ĐẶT VẤN ĐỀ Chúng ta đã biết trong chương trình vật lí 10 chương đầu tiên là chương động học chất điểm, là một chương khó của phần cơ.Ngay bài đầu tiên các em được học về chuyển động cơ,
Trang 1SÁNG KIẾN KINH NGHIỆM
ĐỀ TÀI:
"RÈN LUYỆN KĨ NĂNG VẬT LÝ THÔNG QUA VIỆC GIẢI MỘT
SỐ BÀI TẬP VẬN DỤNG CÔNG THỨC CỘNG VẬN TỐC VÀ GIA
TỐC"
1
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 2A ĐẶT VẤN ĐỀ
Chúng ta đã biết trong chương trình vật lí 10 chương đầu tiên là chương động học
chất điểm, là một chương khó của phần cơ.Ngay bài đầu tiên các em được học về chuyển
động cơ, về tính tương đối của chuyển động, sau đó các em được học đến bài công thức
cộng vận tốc, là một bài áp dụng cho tính tương đối của chuyển động Khi giải bài tập áp
dụng công thức cộng vận tốc tôi nhận thấy là các em thường bị vướng mắc, đặc biệt là
những học sinh học ở mức độ trung bình, nhiều bài đòi hỏi độ tư duy cao trong khi các
em mới bước chân vào môi trường THPT Hiểu được điều này bản thân tôi là một giáo
viên dạy vật lí luôn có nhiều trăn trở, tôi đã quyết tâm tìm hiểu nghiên cứu tài liệu,
nghiền ngẫm những vấn đề đã đọc được để đưa ra một cách giải mà từ đó các em hiểu
được bài học, biết vận dụng nó vào các bài khó hơn Đặc biệt là học sinh biết vận dụng
nó trong các chương tiếp theo như vận dụng công thức cộng gia tốc được suy ra từ công
thức cộng vận tốc trong chương động lực học chất điểm và khi giải bài toán cơ học nói
chung sau này Cũng từ những điều được giáo viên truyền thụ từ những bài toán vận
dụng công thức cộng vận tốc và gia tốc, các em đã phát triển tốt tư duy khi học vật lí, các
em có học lực khá trở lên thì phân tích hiện tượng vật lí rất tốt Tôi biết rằng hiểu hiện
tượng và phân tích tốt hiện tượng là triển vọng của một người học giỏi vật lí
B GIẢI QUYẾT VẤN ĐỀ
I THỰC TRẠNG VẤN ĐỀ
Để đạt được mục tiêu dạy học là làm thế nào để các em hiểu bài và làm được bàitập, biết vận dụng nó trong thực tế.Từ đó nhằm phát triển tư duy để vận dụng vào các lĩnh
vực khó hơn Vận dụng công thức cộng vận tốc và gia tốc là vấn đề trọng tâm khi giải
bài toán về tính tương đối của chuyển động Mà để biết vận dụng các công thức này thì
đầu tiên các em phải nắm vững khái niệm về tính tương đối của chuyển động Tôi biết
sau khi học song bài chuyển động cơ thì em nào cũng nói là chuyển động và đứng yên
của cùng một vật có tính tương đối.Tức là sự chuyển động và đứng yên của cùng một vật
phụ thuộc vào hệ quy chiếu Chuyển động cơ có tính tương đối nên kéo theo một số đại
lượng vật lí như vận tốc, gia tốc, động năng, vị trí… của một vật có tính tương đối tức là
trong các hệ quy chiếu khác nhau có giá trị khác nhau, song đây còn là vấn đề trừu tượng
đối với nhiều học sinh
Việc vận dụng kiến thức đó vào việc giải quyết các bài toán đối với học sinh thì quả là
rất khó khăn Làm thế nào có thể trợ giúp được học sinh trong việc giải quyết các bài toán
này Mặt khác vận tốc, gia tốc là những đại lượng véc tơ nên sự liên hệ của chúng trong
các hệ quy chiếu và các điều kiện cần phải sử dụng để giải các bài toán lại đòi hỏi có độ
tư duy cao Vậy tính tương đối mà được áp dụng trong các bài toán lại là vấn đề khó khăn
2
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 3đối với không ít học sinh Hiểu được vấn đề này tôi đã đưa ra các dạng bài tập cho từng
phần mục đích giúp các em hiểu sâu sắc về bài học, từ đó tạo hứng thú cho học sinh khi
học các phần tiếp theo và cũng là nhằm phát triển tư duy học vật lý cho các em Trong
nội dung sáng kiến này là những bài tập được tôi áp dụng cho các đối tượng học sinh có
khả năng tiếp cận với mức độ khác nhau
II CƠ SỞ LÍ LUẬN.
