toenhancereportingbypigfarmersinotherareasdidnotprovide

abetteroutcome(p>0.05)thaneitherbulkmilktestingaloneor

producereducationalone(Table7)

4 Discussion

Earlydetectionofdiseaseincursionsisanobjectiveofall

veteri-naryservicesbecauseitresultsinsmalleroutbreaksthatareeasier

tocontrol anderadicate(Carpenteret al.,2011).Achieving

ear-lierdetectionalsohassignificanteconomicbenefitsbecausethe

costsassociatedwithdiseasecontrolwillbelessandlossofexport

earningsduetoexclusionfromFMDsensitivemarketswillalsobe

reduced.Worldwide,recenthistorysuggeststhatoutbreaksofFMD

inpreviouslyfreecountriesaredetectedaboutthreeweeksafter

introductionofthevirustotheindexfarm(Anderson,2002;Bouma

etal.,2003;Yoonetal.,2013);thisisconsistentwiththemodelling

resultsforthecurrentAustraliansurveillancesystempresentedin

thispaper

Wehaveshownthatevenwith100%reportingbyproducers

inthestudyarea,detectionofFMDthroughpassivesurveillance

cannotberealisticallyexpectedearlierthan15daysafter

intro-ductiontotheindexfarmbecauseofthetimedelaysassociated

with:theincubationperiodofthedisease;spreadofthediseaseto

aprevalencewithinaherdtotriggeractionbytheowner,veterinary

investigation,collectionofsamplesandlaboratorytesting.Inour

studyregion,thedifferenceinthedelaytodetectionbetweenthe

currentsurveillancesystemandagoldstandardsystemisonlyfive

dayssothereisonlyasmallwindowforimprovement.Despitethis,

theassociatedreductioninthedurationandextentoftheoutbreak

couldbeassociatedwithsignificanteconomicbenefits

Inthispaper,wehaveconcentratedonthemostlikelypathway

ofentryofFMDintoAustraliai.e.swillfeedingofFMD

contami-natedmaterialtopigs.Whilstotherpathwaysofentryexist,they

areconsideredlesslikely(Matthews,2011;Eastetal.,2013).The

onlyothersignificantpathwayofintroductionintoAustraliaviz

fomitesmayleadtotheinitialintroductionoccurringona

differ-enttypeoffarmhowever,oncetheFMDspreadstoasecondand

subsequentfarms,thepatternofspreadandlikelihoodsof

detec-tionareidentical.Therefore,substantialchangesintheobserved

resultsareunlikely

Improvementsinthetimetodetectioncouldbemade,ifdisease

couldbedetectedinthepre-clinicalphase.Thespecificmethod

ofachievingearlydetectionmustbepracticalandcosteffective

Implementationof activesurveillanceatsaleyards, whilst

theo-reticallyeffective,wouldrequirecollectingandprocessingalarge

numberofsamples(∼700persale)forPCRtestinginrealtime

Evenpre-screeningthesalepopulationwithinfrared

thermogra-phy,assuminganaveragesizedsaleof1350animals,atoneanimal

perminutewouldtake22.5h.Australiahasinternationalairports

atitsgeographicextremitiesandpreservedmeatsmallgoodsand

dairyproduceareroutinelyseizedbyquarantineauthoritiesateach

oftheseairports(confidentialdepartmentreports).Further,

incom-ingpassengersroutinelydispersewidelyandrapidlyfromtheir

pointofarrivaltotheirfinaldestination.Ourpreviouspublication

(Eastetal.,2013)recognisedthisandusedonlythelocationofpig farmsasthemostlikelypointofentryofFMDbecauseanyFMD con-taminatedgoodsneedtobefedtoapigtointroduceFMD.Further,

itisnotunusualinAustralia(EastandForeman,2011;Eastetal., 2014a,b)foranimalstobemovedhundreds(occasionally thou-sands)ofkilometrestoasaleyard.Therefore,anyprogramwould havetofunctionatallsaleyardstobeeffective.Theprogramwould alsoneedtobeon-goingbecausewecannotpredictwhenFMDwill enterAustralia

