THANG ĐOKiểm định Biến độc lập Biến phụ thuộc Định danh Định danh Chi bình phương Thứ bậc Thứ bậc Chi bình phương Giá trị số Định lượng One Sample T-Test Định tính 2 nhóm Định lượng Inde
Trang 1KIỂM ĐỊNH THỐNG KÊ PHÂN TÍCH DỮ LIỆU VỚI
SPSS
Báo cáo viên : Hồ Minh Sánh
Trang 2Giả thuyết nghiên cứu
• H0 : Giả thuyết không (null hypothesis)
• HR : Giả thuyết thay thế (alternative hypothesis)
• Nếu p > alpha : từ chối giả thuyết HR (chấp nhận H0)
• Nếu p < alpha : chấp nhận giả thuyết HR (từ chối H0)
Chú ý : alpha = 0.05 (trong khoa học kinh tế)
• H0 : Giả thuyết không (null hypothesis)
• HR : Giả thuyết thay thế (alternative hypothesis)
• Nếu p > alpha : từ chối giả thuyết HR (chấp nhận H0)
• Nếu p < alpha : chấp nhận giả thuyết HR (từ chối H0)
Chú ý : alpha = 0.05 (trong khoa học kinh tế)
2
Trang 5THANG ĐO
Kiểm định
Biến độc lập Biến phụ thuộc
Định danh Định danh Chi bình phương
Thứ bậc Thứ bậc Chi bình phương
Giá trị số Định lượng One Sample T-Test
Định tính (2 nhóm) Định lượng Independent Sample
T-Test
Định tính (2 nhóm) Định lượng Independent Sample
T-Test
So sánh 2 biến Định lượng từng cặp tương
Định tính (3 nhóm trở
lên) Định lượng One – way ANOVA
1 Định lượng 1 Định lượng Hồi quy đơn
Tương quan
2 Định lượng trở lên Định lượng Hồi quy bội
Tương quan
Trang 61 Các bước kiểm định giả thuyết nghiên cứu
- Thiết lập giả thuyết cần kiểm định
- Chọn mức ý nghĩa mong muốn
- Chọn phép kiểm định thích hợp và tính giá trị
thống kê kiểm định của nó (giá trị xác xuất p hay
mức nghĩa Sig.).
- So sánh giá trị p với mức ý nghĩa để ra quyết định
- Diễn giải kết quả kiểm định giả thuyết nghiên cứu
1 Các bước kiểm định giả thuyết nghiên cứu
- Thiết lập giả thuyết cần kiểm định
- Chọn mức ý nghĩa mong muốn
- Chọn phép kiểm định thích hợp và tính giá trị
thống kê kiểm định của nó (giá trị xác xuất p hay
mức nghĩa Sig.).
- So sánh giá trị p với mức ý nghĩa để ra quyết định
- Diễn giải kết quả kiểm định giả thuyết nghiên cứu
6
Trang 7PHÂN TÍCH MQH GIỮA 2 BIẾN ĐỊNH TÍNH
• Điều kiện (hai biến định tính)
• Các giả thuyết:
H0: Không có mối quan hệ giữa trình độ chuyên môn
và giới tính (hai biến độc lập nhau)
H1: Có mối quan hệ giữa trình độ chuyên môn và giới tính
• χ2 được thiết lập để xác định có hay không một mối liên
hệ giữa hai biến, nhưng nó không chỉ ra được cường độcủa mối liên hệ đó
• χ2 cho phép tìm ra những mối liên hệ phi tuyến tính
• Cramer-V: Cường độ của nó biến động từ 0 đến 1
• Điều kiện (hai biến định tính)
• Các giả thuyết:
H0: Không có mối quan hệ giữa trình độ chuyên môn
và giới tính (hai biến độc lập nhau)
H1: Có mối quan hệ giữa trình độ chuyên môn và giới tính
• χ2 được thiết lập để xác định có hay không một mối liên
hệ giữa hai biến, nhưng nó không chỉ ra được cường độcủa mối liên hệ đó
• χ2 cho phép tìm ra những mối liên hệ phi tuyến tính
• Cramer-V: Cường độ của nó biến động từ 0 đến 1
Trang 8PHÂN TÍCH MQH GIỮA 2 BIẾN ĐỊNH TÍNH(Analyze > Descriptive Statistics > Crosstabs)
Trang 9PHÂN TÍCH MQH GIỮA 2 BIẾN ĐỊNH TÍNH
Trang 10ƯỚC LƯỢNG THAM SỐ TRUNG BÌNH
Trang 11ƯỚC LƯỢNG THAM SỐ TRUNG BÌNH
(Analyze > Compare Means > One - Sample T Test)
Trang 12ƯỚC LƯỢNG THAM SỐ TRUNG BÌNH
(Analyze > Compare Means > One - Sample T Test)
95% Confidence Interval of
the Difference Lower Upper
JS Job satisfation -9.000 201 .000 -.45215 -.5512 -.3531
Trang 13SO SÁNH 2 THAM SỐ TRUNG BÌNH
• Ước lượng tham số trung bình:
Dữ liệu: định lượng (liên tục)
Độ tin cậy (1-mức ý nghĩa)
• So sánh trung bình hai mẫu độc lập (kích thước 2 mẫu
Dữ liệu định lượng (liên tục)
Dữ liệu của hai nhóm phải tuân theo quy luật phân phốichuẩn
• Ước lượng tham số trung bình:
Dữ liệu: định lượng (liên tục)
Độ tin cậy (1-mức ý nghĩa)
• So sánh trung bình hai mẫu độc lập (kích thước 2 mẫu
Dữ liệu định lượng (liên tục)
Dữ liệu của hai nhóm phải tuân theo quy luật phân phốichuẩn
Trang 14SO SÁNH 2 THAM SỐ TRUNG BÌNH
Trang 15SO SÁNH 2 THAM SỐ TRUNG BÌNH
(Analyze > Compare Means > Independent Sample T Test)
Trang 16KẾT QUẢ PHÂN TÍCHIndependent Sample T Test
Trang 17SO SÁNH 2 BIẾN PHỐI HỢP TỪNG CẶP
(Analyze > Compare Means > Pair Sample T-Test)
Điều kiện :
- Hai mẫu thu thập ở dạng định lượng
- Kích cở 2 mẫu so sánh phải bằng nhau
- Chênh lệch giữa các giá trị 2 mẫu phải phân phốichuẩn hoặc cở mẫu phải đủ lớn
Giả thuyết nghiên cứu :
thể.