“Chuyển động có tính tương đối”, với bất kỳ người dạy và người học vật lý nào, bất
kỳ người nào có thể nhận biết điều đó Tính tương đối của chuyển động thể hiện thông
qua những đại lượng vật lí nào thì không phải bất kỳ ai cũng biết rõ điều này, đặc biệt với
những người học vật lý thì đó là một phần kiến thức hết sức quan trọng Vậy những đại
lượng nào thể hiện tính tương đối của nó trong chuyển động, nó bao gồm: tọa độ, vận tốc,
gia tốc… những đại lượng này giúp ta giải quyết các bài toán về chuyển động
- Muốn biết một vật chuyển động hay đứng yên thì ta phải so với một vật mốc.Thông
thường ta quen gọi ngay vật được chọn làm mốc là hệ quy chiếu Ví dụ: Hệ quy chiếu
gắn với mặt đất, bờ sông, hệ quy chiếu gắn với toa xe…Vậy một vật có thể chuyển động
trong hệ quy chiếu này nhưng đứng yên trong hệ quy chiếu khác nên chuyển động và
đứng yên có tính tương đối
- Vận tốc, của một vật chuyển động trong các hệ quy chiếu chuyển động tịnh tiến đối
với nhau là khác nhau Mối quan hệ của chúng trong các hệ quy chiếu này chính là công
thức cộng vận tốc
- Trước khi áp dụng công thức cộng vận tốc cần xác định rõ đại lượng cần nghiên cứu
- Công thức cộng vận tốc tuân theo quy tắc cộng véc tơ
- Đưa ra các bài tập mẫu cho từng dạng
- Với các bài tập mẫu thì giáo viên phải phân tích cụ thể sau đó mới giải cho học sinh
III NỘI DUNG.
A, LÝ THUYẾT
1.Công thức cộng vận tốc.
Gọi:
- Hệ quy chiếu gắn với vật mốc đứng yên là hệ quy chiếu đứng yên
- Hệ quy chiếu gắn với vật mốc chuyển động là hệ quy chiếu chuyển động
- Vận tốc của vật chuyển động đối với hệ quy chiếu đứng yên là vận tốc tuyệt đối
3
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 4- Vận tốc của vật chuyển động đối với hệ quy chiếu chuyển động là vận tốc tương
- Hệ quy chiếu chuyển động: (2)
- Hệ quy chiếu đứng yên: (3)
là vận tốc của vật 1 so với vật 3 Vận tốc tuyệt đối
là vận tốc của vật 1 so với vật 2 Vận tốc tương đối
là vận tốc của vật 2 so với vật 3 Vận tốc kéo theo
Khi hai chuyển động khác phương cần tiến hanh quy tắc tổng véc tơ Sau đó dựa
vào tính chất hình học hay tam giác để tìm kết
Trang 5Ví dụ 1: Trên một đường thẳng có ba người chuyển động, một người đi xe máy, một
người đi xe đạp và một người đi bộ giữa hai người kia Ở thời điểm ban đầu, khoảng cách
giữa người đi bộ và người đi xe đạp nhỏ hơn khoảng cách giữa người đi bộ và người đi
xe máy hai lần Người đi xe máy và người đi xe đạp đi lại gặp nhau với vận tốc lần lượt
là 60km/h và 20km/h Biết rằng cả ba người gặp nhau tại cùng một thời điểm Xác định
vận tốc và hướng chuyển động của người đi bộ
Giải:
- Gọi vị trí người đi xe máy, người đi bộ
Và người đi xe đạplúc ban đầu lần lượt là A,
B và C
S là chiều dài quảng đường AC Vậy AB = 2S/3,
BC = S/3
- Chọn trục tọa độ trùng với đường thẳng chuyển động,
chiều dương là chiều chuyển động của người đi xe máy Mốc thời gian là lúc bắt đầu
chuyển động: v1 = 60km/h, v3 = - 20km/h
- Người đi bộ đi với vận tốc v2 Vận tốc của người đi xe máy đối với người đi bộ là v12