Inaddition,testinglargenumbersofanimalsevenwithtests withhighspecificitywillinevitablyresultinfalsepositiveresults thatwouldcausemajorlogisticalissuesforsaleyardoperatorsand animalhealthauthoritiesasthefacilitywouldhavetobelocked downuntilthesituationwasresolved

Asimilarconclusionwasreachedwithbulkmilktesting.For earlydetection,BMTtesting wouldalsoneedtobewidespread andongoing.FMDisshedinmilkduringtheincubationperiod

Inexperimentalstudies,Reidetal.(2006)foundthattheearliest periodfordetectionofFMDinmilkwas2–3dayspostinoculation andthatmilkcollectedfromaninfectedcowanddiluted10,000 foldwasabletobedetectedusingtherRT-PCRtests.Theaverage sizeofanAustraliandairyherdis225cowsandtheaverageyield

is17l/cow/day.Thismeansthatthemilkfromfourtofivefarms (900–1125cows)wouldbecombinedintoa20,000lmilktanker.In theearlystagesofinfection,veryfewanimalsinaherdarelikelyto

beinfectedbutifPCRcanreturnapositiveresultaftermilkhasbeen diluted10000fold,testingatthetankerlevelcouldallowdetection

ofoneinfectedcow

Theresultsobtainedwithbulkmilktestingwerevery depen-dentonwheretheoutbreakstarts;largeroutbreaksoccurredin themoreintensiveareas.Themediansizeofoutbreakssizewhen

anincursionstartedinadairyareawastwicethesizeofoutbreaks startinginnon-dairyareas.Whilstbulkmilktestingreducedthe timetodetectionbythreedayscomparedtotheBaseline,when theoutbreakcommencedinadairyarea,thereductionwasonly onedaywhentheoutbreakstartedoutsidethedairyarea(Results notshown).Whilstthesereductionsweresuggestiveofenhanced earlydetection,thedifferenceswerenotstatisticallysignificant

In contrastto ourstudy,Thurmondand Perez (2006) found thatbulkmilktestingprovidedaneffectivemethodofenhancing earlydetectionofFMDinfection.Thisdifferencecanbeexplained becauseThurmondandPerezwereexaminingtheefficacyofbulk milktestingfordetectionofFMDwithinanisolated,infecteddairy herd.Thedesignofourstudyspecificallyrequiresthatinfectionfirst occurswithinasmall-to-mediumpigherdbecausethatisthemost likelypathwayofentryofFMDintoAustralia(Matthews,2011)

Inourscenariotherefore,theinfectionneedstospreadtoadairy farmbeforeitcanbedetectedbybulk-milkscreening.Thedelay

toinfectionofthefirstdairyfarmisafunctionofthegeographic locationoftheinitiallyinfectedpigfarmandthestochastic proba-bilityofspreadofFMDtootherfarms.Thistimedelaytoinfection

ofthefirstdairyfarmcancelsoutanyadvantageofearlydetection providedbybulk-milktesting

Trang 8

factoriesinthestudyareawouldrequiretestingof450,000

sam-plesperyear.Althoughlogisticallythiscouldbedone,itwouldbe

expensive.Inaseparatestudywereportaneconomicanalysisof

circumstancesunderwhich BMTiscosteffective(Kompasetal

submitted).Aswithactivesurveillanceatsaleyards,testspecificity

issueswouldbeaconcern.Toinvestigateapositiveresult,all

indi-vidualfarmscontributingtothebulkmilkconsignmentwouldneed

tobefollowedup.Bythetimefollow-uptestingwascompleted,

itislikelythatclinicalsignswouldhaveoccurredontheaffected

farm,negatingmuchofthetimeadvantagefromtheoriginaltest

WhileBMTshowsconsiderablepromiseasanFMDsurveillance

tool,itappearstobebettersuitedtosurveillanceduringan

out-breakandforpost-outbreakproofoffreedomtesting(Kompasetal

submitted)