Ví dụ : Đánh giá của người dùng thử về sản phẩm Mì ăn liền
trước và sau khi cải tiến (trên thang đo 10 điểm)
Điều kiện :
- Hai mẫu thu thập ở dạng định lượng
- Kích cở 2 mẫu so sánh phải bằng nhau
- Chênh lệch giữa các giá trị 2 mẫu phải phân phốichuẩn hoặc cở mẫu phải đủ lớn
Giả thuyết nghiên cứu :
thể.
Ví dụ : Đánh giá của người dùng thử về sản phẩm Mì ăn liền
trước và sau khi cải tiến (trên thang đo 10 điểm)
Trang 18SO SÁNH 2 BIẾN PHỐI HỢP TỪNG CẶP
(Analyze > Compare Means > Pair Sample T-Test)
Chọn hai biến ta cần so sánh di chuyển vào hộp thoại Paired Variables bằng nút mũi tên Paired-samples t test còn cho ta kết quả về mối
tương quan giữa hai biến đang quan sát Cho biết liệu hai biến này có tương quan với nhau hay không, độ tương quan và chiều tương quan
(thể hiện ở bảng Paired samples correlation).
Trang 19SO SÁNH 2 BIẾN PHỐI HỢP TỪNG CẶP
(Analyze > Compare Means > Pair Sample T-Test)
Paired Samples Statistics
Mean N Std Deviation Std Error Mean Pair 1 f1 Promotion 3.2950 202 74331 05230
f2 Payment 2.8465 202 81112 05707
Paired Samples Correlations
N Correlation Sig.
Pair 1 f1 Promotion & f2 Payment 202 562 000
Pair 1 f1 Promotion & f2 Payment 202 562 000
Paired Samples Test
Paired Differences
t df
Sig tailed) Mean
(2-Std.
Deviation
Std Error Mean
95% Confidence Interval of the Difference Lower Upper Pair
1
f1 Promotion
-f2 Payment .44851 .72990 .05136 .34725 .54978 8.733 201 .000
Trang 20ONE WAY - ANOVA
Phương pháp thống kê để kiểm định giá thuyết là các trungbình của các dân số bằng nhau là Phân tích phương sai-
analysis of vaniance (ANOVA).
One-way ANOVA sử dụng các mô hình 1 yếu tố, các ảnhhưởng cố định để so sánh ảnh hưởng của một nghiệm thức(treatment) hoặc môt yếu tố (factor) trên một biến phụ thuộc
analysis of vaniance (ANOVA).
One-way ANOVA sử dụng các mô hình 1 yếu tố, các ảnhhưởng cố định để so sánh ảnh hưởng của một nghiệm thức(treatment) hoặc môt yếu tố (factor) trên một biến phụ thuộc
Trang 21ONE WAY - ANOVA
Giả thuyết H0 : Các đám đông có trung bình ngang nhau
Giả thuyết H0 : Các đám đông có trung bình ngang nhau
Trang 22ONE WAY - ANOVA
Analyze - Compare Means - One-Way ANOVA
Nhập biến phụ thuộc (JS) vào ô biến phụ thuộc Dependent List và nhập biến độc lập vào ô Factor
Nhấn chuột vào Descriptive và Homogeneity of variance (kiểm định phương sai đồng nhất, nghĩa là các đám đông
có cùng phương sai theo giả thuyết của ANOVA
Continue -> OK
Analyze - Compare Means - One-Way ANOVA
Nhập biến phụ thuộc (JS) vào ô biến phụ thuộc Dependent List và nhập biến độc lập vào ô Factor
Nhấn chuột vào Descriptive và Homogeneity of variance (kiểm định phương sai đồng nhất, nghĩa là các đám đông
có cùng phương sai theo giả thuyết của ANOVA
Continue -> OK
Trang 23ONE WAY - ANOVA
Trang 24Tổng bình phương trong nội bộ nhóm :
Tổng chênh lệch bình phương giữa các nhóm :
i
x x
SSw
1 1
2
Tổng bình phương trong nội bộ nhóm :
Tổng chênh lệch bình phương giữa các nhóm :
Trang 25BẢNG ONE WAY - ANOVA
Loại biến
thiên
Biến thiên
Trong nhóm SSw n – k MSw = SSw/(n-k)
Trang 26Sig = 0.643: Không có sự khác biệt về phương sai của các nhóm
Sig = 0.021: Đủ điều kiện từ chối giả thuyết H0, chấp nhận giả
thuyết H1
Trang 27Kết quả phân tích sâu POST HOC
95% Confidence Interval Lower Bound Upper Bound