Ta có: => v12 = v1 – v2 (đk: v12 >0 (1): để người đi xe máy gặp
người đi bộ)
- Vận tốc của người đi bộ đối với người đi xe đạp là v23
Ta có: => v23 = v2 – v3 (đk : v23 >0 (2): để người đi bộ gặp người
đi xe đạp)
- Kể từ lúc xuất phát, thời gian người đi xe máy gặp người đi bộ và người đi bộ gặp
người đi xe đạp lần lượt là:
5
x
C B
A
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 6+ t1 = AB/v12 = 2S/3(v1 – v2)
+ t2 = BC/v23 = S/3(v2 – v3)
Vì ba người gặp nhau cùng lúc nên: t1 = t2 2S/3(v1 – v2) = S/3(v2 – v3)
2( v2 – v3) = v1 – v2 v2 = (v1 + 2v3)/3 = (60 – 2.20)/3 6,67 (km/h)
- Vậy vận tốc của người đi bộ là 6,67 km/h theo hướng từ B đến C
Dạng 2 Bài tập đơn giản vận dụng công thức cộng vận tốc về ba chuyển động thẳng
cùng phương
Ví dụ 1: Một chiếc tàu thủy CĐTĐ trên sông với vận tốc v1 = 35 km/h gặp một đoàn xà
lan dài 250 m đi song song ngược chiều với vận tốc v2 = 20 km/h Trên boong tàu có một
thủy thủ đi từ mũi đến lái với vận tốc v3 = 5 km/h Hỏi người đó thấy đoàn xà lan qua mặt
mình trong bao lâu? Trong thời gian đó tàu thủy đi được một quãng đường dài bao
nhiêu?
Giải:
v1, v2 là vận tốc của tàu và xà lan đối với nước
v3 là vận tốc của thủy thủ đối với tàu Gọi 1 Tàu
2 xà lan
3 thủy thủ Thì v10 = v1 = 35 km/h
6
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 7Quãng đường thuỷ thủ đi được:
S = v10 t = 35.0,005 = 175 (m)
Ví dụ 2: Một nhân viên đi trên tàu với vận tốc v1 = 5 km/h từ đầu toa đến cuối toa, tàu
này đang chạy với vận tốc v2=30 km/h Trên đường sắt kế bên, một đoàn tàu khác dài l =
120m chạy với vận tốc v3 =35 km/h Biết hai đoàn tàu chạy song song và ngược chiều,
coi các chuyển động là thẳng đều Tính thời gian người nhân viên nhìn thấy đoàn tàu kia
đi ngang qua mình?
Giải:
a Gọi :1 nhân viên, 2 tàu, 3 tàu bên cạnh, 4 đất
Vậy: v1 là vận tốc của người so với tàu , v2 là vận tốc của tàu so với đất ,
v3 là vận tốc của tàu bên cạch so với đất
Chọn chiều dương là chiều chuyển động của tàu
Ta có:
Thời gian người nhân viên nhìn thấy đoàn tàu bên cạnh đi ngang qua mình:
l = t v13 suy ra t = 0.002(h) ≈ 7,2 (s)
Nhận xét:
- Những bài tập ở phần trên mục đích giúp các em biết liên hệ vận tốc của vật này đối
với vật khác và mối liên hệ của chúng với nhau trên cùng một phương
- Cũng qua những bài tập này củng cố kiến thức về quy tắc cộng véc tơ cho các em
- Biết suy luận các hiện tượng trong thực tế Ví dụ: muốn vật A đuổi kịp vật B thì
Dạng 3 Bài tập đơn giản vận dụng công thức cộng vận tốc trong chuyển động thẳng
đều có phương vuông góc
7
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 8Ví dụ 1: Hai vật nhỏ chuyển động trên hai trục tọa độ vuông góc Ox, Oy và qua O cùng
một lúc Vật thứ nhất chuyển động trên trục Ox theo chiều dương với gia tốc 1m/s2 và
vận tốc khi qua O là 6m/s Vật thứ hai chuyển động chậm dần đều theo chiều âm trên trục
Oy với gia tốc 2m/s2 và vận tốc khi qua O là 8m/s Xác định vận tốc nhỏ nhất của vật thứ
nhất đối với vật thứ hai trong khoảng thời gian từ lúc qua O cho đến khi vật thứ hai dừng