Weconcludethat,ofthepossibilitiesexaminedinthispaper,

enhancingthepassivesurveillancesystemoffersthebest

opportu-nityforearlydetectionofFMDinVictoria.Thiswillhaveparticular

benefitsinreducingthelikelihoodofgettingalargeoutbreak

Main-tainingahighlevelofawarenessofFMDandpromotingtheneedfor

diseasereportingbyallproducersandthoseinvolvedinlivestock

productionisessential.Ifresourcesarelimited,targetingeducation

programstothosesectorsthatareconsideredtobeatgreaterrisk

ofbeingasourceofintroductionorwherecurrentdiseasereporting

andinvestigationislowislikelytobemosteffective

Acknowledgment

ThisworkwasfundedinpartbytheCentreofExcellencefor

BiosecurityRiskAnalysis

References

ABARES, 2014 Agricultural Commodity Statistics 2014 Australian Bureau of

Agricultural and Resource Economics and Sciences, Canberra, December.

Animal Health Australia, 2014a Disease strategy: foot-and-mouth disease (version

3.4) In: Australian Veterinary Emergency Plan (AUSVETPLAN), third ed.

Standing Council on Primary Industries, Canberra, ACT.

Animal Health Australia, 2015 Animal Health in Australia 2014 http://www.

animalhealthaustralia.com.au/ (accessed 7.10.15).

Animal Health Australia, 2014b AUSVETPLAN Guidance Document: Declared

Areas and Allocation of Premises Classifications in an EAD Response, second

ed, accessed 20.09.15 http://www.animalhealthaustralia.com.au/programs/

emergency-animal-disease-preparedness/ausvetplan/guidance-documents/

Anderson, I., 2002 Foot and Mouth Disease 2001: Lessons to Be Learned Inquiry

Report.p 21, accessed 08.01.15 http://wildpro.twycrosszoo.org/S/00Ref/

BooksContents/B494 LessonsLearned/B494 LessonsLearned.htm

Bates, T.W., Thurmond, M.C., Hietala, S.K., Venkateswaran, K.S., Wilson, T.M.,

Colston, J.E., Trebes Jr., B.W., Milanovich, F.P., 2003 Surveillance for detection

of foot-and-mouth disease J Am Vet Med Assoc 223, 609–614.

Blackwell, J.H., McKercher, P.D., Kosikowski, F.V., Carmichael, L.E., Gorewit, R.C.,

1982 Concentration of foot-and-mouth disease virus in milk of cows infected

under simulated field conditions J Dairy Sci 65, 1624–1631.

Blayney, D.P., Dyck, J., Harvey, D., 2006 Economic effects of animal diseases linked

to trade dependency Amber Waves 4, 23–29.

Bouma, A., Elbers, A.R.W., Dekker, A., de Koeijer, A., Bartels, C., Vellema, P., van der

Wal, P., van Rooij, E.M.A., Pluimers, F.H., de Jong, M.C.M., 2003 The

foot-and-mouth disease epidemic in The Netherlands in 2001 Prev Vet Med.

57, 155–166.

Carpenter, T.E., O’Brien, J.M., Hagerman, A.D., McCarl, B.A., 2011 Epidemic and

economic impacts of delayed detection of foot-and-mouth disease: a case

study of a simulated outbreak in California J Vet Diagn Invest 23, 26–33.

East, I.J., Foreman, I., 2011 The structure, dynamics and movement patterns of the

Australian sheep industry Aust Vet J 89, 477–489.

East, I.J., Wicks, R.M., Martin, P.A.J., Sergeant, E.S.G., Randall, L.A., Garner, M.G.,

2013 Use of a multi-criteria analysis framework to inform the design of risk

based general surveillance systems for animal disease in Australia Prev Vet.

Med 112, 230–247.

