1. Trang chủ
  2. » Khoa Học Tự Nhiên

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH BẮC GIANG pdf

5 796 7
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Thi Tuyển Sinh Vào Lớp 10 ThPT Năm Học 2013 – 2014
Trường học Sở Giáo Dục Và Đào Tạo Bắc Giang
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2013-2014
Thành phố Bắc Giang
Định dạng
Số trang 5
Dung lượng 156 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trên tia đối của tia AB lấy điểm C sao cho AC=R.. Kẻ đường thẳng d vuông góc với BC tại C.. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn O;R, EF không là đường

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO

BẮC GIANG

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH LỚP 10 THPT

NĂM HỌC : 2013-2014 MÔN : TOÁN

NGÀY 30/06/2013 Thời gian làm bài : 120 phút

Câu I( 3 điểm )

1 Tính giá trị của biểu thức A= 3× 27− 144 : 36

2.Tìm m để hai đường thẳng (d) : y =(2m-1)x+1,( m 1

2

≠ ) và (d'): y=3x-2 song song với nhau

3 Giải hệ phương trình 3 2 1

x y

+ = −

 − =

Câu II( 2 điểm )

1 Rút gọn biểu thức B = 2

1

− +

− − ( với x>0; x≠1)

2 Cho phương trình x2− + − =x 1 m 0 (1)

a Giải phương trình (1) với m =3

b Tìm m để phương trình (1) có hai nghiệm phân biệt x x thoả mãn :1, 2

1 2

1 2

1 1

Câu III (1,5 điểm )

Tìm hai số tự nhiên hơn kém nhau 12 đơn vị biết tích của chúng bằng 20 lần số lớn cộng với 6 lần số bé

Câu IV ( 3 điểm )

Cho đường tròn (O;R) đường kính AB cố định Trên tia đối của tia AB lấy điểm C sao cho AC=R Kẻ đường thẳng d vuông góc với BC tại C Gọi D là trung điểm của OA; qua

D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính) Tia BE cắt d tại M, tia BF cắt d tại N

1 Chứng minh tứ giác MCAE nội tiếp

2 Chứng minh BE.BM = BF.BN

3 Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R

4 Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi

Câu V(0,5 điểm)

Cho hai số x, y thỏa mãn 1≤ ≤x 3 và 1 2

2≤ ≤y 3 Tìm giá trị lớn nhất của biểu thức

6x y −7x y−24xy +2x +18y +28xy− −8x 21y+6

Trang 2

Hướng dẫn Câu I( 3 điểm )

1 Tính giá trị của biểu thức A= 3× 27− 144 : 36=7

2 Hai đường thẳng (d) : y =(2m-1)x+1,( m 1

2

≠ ) và (d'): y=3x-2 song song với nhau khi

và chỉ khi a=a' và b ≠ b' <=> <=>m=2( thỏa mãn m 1

2

≠ ) KL

3 Giải hệ phương trình 3 2 1

x y

+ = −

 − =

 <=> <=>

1 2

x y

=

 = −

 KL

Câu II( 2 điểm )

1 Rút gọn biểu thức

B

1

1

x

x

( với x>0; x≠1)

2 Cho phương trình x2− + − =x 1 m 0 (1)

a Giải phương trình (1) với m =3

Với m =3 phương trình (1) trở thành x2− − =x 2 0

Nhận thấy a-b+c=0 nên pt có 2 nghiệm là x1 = −1;x2 =2

b Tìm m để phương trình (1) có hai nghiệm phân biệt x x thoả mãn :1, 2

1 2

1 2

1 1

Ta có ∆ =4m−3

Điều kiện để pt (1) có hai nghiệm phân biệt khác 0 là :

3

4

1

m

m

− > >

Khi đó áp dụng định lí Vi-ét ta có 1 2

1 2

1

+ =

1 2

1 1

2(x +x )+ x +x +3x x =0 (**) thay (*) vào (**) ta được : 2

mm+ = => m1=2; m2 =3 ( TM ĐK) KL

Trang 3

Câu III (1,5 điểm )

Tìm hai số tự nhiên hơn kém nhau 12 đơn vị biết tích của chúng bằng 20 lần số lớn cộng với 6 lần số bé

Gọi số bé là x ( x∈N)

khi đó số lớn là x+12

Vì tích của chúng bằng 20 lần số lớn cộng với 6 lần số bé nên ta có phương trình :

x(x+12) = 20(x+12) +6x <=> x2 -14x-240 = 0 => x1 = 24(TM) ; x2 = -10( loại)

Vậy số bé là 24 => số lớn là 24+12=36

Cách 2: Gọi số lớn là x và số bé là y ( x,y ∈N và x> y)

12 (1) 12

20 6

x y

= +

− =

Giải pt (2) ta được y1 = 24 (tm) ; y2 = -10( không tm)

Thay y =y1 =24 vào (1) => x=36 KL

Câu IV ( 3 điểm )

Cho đường tròn (O;R) đường kính AB cố định Trên tia đối của tia AB lấy điểm C sao cho AC=R Kẻ đường thẳng d vuông góc với BC tại C Gọi D là trung điểm của OA; qua

D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính) Tia BE cắt d tại M, tia BF cắt d tại N

1 Chứng minh tứ giác MCAE nội tiếp

2 Chứng minh BE.BM = BF.BN

3 Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R

4 Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi

Trang 4

a) Ta có góc AEB = 900( góc nội tiếp chắn nửa đường tròn) => góc AEM =900 ( vì góc này kề bù với góc AEB)

Xét tứ giác MCAE có:

góc ACM =900 (gt)

góc AEM =900 ( CM trên )

=> góc ACM =900 +góc AEM =1800 mà hai góc này ở vị trí đối diện nhau

=> tứ giác MCAE nội tiếp

b)

Chứng minh tam giác BAE đồng dạng tam giác tam giác BMC => BE.BM = BA.BC (1) Chứng minh tam giác BAF đồng dạng tam giác tam giác BNC => BF.BN = BA.BC (1)

Từ (1) và (2) => BE.BM = BF.BN

Cách 2: Góc BMN = góc BAE ( cùng bù với góc CAE)

mà góc BAE = góc EFN ( Hai góc nội tiếp cùng chăn một cung )

=> Góc BMN = góc EFN

Xét tam giác BEF đồng dạng với tam giác BNM => BE.BM = BF.BN

c)

Áp dụng định lí Py-ta-go vào tam giác EDO vuông tại O ta có DE = 3

2 R => DE =R 3

Vì EF vuông góc với BC và D là trung điểm của BC nên ta sẽ chứng minh được EF là đường trung bình của tam giác BMN => EF =2R 3

d) Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

Trang 5

=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'

Câu V(0,5 điểm)

Cho hai số x, y thỏa mãn 1≤ ≤x 3 và 1 2

2≤ ≤y 3 Tìm giá trị lớn nhất của biểu thức

M= 6x y2 2−7x y2 −24xy2+2x2+18y2+28xy− −8x 21y+6

Ta có :

2

0 6 7 2 0 (2)

≤ ≤ ⇒ − ÷ − ÷≤ ⇒ − + ≤

Ngày đăng: 11/03/2014, 09:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w