Góc hai ph ươ ng.
Trang 1Trang 2
Đ nh hị ướ ng đ ườ ng th ng là xác đ nh m i quan h ẳ ị ố ệ
gi a đ ữ ườ ng th ng đó v i m t h ẳ ớ ộ ướ ng g c ố
Trong tr c đ a h ắ ị ướ ng đ ượ c ch n làm g c là h ọ ố ướ ng
b c. Có th : ắ ể
H ướ ng b c kinh tuy n đ a lý, ắ ế ị
1. Đ nh h ị ướ ng đ ườ ng th ng Góc ẳ
ph ươ ng v Góc hai ph ị ươ ng
Trang 3
Góc ph ươ ng v c a m t đ ị ủ ộ ườ ng th ng là góc ẳ
h p b i h ợ ở ướ ng b c và h ắ ướ ng c a đ ủ ườ ng
th ng đó theo chi u quay kim đ ng h ẳ ề ồ ồ
ph ươ ng v th ị ườ ng đ ượ c ký hi u là ệ , bi n ế thiên t 0 ừ o 360o
1.1. Góc ph ươ ng v : ị
Trang 4N u ch n hế ọ ướng c a ủ
đường th ng khác nhauẳ thì góc phương v s l ch ị ẽ ệ
A
N
N
AB
BA
B
Trang 5
Góc hai phương c a m t đủ ộ ường th ng là góc h p ẳ ợ
b i hở ướng g n nh t c a kinh tuy n gi a múi (b c ầ ấ ủ ế ữ ắ
ho c nam) và hặ ướng c a đủ ường th ng đó.ẳ
Góc hai phương thường được ký hi u là R, giá tr ệ ị
c a nó bi n thiên t 0ủ ế ừ o 90o
Trên hình sau, các ký hi u RA, RB, RC, RD là các ệ góc hai phương c a các c nh tủ ạ ương ng OA, OB, OC, ứ OD
1.2. Góc hai ph ươ ng
Trang 6IV
A
D
RA
R
RC
RD X
Y
0
0
X
Y
0
0
X
Y
O
1.3. M i quan h gi a góc ph ố ệ ữ ươ ng v và góc ị
hai ph ươ ng
Trang 7
Cho bi t ế
Cho to đ đi m A :(Xạ ộ ể A, YA),
Góc phương v : ị AB
Chi u dài c nh AB: Sề ạ AB
2. Hai bài toán c b n trong tr c đ a ơ ả ắ ị
Bài toán thu n ậ
Ph i tính ả
To đ đi m B: (XB, YB)ạ ộ ể
Trang 8A X
Y
YB
XB
AB
F N
B
SAB
B
SAB
B
B
SAB
AB
Y
X
B
Y Y A X AB X B X A
O
Trang 9
Cho bi t ế
To đ 2 đi m A và Bạ ộ ể
A(XA, YA)
B(XB, YB)
Bài toán ngh ch ị
Ph i tính ả
Chi u dài c nh AB : Sề ạ AB
Góc phương v c nh AB: ị ạ AB
Trang 10B X
Y
YB
XB
SAB
AB
N
2 AB
2 AB
S
O