lại
Giải:
Chọn mốc thời gian lúc 2 vật qua O
- Phương trình vận tốc của vật thứ nhất trên trục Ox:
v1 = v01 + a1t = 6 + t
- Phường trình vận tốc của vật thứ hai trên trục Oy:
v2 = v02 + a2t = - 8 + 2t
- Khoảng thời gian vật thứ hai dừng lại: v2 = 0 => t = 4s
- Vận tốc của vật thứ nhất đối với vật thứ hai là:
- Vậy v12 đạt giá trị nhỏ nhất là 8,94m/s tại thời điểm t = 2s và hợp với Ox góc 26,50
Dạng 4 Bài tập về chuyển động thẳng đều và ném xiên vận dụng công thức cộng
vận tốc trên một phương
Ví dụ 1: Tại điểm O phóng một vật nhỏ với vật tốc ban đầu ( Hướng đến điểm M )
nghiêng một góc = 450 so với phương nằm ngang Đồng thời tại điểm M cách O một
khoảng l = 20m theo đường nằm ngang một vật nhỏ khác chuyển động
8
O y
Trang 9thẳng đều trên đường thẳng OM theo chiều từ O đến M với vận tốc v2 = 7,1m/s Sau một
lúc hai vật va chạm vào nhau tại một điểm
trên đường thẳng OM Cho gia tốc rơi tự do g = 10m/s2 Xác định v01
Trang 10Ví dụ 1: Một ô tô chuyển động thẳng đều với vận tốc v1 = 54km/h Một hành khách cách
ô tô đoạn a = 400m và cách đường đoạn d = 80m, muốn đón ô tô Hỏi người ấy phải chạy
theo hướng nào, với vận tốc nhỏ nhất là bao nhiêu để đón được ô tô?
Giải:
- Gọi ô tô là vật 1, hành khách là 2, mặt đất là vật 3
Muốn cho hành khách đuổi kịp ô tô thì trước hết
véc tơ vận tốc của người ấy đối với ô tô
phải luôn hướng về phía ô tô và tại thời điểm
ban đầu véc tơ hướng từ A đến B
- Theo công thức cộng vận tốc:
- Xét hai tam giác ∆AMN và ∆ABC,
có chung góc A và MN//AE//BC => góc AMN bằng góc ABC
Vậy ∆AMN đồng dạng với ∆ABC => hay
=> v23 =
- Trong tam giác ABC luôn có Vậy v23 =
=> v23 nhỏ nhất khi sin = 1, tức là = 900 => (v23)min = sin v1 = =
- Vậy, người đó phải chạy với vận tốc 10,8km/h theo hướng vuông góc với AB về phía
đường
Ví dụ 2: Hai tàu A và B ban đầu cách nhau một khoảng l Chúng chuyển động cùng một
lúc với các vận tốc có độ lớn lần lượt là v1, v2 Tàu A chuyển động theo hướng AC tạo
với AB góc (hình vẽ)
a Hỏi tàu B phải đi theo hướng nào để có thể gặp tàu A Sau bao lâu kể từ lúc chúng
ở các vị trí A và B thì hai tàu gặp nhau?
b Muốn hai tàu gặp nhau ở H (BH vuông góc với ) thì các độ lớn vận tốc v1, v2 phải
thỏa mản điều kiện gì?
10
B
A
C H
Trang 11Giải:
a Tàu B chuyển động với vận tốc hợp với góc
- Hai tàu gặp nhau tại M Ta có AM = v1.t, BM = v2.t
- Trong tam giác ABM:
+
sin = (1)
- Tàu B phải chạy theo hướng hợp với một góc thỏa mãn (1)
- Cos = cos[1800 – ( ] = - cos( =
- Gọi vận tốc của tàu B đối với tàu A là Tại thời điểm ban đầu cùng phương
chiều với Theo công thức cộng vận tốc:
Ví dụ 3: Hai chiếc tàu chuyển động với cùng vận tốc đều v, hướng đến O theo các quỹ
đạo là những đường thẳng hợp với nhau góc = 600 Xác định khoảng cách nhỏ nhất
giữa các tàu Cho biết ban đầu chúng cách O những khoảng l1 = 20km và l2 = 30km
Trang 12- Mốc thời gian là lúc các tàu ở M01, M02
( OM01 = l1, OM02 = l2 )
- Phương trình chuyển động của các tàu là:
+ Tàu thứ nhất trên trục tọa độ Ox1:
x1 = = x01 + v1t = - l1 + vt+ Tàu thứ hai trên trục tọa độ Ox2 :
x2 = = x02 + v2t = - l2 + vt
- Khoảng cách giữa hai tàu là M1M2 ta có:
=>(M1M2)2=OM12+ OM22 – 2OM1OM2.cos( )
= 2(1-cos )(vt)2 – 2(l1+l2)(1- cos )vt + l12 – 2l1l2cos + l22
+ Nếu xét t 0 thì f(vt) đạt giá trị nhỏ nhất tại vt = - không thỏa mản (1)
+ f(vt) là tam thức bặc hai có hệ số a > 0 Vậy trên (D1) thì f(vt) đạt giá trị nhỏ nhấttại vt = l1 hoặc vt = l2
+ f(l1) = (l1 – l2)2 (2)+ f(l2) = (l1 – l2)2 (3)
2 Xét khi l1 < vt < l2: (D2) (4) Khi đó x1> 0 và x2 < 0 tức là M1 nằm ngoài OM01, M2
Trang 13= (vt – l1)2 + (vt – l2)2 - 2(vt – l1)(vt – l2)cos = 2(1-cos )(vt)2 – 2(l1+l2)(1- cos )vt + l12 – 2l1l2cos + l22
+ f(vt) đạt giá trị nhỏ nhất tại vt = - (D2)+ Vậy f(vt)min = f( ) =
Nhận xét:Những bài tập ở phần trên nhằm giúp các em phải suy luận các hiện tượng vật
lí có thể xảy ra, biết vận dụng toán học vào vật lí
- Cũng qua những bài tập này củng cố kiến thức về quy tắc cộng véc tơ cho các em
khi các đại lượng này không cùng phương
Dạng 6 Các bài toán về chuyển động tròn
Ví dụ 1: Hai chất điểm chuyển động tròn đều đồng tâm, đồng phẳng, cùng chiều Với
bán kính và tốc độ góc lần lượt là R1, R2 và , Cho R1 > R2,, Chọn mốc thời
gian là lúc các chất điểm và tâm thẳng hàng Viết biểu thức vận tốc của chất điểm thứ
nhất đối với chất điểm thứ hai theo thời gian t Từ đó xác định giá trị lớn nhất, nhỏ nhất
Trang 14Ví dụ 2: Chất điểm chuyển động theo đường tròn bán kính R với vận tốc góc trên mặt
bàn phẳng (P) Mặt bàn chuyển động tịnh tiến thẳng đều với vận tốc đối với mặt đất
chọn mốc thời gian là lúc véc tơ vận tốc của chất điểm trong hệ quy chiếu gắn với (P)
vuông góc với
Xác định vận tốc của chất điểm đối với mặt đất tại thời điểm t =
Giải:
- Do véc tơ vận tốc trong chuyển động tròn đều có phương tiếp tuyến
với đường tròn quỹ đạo Vậy tại thời điểm ban đầu chất điểm ở A
Sau thời điểm t chất điểm ở B, bán kính quỹ đạo quét được góc
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
Trang 15=>
= =
Ví dụ 3: Coi quỹ đạo chuyển động của Mặt Trăng quay quanh Trái Đất và Trái Đất quay
quanh Mặt Trời cùng thuộc một mặt phẳng và cùng là chuyển động tròn đều Các chuyển
động quay này là cùng chiều và có chu kỳ quay lần lượt là TM =27,3 ngày và TĐ= 365
ngày Khoảng cách giữa Mặt Trăng và Trái Đất là RM=3,83.105km và giửa Trái Đất và
Mặt Trời là RĐ=149,6.106 km.Chọn mốc thời gian là lúc Mặt Trời, Trái Đất,
Mặt Trăng thẳng hàng và Trái Đất nằm giữa ( lúcTrăng tròn)
1 Tính khoảng thời gian giữa hai lần trăng tròn liên tiếp
2 Coi Trái Đất, Mặt Trăng là các chất điểm.Viết biểu thức tính vận tốc của Mặt Trăng
đối với Mặt Trời Từ đó suy ra vận tốc nhỏ nhất, tìm vận tốc này
Giải:
1 Xét trong khoảng thời gian ngắn , Trái Đất quay quanh mặt trời góc ,Mặt Trăng
quay quanh Trái Đất góc T1D2T2 = Do TM < TD => >
* Xét chuyển động quay của Mặt Trăng trong hệ quy chiếu gắn với Trái Đất và Mặt Trời
(đoạn DS xem là đứng yên ) Trong khoảng thời gian trong hệ quy chiếu này Mặt
Trăng quay được góc là Từ hình vẽ => = -