East, I.J., Roche, S.E., Wicks, R.M., de Witte, K., Garner, M.G., 2014a Options for

managing animal welfare on intensive pig farms confined by movement

restrictions during an outbreak offoot and mouth disease Prev Vet Med 117,

533–541.

East, I.J., Davis, J., Sergeant, E.S.G., Garner, M.G., 2014b The structure, dynamics and

East, I.J., Martin, P.A.J., Langstaff, I., Iglesias, R.M., Sergeant, E.S.G., Garner, M.G.,

2016 Assessing the delay to detection and the size of the outbreak at the time

of detection of incursions of foot and mouth disease in Australia Prev Vet Med 123, 1–11.

Elbers, A.R.W., Stegeman, J.A., Moser, H., Ekker, H.M., Smak, J.A., Pluimers, F.H.,

1999 The classical swine fever epidemic 1997–1998 in The Netherlands: descriptive epidemiology Prev Vet Med 42, 157–184.

Elbers, A.R.W., Gorgievski-Duijvesteijn, M.J., van der Velden, P.G., Loeffen, W.L.A., Zarafshani, K., 2010 A socio-psychological investigation into limitations and incentives concerning reporting a clinically suspect situation aimed at improving early detection of classical swine fever outbreaks Vet Microbiol.

142, 108–118.

Frawley, P.T., 2003 Review of Rural Veterinary Services Department of Agriculture, Fisheries and Forestry, Canberra (accessed 08.01.15) https://www ava.com.au/sites/default/files/documents/Other/Frawley%20report.pdf Garner, M.G., Beckett, S.D., 2005 Modelling the spread of foot and mouth disease

in Australia Aust Vet J 83, 30–38.

Garner, M.G., Bombarderi, N., Cozens, M., Conway, M.-L., Wright, T., Paskin, R., East, I.J., 2014 Estimating resource requirements to staff a response to a medium to large outbreak of foot-and-mouth disease in Australia Transbound Emerg Dis., http://dx.doi.org/10.1111/tbed.12239

Grubman, M.J., Baxt, B., 2004 Foot and mouth disease Clin Microbiol Rev 17, 465–493.

Hernández-Jover, M., Cogger, N., Martin, P.A.J., et al., 2011 Evaluation of post-farm-gate passive surveillance in swine for the detection of foot and mouth disease in Australia Prev Vet Med 100, 171–186.

Hernández-Jover, M., Gilmour, J., Schembri, N., Sysak, T., Holyoake, P.K., Beilin, R., Toribio, J.-A.L.M.L., 2012 Use of stakeholder analysis to inform risk communication and extension strategies for improved biosecurity amongst small-scale pig producers Prev Vet Med 104, 258–270.

Hoinville, L.J., 2011 Animal Health Surveillance Terminology Final Report from Pre-ICAHS Workshop (accessed 19.01.15) http://webarchive.nationalarchives gov.uk/20140707135733/http://www.defra.gov.uk/ahvla-en/files/icahs-workshop-report.pdf

Hopp, P., Vatn, S., Jarp, J., 2007 Norwegian farmers’ vigilance in reporting sheep showing scrapie-associated signs BMC Vet Res., http://dx.doi.org/10.1186/ 1746-6148-3-34

Hunt, W., Vanclay, F., Birch, C., Coutts, J., Flittner, N., Williams, B., 2011 Agricultural extension: building capacity and resilience in rural industries and

communities Rural Soc 20, 112–127.

King, D.P., Ferris, N.P., Shaw, A.E., Reid, S.M., Hutchings, G.H., Giuffre, A.C., Robida, J.M., Callahan, J.D., Nelson, W.M., Beckham, T.R., 2006 Detection of foot-and-mouth disease virus: comparative diagnostic sensitivity of two independent real-time reverse transcription-polymerase chain reaction assays.

J Vet Diagn Invest 18, 93–97.

Klinkenberg, D., Nielen, M., Mourits, M.C.M., de Jong, M.C.M., 2005 The effectiveness of classical swine fever surveillance programs in The Netherlands Prev Vet Med 67, 19–37.

Knight-Jones, T., Rushton, J., 2013 The economic impacts of foot and mouth disease What are they, how big are they and where do they occur? Prev Vet Med 112, 161–173.

Kompas, T., Nguyen, H.T.M., Ha, P.V., 2015 Food and biosecurity: livestock production and towards a world free of foot-and-mouth disease Food Secur 7, 291–302.

Langstaff, I., 2008 National animal health strategy reference group meeting Anim Health Surveill Q Rep 13, 5–6.

Larsen, J., Vizard, A., Counsell, D., Scrivener, C., Hygate, L., Webb Ware, J., 2002.

Linking Australian woolgrowers with research: the South Roxby project Wool Technol Sheep Breed 50, 266–273.

Mansley, L.M., Dunlop, P.J., Whiteside, S.M., Smith, R.G., 2003 Early dissemination

of foot-and-mouth disease virus through sheep marketing in February 2001 Vet Rec 153, 43–50.

Martin, P.A.J., Langstaff, I., Iglesias, R.M., East, I.J., Sergeant, E.S.G., Garner, M.G.,

2015 Assessing the efficacy of general surveillance for detection of incursions

of livestock diseases in Australia Prev Vet Med 121, 215–230.

Matthews, K., 2011 A Review of Australia’s Preparedness for the Threat of Foot-and-mouth Disease Australian Government, Department of Agriculture, Fisheries and Forestry, Canberra (accessed 08.01.15) http://www.daff.gov.au/ animal-plant-health/pests-diseases-weeds/animal/fmd/review-foot-and-mouth-disease

Nairn, M.E., Allen, P.G., Inglis, A.R., Tanner, C., 1996 Australian Quarantine: a Shared Responsibility Department of Primary Industries and Energy, Canberra (accessed 08.01.15) http://www.agriculture.gov.au/biosecurity/about/reports-pubs/nairn

OIE, 2012 The Global Foot and Mouth Disease Control Strategy: Strengthening Animal Health Systems Through Improved Control of Major Diseases (accessed 05.05.15) http://www.oie.int/doc/ged/D11886.PDF

Palmer, S., Fozdar, F., Sully, M., 2009 The effect of trust on Western Australian Farmers’ responses to infectious livestock diseases Sociol Ruralis 49, 360–374.

Price, R.J., Hacker, R.B., 2009 Grain & Graze: an innovative triple bottom line approach to collaborative an multidisciplinary mixed-farming systems research, development and extension Anim Prod Sci 49,

729–735.

Trang 9

86 M.G Garner et al / Preventive Veterinary Medicine 128 (2016) 78–86

Rainwater-Lovett, K., Pacheco, J.M., Packer, C., Rodriguez, L.L., 2009 Detection of

foot-and-mouth disease virus infected cattle using infrared thermography Vet.

J 180, 317–324.

Reid, S.M., Parida, S., King, D.P., Hutchings, G.H., Shaw, A.E., Ferris, N.P., Zhang, Z.,

Hillerton, E., Paton, D.J., 2006 Utility of automated real-time RT-PCR for the

detection of foot-and-mouth disease virus excreted in milk Vet Res 37,

121–132.

Thurmond, M.C., Perez, A.M., 2006 DVM, Modeled detection time for surveillance

for foot-and-mouth disease virus in bulk tank milk Am J Vet Res 67,

2017–2024.

Yoon, H., Yoon, S.-S., Kim, Y.-J., Moon, O.-K., Wee, S.-H., Joo, Y.-S., Kim, B., 2013 Epidemiology of the foot-and-mouth disease serotype O epidemic of November 2010 to April 2011 in the Republic of Korea Transbound Emerg Dis., http://dx.doi.org/10.1111/tbed.12109

Ngày đăng: 15/10/2022, 10:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm