Understanding the Internet banking adoption A unified theory of acceptance and use of technology and perceived risk application V U a C a b a A R R A A K U t P I I 1 m r z a i 2 i d c 2 c i 2 t s t.Understanding the Internet banking adoption A unified theory of acceptance and use of technology and perceived risk application V U a C a b a A R R A A K U t P I I 1 m r z a i 2 i d c 2 c i 2 t s t.
Trang 1jo u r n al h om ep ag e :w w w e l s e v i e r c o m / l o c a t e / i j i n f o m g t
Viewpoint
Carolina Martinsa, Tiago Oliveiraa, Aleˇs Popoviˇca,b,∗
a Universidade Nova de Lisboa, ISEGI, Lisboa, Portugal
b Faculty of Economics, University of Ljubljana, Slovenia
a r t i c l e i n f o
Article history:
Available online 23 July 2013
Keywords:
Perceived risk
a b s t r a c t
UnderstandingthemaindeterminantsofInternetbankingadoptionisimportantforbanksandusers;our understandingoftheroleofusers’perceivedriskinInternetbankingadoptionislimited.Inresponse,we developaconceptualmodelthatcombinesunifiedtheoryofacceptanceanduseoftechnology(UTAUT) withperceivedrisktoexplainbehaviourintentionandusagebehaviourofInternetbanking.Totestthe conceptualmodelwecollecteddatafromPortugal(249validcases).Ourresultssupportsome relation-shipsofUTAUT,suchasperformanceexpectancy,effortexpectancy,andsocialinfluence,andalsothe roleofriskasastrongerpredictorofintention.ToexplainusagebehaviourofInternetbankingthemost importantfactorisbehaviouralintentiontouseInternetbanking
© 2013 Elsevier Ltd All rights reserved
1 Introduction
In recent years the Internet hasbeen growing and offering
manyWeb-basedapplicationsasanewwayfororganizationsto
retaincustomersandofferthemnewservicesandproducts(Tan
&Teo, 2000).In order for both parties (customersand
organi-zations)totakeadvantageof theseapplications,it is crucialto
analyzethegenuineperceptionandmainreasonsofpeople’s
will-ingnesstoadopt thesetechnologies(Lee, 2009;Liao &Cheung,
2002)
Internet banking has emerged as one of the most
prof-itable e-commerce applications (Lee, 2009) Most banks have
deployed Internet banking systems in an attempt to reduce
costs while improving customer service (Xue, Hitt, & Chen,
2011).DespitethepotentialbenefitsthatInternetbankingoffers
consumers, the adoption of Internet banking has been
lim-ited and, in many cases, fallen short of expectations (Bielski,
2003)
Whileearlierresearchhasfocusedonthefactorsinfluencing
theend-userITadoption,thereislimitedempiricalworkwhich
simultaneouslycapturesthesuccessfactors(positive)and
resis-tance factors(negative) that drivecustomers toadopt Internet
∗ Corresponding author at: Faculty of Economics, University of Ljubljana, Slovenia.
E-mail address: ales.popovic@ef.uni-lj.si (A Popoviˇc).
banking(Lee,2009).Buildinguponthepremisethatpurchasing Internetbankingservicesisperceivedtoberiskierthan purchas-ingtraditionalbankingservices(Cunningham,Gerlach,Harper,& Young,2005),thisstudyintroducestheperceivedriskfactor Draw-ingfromperceivedrisktheory,thisstudycouplesspecificperceived riskfacets (Featherman&Pavlou,2003)– namelyperformance, financial,time,psychological,social,privacy,andoverallrisk–with unifiedtheoryofacceptanceanduseoftechnology(UTAUT)to pro-poseanintegratedmodeltoexplaincustomers’intentiontoadopt anduseInternetbanking
Our research merges an existing and empirically validated theoreticalmodelwitha perceivedriskfactor, whichis alsoan importantconstructthatwillbetestedontheadoptionofInternet bankingforthefirsttime.Thus,thisstudymayhelpbanksto under-standthedeterminantfactorsthatinfluenceusersandtocreatethe rightpoliciesandactionstoattractcustomerstousethisservice Additionally,itisinthebanks’andclients’interesttodirecttheir communicationfrombankbranchestoonlinechannelsinorderto
bemoreproductiveandcost-effectiveforbothparties
Thestructureofthepaperisasfollows.Inthenextsectionthe conceptofInternetbanking,thecurrenttheoriesthatexplain cus-tomers’acceptanceoftechnology,thedefinitionofperceivedrisk, andearlierresearchonthistopicarepresented.Theresearchmodel
isthenconceptualized.Thesecondpartofthepaperpresentsthe researchdesign,methodology,andresults.Finally,theresultsare discussed,includingtheimplicationsfortheoryandpractice,and furtherpossibleresearchdirectionsareoutlined
0268-4012/$ – see front matter © 2013 Elsevier Ltd All rights reserved.
Trang 22 Theoretical background
2.1 TheconceptofInternetbanking
Concerningtheincreasinginnovationandurgentneedof
up-to-date,convenientandreliabledata,informationsystems(IS)have
gainedhighimportanceintheorganizationalcontext.Againstthis
background,agreatdependencybetweentheorganizations’
per-formanceandtheirISisemerging.Organizationscannowprofit
fromtheevolutionofnewtechnologiesandadapttothe
emerg-ingwaysofinteractingwiththeirclients.Thebankingsectorhas
beenusingISnotonlytoruninternalbusinessactivitiesandto
promoteproducts,butalsotoprovidemainservicestotheir
cus-tomers.Thedematerializationofcustomerrelationships, thatis,
thebetteruseofthenumerousnewISavailableinthemarket,isa
topicalchallengefacingthissector.Adjustingtothischallengewill
allowclientstosatisfyalmostalltheirbankingneedswith
mini-mumhumanintervention(Jayawardhena&Foley,2000;Tan&Teo,
2000)
Internet banking is defined as the use of banking services
throughthe computer network (the Internet), offeringa wider
rangeofpotentialbenefitstofinancialinstitutionsdue tomore
accessibilityand userfriendlyuseofthetechnology(Aladwani,
2001;Yiu,Grant,&Edgar,2007).Literaturesuggestsmanyconcepts
toidentify Internet banking, namelyelectronic banking, online
banking, and e-banking With Internet banking, customers can
perform,electronically,awiderangeoftransactions,suchas
writ-ingchecks,payingbills,transferring funds,printingstatements,
andinquiringaboutaccountbalancesthroughthebank’s
website-bankingsolution.Furthermore,Internetbankinghasasignificant
impacton e-payments, offering a platform to support many
e-commerceapplications,suchas onlineshopping,onlineauction,
andInternetstocktrading(Aladwani,2001;Lee,2009;Tan&Teo,
2000)
WhenInternet banking becamepopular,it wasusedmainly
toprovide informationfor marketingtheproductsandservices
onthebank’swebsite,butwiththetechnologicaldevelopment
ofsecuredelectronictransactions,more bankshave beenusing
italsoasatransactionalframework(Tan&Teo,2000;Yiuetal.,
2007).Recently,onlinebankshavebeenexpandingtheirpresence
in themarket (including thePortuguese market) and adopting
other channels, such as call centres, but their impact on the
wholebankingsectorhasbeenlimited(DECO,2010;Tan&Teo,
2000)
Pikkarainen,Pikkarainen,Karjaluoto,andPahnila(2004)
high-lightedtwomainreasonsforthedevelopmentandproliferation
ofInternetbanking.First,thecostsavingsbythebankscompared
withthe traditional channels; second, thereduction of branch
networksand, therefore,thecostswithstaff.Jayawardhenaand
Foley (2000) also identified the benefit of increasing the
cus-tomerbase,becauseusingmultipledistributionchannels(branch
networks,Internetbanking,mobilebanking,etc.)amplifiesmarket
coveragebyenablingdifferentproductstobetargetedatdifferent
demographicsegments.Witha largercustomerbase,bankscan
profitfrommarketingandcommunication,withthepossibilityof
masscustomizationforeachgroupofclients,offeringinnovative
products.Thisisanimportantissuebecausemanyorganizations
todayaresaturatedwithmassautomationandhomogenized
prod-uctsandservices.Inthecustomerview,thereisanincreaseinthe
autonomy,withlessdependencyonthebranchbankingand,
conse-quently,lesstimeandeffort.Recently,thePortugueseAssociation
ofConsumerDefence(DECO)performedastudyaboutcostsand
benefitsofInternetbankingusageandconcludedthatuserscan
savemorethanD300peryeariftheyusetheseservicesinsteadof
thetraditionalones(DECO,2012).OntheInternetplatform,users
canbenefitfromfinancialproductsthatareonlineexclusive,and
thesemayhavehigherreturnsthanthoseinthetraditional chan-nelsofbanks
RegardingtheprofileofInternetbankingcustomers,theyhave
anincreasedbankingactivity,acquiremoreproducts,and main-tainhigherassetandliabilitybalances,demonstrating thatthey aremorevaluablethanthetraditionalones(Hitt&Frei,2002;Xue
etal.,2011).Additionally,customerswhohavegreatertransaction demandandhigherefficiency,andresideinareaswithagreater densityof onlinebankingadopters, arefaster toadoptInternet banking.Theseadoptersalsohavealowerpropensitytoleavethe bank
LookingatthecurrentsituationinPortugal,weseethatthere aremanyInternetplatformsavailableinalmostallleadingbanks Since 2005 theuse of Internet banking servicesby Portuguese banking consumers has increased by 82%, while personal and telephone contacts have decreased approximately 17% (Grupo Marktest,2011,2012).Despitethisrecentsurgeintheuseof Inter-netbankingservices,manybankingusers(approximately70%)are not comfortable withthis channel and prefer tousethe tradi-tionalones(AutomatedTellerMachine–ATM,personalcontact,and telephonecontact).GrupoMarktesthasalsoundertakena char-acterizationofInternetbankingadoptersandconcludedthatthey aremen,young(25–34years),andfrommedium/upperclassesof society.Regardingthetypeofjob,theyfoundthatmedium/upper managementhaveanadoptionrate2.5timesabovetheaverage, with74%ofthemusingit
Despitetheincreaseinadoptionofthesekindsofservice, con-sumersstillshowsomereluctancetowardsthem,duemainlyto riskconcernsandtrust-relatedissues(Lee,2009)
2.2 Adoptionmodels TheacceptanceanduseofITsystemshasbeenthesubjectof muchresearch,andinrecentyearsseveraltheoriesthatoffernew insightshaveemergedatboththeindividualandorganizational levels,focusedonacountryorasetofcountries(Im,Hong&Kang,
2011).Eachoftheseveralmodelsthathavebeenproposedinthe literaturehasthesamedependentvariable,useorintentiontouse, butwithvariousantecedentstounderstandacceptanceof technol-ogy
Themostwell-knowntheoreticalmodelsattheindividuallevel thathavesoughttoexplaintherelationshipbetweenuserbeliefs, attitudes,andintentionsincludeTheoryofReasonedAction(TRA– Fishbein&Ajzen,1975),TheoryofPlannedBehaviour(TPB–Ajzen,
1991),andTechnologyAcceptanceModel(TAM–Davis,1989).TAM wasdesigned topredictinformationtechnologyacceptanceand useonthejob,inwhichperceivedusefulnessandperceivedease
ofusearethemaindeterminantsoftheattitudes(Davis,1989) TPB ismore focusedontheperceivedbehavioural control,that
is,the perceivedease ordifficultyof performingthebehaviour (Ajzen,1991).BothmodelswerebasedonTRA,whichproposesthat beliefsinfluenceattitudesthatinturnleadtointentionsandthen consequentlygeneratebehaviours(Fishbein&Ajzen,1975).Itisa modeldrawnfromsocialpsychology,andisoneofthemost impor-tanttheoriesofhumanbehaviour.Accordingtotheresearchers, attitude(attitudetowardsperformingbehaviour)andsubjective norms(socialpressurestoperformbehaviour)areconsideredas thedeterminantsofbehaviourinTRA
Venkatesh, Davis, Davis, and Morris, (2003) provide a com-prehensive examination of eight prominent models and derive
a Unified Theory of Acceptance and Use of Technology (UTAUT), which can explain as much as 70% of the variance in inten-tion The eight models studied by these researchers are TRA, TAM, Motivational Model (MM – Davis, Bagozzi, and Warshaw,
1992),TPB,ahybridmodelcombiningconstructsfromTAMand TPB(C-TAM-TPB –Taylor&Todd,1995), ModelofPCUtilization
Trang 3Fig 1.Research model of Venkatesh et al (2003) investigation.
(MPCU–Thompson,Higgins,andHowell,1991),Innovation
Diffu-sionTheory(IDT–Moore&Benbasat,1996),andSocialCognitive
Theory(SCT–Compeau&Higgins,1995).TheUTAUTmodel(Fig.1)
postulatesthatfourconstructsactasdeterminantsofbehavioural
intentions and use behaviour: (i) performance expectancy, (ii)
effortexpectancy,(iii)socialinfluence,and(iv)facilitating
condi-tions.Inaddition,UTAUTalsopositstheroleoffourkeymoderator
variables:gender,age,experience,andvoluntarinessofuse
Sinceitsinceptionin2003,researchershaveincreasinglyturned
totesting UTAUTtoexplain technologyadoption It wastested
andappliedtoseveraltechnologies,suchasonlinebulletinboards
(Marchewka,Liu,&Kostiwa,2007),instantmessengers(Lin&Anol,
2008),andWeb-basedlearning(Chiu&Wang,2008).Forinstance,
theadoptionfactorsofInternet bankingand mobilebankingin
Malaysiawere investigatedby Tan,Chong, Loh,and Lin (2010)
withtheuseofthissamemodel;Im etal.(2011)undertookto
discoveriftheUTAUTconstructswereaffectedbytheculture,
com-paringthemp3playerandInternetbankingtechnologiesinKorea
andtheUS;andYuen,Yeow,Lim,andSaylani(2010)testedthe
UTAUTmodelintwogroupsofculturallydifferentcountries,i.e
thedeveloped(USandAustralia)anddeveloping(Malaysia)
coun-tries
Muchresearch has addressed Internet banking adoption, as
showninTable1.Therewefindthemainconclusionsofeach
inves-tigationanditspredictivepowerinexplainingintentionanduseof
Internetbankingservices,byther-square(whenavailable)
2.3 Earlierresearchonperceivedrisk
AccordingtoBauer (1960)and Ostlund (1974),thenegative
consequences that may arise from consumers’ actions lead to
an important well-establishedconcept in consumer behaviour:
perceivedrisk.Manyauthorshavestudiedtheimpactofriskonthe
adoptionofInternetbankingandsomeofthemwillbediscussed
Kuisma,Laukkanen,andHiltunen(2007)investigatedthe
resis-tance to Internet banking and their connections to values of
individualsandconcludedthatbothfunctionalandpsychological
barriersarisefromservice,channel,consumer,and
communica-tion.ATMservicesarestillpreferredbycustomers,becauseoftheir
oldroutineandtheInternet’sinsecurity,inefficiency,and
inconve-nience.Besidesthefearofpossiblemisuseofchangeablepasswords
andthelackofproofprovidedbyanofficialreceipt,theyfoundthat somecustomersseemtoperceivenoperformance-to-pricevalue duetothehighpurchasingcostsofacomputerandInternet connec-tion.Additionally,non-usersalsocomplainaboutthelackofsocial dimension,thatis,theabsenceofaface-to-faceencounter,asata branch
Inasimilarway,RotchanakitumnuaiandSpeece(2003) inves-tigated howcorporate customersperceivebarrierstousing the InternetbankingprovidedbyThaibanks.Thefindingswerethat trustandsecurityarethemostcriticalissues,especiallyamongst non-users who havehigher levelsof worry,do nothave confi-dencetomakeanyfinancialtransactionsviatheWeb,andhave
nointentionofadoptingInternetbankingservices
AccordingtoFeathermanandPavlou(2003),perceivedriskis definedas“thepotentialforlossinthepursuitofadesired out-comeof usingane-service” Thepurposeoftheirresearchwas
todiscoverhowimportanttheriskperceptionsaretothe over-alle-servicesadoptiondecision,integratingTAMwithperceived risk (research model in Fig 2) They identified seven types of risks, namely (i) performance risk, (ii) financial risk, (iii) time risk, (iv) psychological risk, (v) social risk, (vi) privacy risk, and (vii) overall risk The authorsstated that it wascrucial to includeameasureofperceivedriskintoTAMbecauseconsumers identifyandvalueriskwhenevaluatingproducts/servicesfor pur-chase/adoption,whichmaycreateanxietyanddiscomfortforthem Therefore, regardingperceivedrisk, theytested (i)ife-service’s
Trang 4Table 1
Technology acceptance model (TAM) and self-efficacy as
one of the antecedent variables such as risk, Internet
experience, facilitating conditions
• Self-efficacy plays a prominent role in influencing the intention to use Internet banking in South Korea
• 32.3% of intention explained by experience, perceived usefulness, and perceived ease of use
• 4.8% of use explained by intention
Lee and Chung (2011)
• Attitudinal (relative advantage, compatibility with respondent’s values, experience, needs, trialability, and risk) and perceived behavioural control factors as the
Tan and Teo (2000)
• 12.4% of intention explained by the model
Pikkarainen et al (2004)
important control variables
• Perceived usefulness and perceived ease of use, resistance to change, trust, age, gender, education, and
online banking use Attitudes towards use explain 83% of the variance in intention
Al-Somali et al (2009)
perceived risk
• Perceived usefulness is the strongest predictor of
perceived ease of use and perceived risk
Yiu et al (2007)
• 80% of intention explained by security risk, financial risk, perceived behaviour control, subjective norm, attitude,
Lee (2009)
(UTAUT), trust, awareness of service, output quality,
• All constructs contributed to explain intention and use of internet banking, except social influence
important to explain intention
Riffai et al (2012)
cognitive theory (SCT)
indirectly play significant roles in influencing the intention
• Perceived ease of use has a significant indirect effect on intention to adopt/use through perceived usefulness, while its direct effect on intention to adopt is not significant
Chan and Lu (2004)
attitudinal factors (features of the web site and perceived
control factor (external environment), but not by
Bussakorn and Dieter (2005)
perceivedriskreducestheirperceivedusefulnessandadoption;
(ii) if perceived ease of use of e-service significantly reduces
perceivedrisksofusage;(iii)ifperceivedeaseofuseinfluences
e-service’sadoption.Asseenbelow,perceivedriskhasbeen
mod-elledasacompositevariableanddecomposedintoitstheorized
sub-facets
3 Research model
Asseenabove,theUTAUTmodelisabletoexplain70%ofthe
varianceinusageintention,whichisasubstantialimprovement
over anyof theeight original modelsused tobuild it Thus, it
demonstratesthatUTAUTisthemostcompletemodeltopredict
informationtechnologiesadoption,anditisthereforeusedinthis
investigation.Accordingtothismodel,threeconstructsare
signif-icantdirectdeterminantsofintention(performanceexpectancy,
effortexpectancy,andsocialinfluence).Facilitatingconditionsand
intentionexplainusebehaviour.Regardingthemoderatingeffects,
both experienceand voluntarinessof uselie outside thescope
of this research Experience is not evaluated because only one
momentintime is beingobserved;voluntarinessof useisalso
notfeasiblebecausenooneisobligedtouseInternetbankingin
thiscontext.Asgenderandagemayhaveaconsiderableinfluence
onusers’acceptanceofInternetbanking,bothwillbeconsidered
(Wang,Wang,Lin,&Tang,2003)
As our investigation merges two sensitivesubjects, namely
moneyandInternet, thereisalwaysariskfactor thatis
impor-tanttobemeasuredintheprocessofInternetbankingadoption
Usersalways fear losing money withtransactions, losing pass-words,makingerrorsontheplatform,etc.Wethereforepropose
totesttheUTAUTonInternetbanking,addingariskfactortothe model.Inthissection,wedefineeachofthedeterminantsofUTAUT andriskfactorandspecifytheroleofkeymoderators
Performanceexpectancy(PE)reflectsuserperceptionof perfor-manceimprovementbyusingInternetbankingontasks,i.e.,itisthe degreetowhichanindividualbelievesthatusingInternetbanking willhelptoattaingainsinperformingbankingtasks(Venkatesh
etal.,2003).Itreflectsuserperceptionofperformance improve-mentbyusingInternetbanking,suchasconvenienceofpayment, fastresponse,andserviceeffectiveness(Zhou,Lu,&Wang,2010) Accordingtotheauthors,itissimilartotheperceivedusefulness
ofTAMandtherelativeadvantageofIDT.Effortexpectancy(EE)is thedegreeofeaseassociatedwiththeuseofInternetbanking.Itis equivalenttotheperceivedeaseofuseofTAMandthe complex-ityofIDT.AccordingtoUTAUT,effortexpectancypositivelyaffects performanceexpectancy.Whenusers feelthatInternetbanking
iseasy touseand doesnotrequiremuch effort,theywillhave
ahighexpectationtowardsacquiringtheexpectedperformance; otherwise,theirperformanceexpectancywillbelow(Zhouetal.,
2010).Social influence (SI)reflects the effect of environmental factorssuchastheopinionsofuser’sfriends,relatives,and supe-riorsonuserbehaviourandissimilartosubjectivenormofTRA (Venkatesh etal., 2003).Theiropinionswillaffect user’s inten-tiontoadoptInternetbankingservices.Facilitatingconditions(FC) reflecttheeffectoforganizationalandtechnicalinfrastructureto supporttheuse ofInternet banking, suchasuser’s knowledge, ability, and resources (Venkatesh et al., 2003) It is similar to
Trang 5perceivedbehaviouralcontrol ofTPB Internetbanking requires
userstohavecertainskillssuchasconfiguringandoperating
com-puters,andconnectingtotheInternet.Inaddition,usersneedto
bearusagecostssuchasdataserviceandtransactionfeeswhen
usingInternetbanking.Ifusersdonothavethesenecessary
finan-cialresourcesand operationalskills, theywillnotadoptor use
Internetbanking(Hong,Thong,Moon,&Tam,2008;Zhouetal.,
2010)
Therefore,andaccordingtotheUTAUTmodel,itcanbe
postu-latedthat:
H1. TheinfluenceofPerformanceExpectancy(PE)onBehavioural
Intention(BI)willbepositiveandmoderatedbyageandgender,
suchthatitwillbestrongerforyoungerindividualsandmen
H2. TheinfluenceofEffortExpectancy(EE)onBehavioural
Inten-tion(BI)willbepositiveandmoderatedbyageandgender,such
thatitwillbestrongerforyoungerindividualsandwomen
H3. TheinfluenceofSocialInfluence(SI)onBehaviouralIntention
(BI)willbepositiveandmoderatedbyageandgender,suchthatit
willbestrongerforolderindividualsandwomen
H4. The influence of Facilitating Conditions (FC) on Usage
Behaviour(UB)willbepositiveandmoderatedbyage,suchthat
itwillbestrongerforolderindividuals
Tomaintainconsistencywiththeunderlyingtheoryforallofthe
intentionmodels,itisexpectedthatbehaviouralintentionwillhave
a significantpositiveinfluence ontechnologyusage(Venkatesh
etal.,2003).Itcanbehypothesizedthat:
H5. Behavioural Intention (BI) willhave a significant positive
influenceonUsageBehaviour(UB)
AccordingtoFeathermanandPavlou(2003),(i)performance
riskisdefinedasthepossibilityoftheresultsnotbeingasthey
weredesignedtobeandthereforefailingtodeliverthedesired
ben-efits;(ii)financialriskreflectsthepotentialmonetarylossfromthe
initialpurchaseoftheproductanditssubsequentmaintenance;
(iii)timeriskoccurswhenuserslosetimebymakingpoor
pur-chasingdecisions,withresearchingandmakingthepurchase,and
learninghowtouseit;(iv)psychologicalriskisdefinedastherisk
thattheperformanceoftheproductwillhaveanegativeeffecton
theconsumer’speaceofmindandthepotentiallossofself-esteem
fromthefrustrationofnotachievingabuyinggoal;(v)socialrisk
reflectsthepotentiallossofstatusinasocialgroup,asaresultof
adoptingaproductorservice;(vi)privacyriskisthepotentialloss
ofcontroloverpersonal information,suchaswhen information
aboutanindividualisusedwithoutthatperson’sknowledge;(vii)
finally,overallriskisageneralmeasurewithallcriteriatogether.All
theseperceivedriskscomprisetheperceivedrisk,beingasecond
orderfactorofthem,andinfluencingtheintentionnegatively.Itis
expectedthatthemoretheuser’saversiontotheriskconcernsare
lowered,themores/heislikelytoadoptInternetbankingservices
(Bussakorn&Dieter,2005)
Thus,perceivedrisk hasbeenmodelledboth asa composite
variableanddecomposedintoitstheorizedsub-facets,andwecan
postulatethat:
H6. PerceivedRisk(PCR)isasecondorderfactorofsevenrisks
H6a. PerceivedRisk(PCR)willpositivelyinfluencePerformance
Risk(PFR)
H6b. PerceivedRisk(PCR)willpositivelyinfluenceFinancialRisk
(FR)
H6c. PerceivedRisk(PCR)willpositivelyinfluenceTimeRisk(TR)
H6d. PerceivedRisk(PCR)willpositivelyinfluencePsychological
Risk(PSR)
H6e. PerceivedRisk(PCR)willpositivelyinfluenceSocialRisk(SR)
H6f. PerceivedRisk(PCR)willpositivelyinfluencePrivacyRisk (PR)
H6g. PerceivedRisk(PCR)willpositivelyinfluenceOverallRisk (OR)
H7. Perceived Risk (PCR) will negatively influence Behaviour Intention(BI)
Regardingtheeffectsofperceivedusefulnessandperceivedease
ofuseintheapproachofFeathermanandPavlou(2003),whenwe focusontheresearchofVenkateshetal.(2003),theequivalent constructsareperformanceexpectancy(PE)andeffortexpectancy (EE).Itisexpectedthatonlyindividualswhoperceiveusing Inter-netbankingasalowriskundertakingwouldhaveatendencyto perceiveitasuseful(Chan&Lu,2004).Also,itisexpectedthatonly thosewhoperceivelowefforttouseInternetbankingwouldhave
atendencytoperceiveitasanotriskyservice.Asaresults,wecan postulatethat:
H8. PerceivedRisk(PCR)willnegativelyinfluencePerformance Expectancy(PE)
H9. Effort Expectancy (EE)will negativelyinfluence Perceived Risk(PCR)
FromthesehypothesestheconceptualmodelshowninFig.3 emerges
4 Methods
4.1 Measurementinstruments Allmeasurement items wereadapted, with slight modifica-tions, from theliterature – PE,EE, SI, FC and BI wereadopted fromVenkateshetal.(2003)andDavis(1989);UBfromImetal (2011); perceived risk constructs from Featherman and Pavlou (2003).TheitemsforallconstructsareincludedintheAppendix
A ThequestionnairewasinitiallydevelopedinEnglish,basedon theliterature,andthefinalversionwasindependentlytranslated intoPortuguesebyaprofessionaltranslator.Thequestionnairewas putontheWebthroughafreeWebhostingservice
Most items were measuredusing seven-point Likert scales, rangingfromtotallydisagree (1)tototallyagree (7).Behaviour Intention(BI)wasmeasuredbyasking respondentsabouttheir intentions and plans to use the technology during the next months.To evaluateUsageBehaviour (UB),oneitem measured users’actualfrequenciesofInternetbankinguse(havenotused, once a year,oncein six months,once inthree months,once a month, once a week, oncein 4–5 days, once in 2–3days, and almosteveryday).Wealsoincludedtwodemographicquestions relating toageandgender.Age wasmeasuredinyears Gender wascodedusinga0or1dummyvariablewhere1 represented women
4.2 Datacollection Firstly,apilotsurvey(with100answers)wasconducted(inApril
of2012)inordertorefinethequestionsandgainadditional com-mentsonthecontentandstructure.Themostimportantchange wasintheitemsofUsageBehaviour(UB),whichinitiallywerefrom Venkateshetal.(2003).Thesegeneratedmisunderstandingsand thesimulationofthePLSestimationwithafewsamplesgave sta-tisticallypoorresults.Theitemswere“Iintendtousethesystem
inthenext<n>months.”,“IpredictIwoulduseInternetBanking
inthenext<n>months.”and“Iplantousethesysteminthenext
Trang 6Fig 3.Research model.
<n>months.”.Thepossibleanswerswerefrom1to+12.Internet
bankingusersunderstooditastheperiodthattheyeffectivelywill
useInternetbanking(andthereforeanswered+12)andothersas
thenearestmonththattheywilluseit(thatis,nextmonth,with
1asresponse).TheseitemswerereplacedbyonefromImetal
(2011),alreadyusedinthiscontext.Regardingtheotheritems,a
numberofsuggestionsweremadeaboutthephrasingandthe
over-allstructureofthequestionnaire.Thesuggestionswerediscussed
andsomechangesweremade.Thedatafromthepilotsurveywere
notincludedinthemainsurvey
Atotalof726studentsandex-studentsfromauniversitywere
contactedbye-mailinMayof2012andprovidedwiththe
hyper-linkof thesurvey,fromwhich 173responseswerevalidated.A
seconde-mailwasthensenttothosewhohadnotrespondedafter
twoweeks,andfinally,aftertherefiningprocess,atotalof249
validcaseswereanalyzed(34%responserate).Totestfor
nonre-sponsebias,wecomparedthesampledistributionofthefirstand
secondrespondents groups We usedtheKolmogorov–Smirnov
(K–S)testtocomparethesampledistributionsofthetwogroups
(Ryans, 1974).The K–S test suggests that the sample
distribu-tionsof the two independent groups do not differ statistically
(Ryans,1974).Thismeansthatnonresponse biasis notpresent
Further,we examinedthecommonmethodbias byusing
Har-man’s one-factor test (Podsakoff, MacKenzie, Lee, & Podsakoff,
2003).Thesetestsfoundnosignificantcommonmethodbiasin
ourdataset
Themajorityofrespondents(63%)respondedthat theyused
Internetbankingservicesonceaweek.Fourteenpercentadmitted
thattheyarenon-usersandofthese,almostallweremenwithan
averageageof27,andcharacterizedbylowlevelsofeducation
Concerningdemographicdata(Table2 59%oftherespondents
aremaleandtheaverageageis30years.Theireducationlevelis
elementaryandhighschoolfor47%ofindividuals;theothershave
anundergraduatedegreeormore
5 Results
Structuralequationmodelling(SEM)isastatisticaltechniquefor testingandestimatingcausalrelationsusingacombinationof sta-tisticaldataandqualitativecausalassumptions.Carefulresearchers acknowledgethepossibilitiesofdistinguishingbetween measure-mentandstructuralmodelsandexplicitlytakemeasurementerror intoaccount(Henseler,Ringleand,&Sinkovics,2009).Thereare twofamiliesofSEMtechniques:(i)covariance-basedtechniques and(ii)variance-basedtechniques.Partialleastsquares(PLS)isa variance-basedtechniqueandisusedinthisinvestigationsince: (i)notallitemsinourdataaredistributednormally(p<0.01based
onKolmogorov–Smirnov’stest);(ii)theresearchmodel hasnot beentestedintheliterature;(iii) theresearchmodel is consid-eredascomplex.SmartPLS2.0M3(Ringle,Wende,&Will,2005) wasthesoftwareusedtoanalyzetherelationshipsdefinedbythe theoreticalmodel
Inthenexttwosubsectionswe(first)examinethemeasurement modelinordertoassessinternalconsistency,indicatorreliability, convergentvalidity,anddiscriminantvalidity,and(secondly)test thestructuralmodel
5.1 Measurementmodel Firstly,inordertoanalyzetheindicatorreliability,factor load-ingsshouldbestatisticallysignificantandpreferablygreaterthan 0.7 (Chin, 1998; Hair&Anderson,2010; Henseleretal., 2009) Means,standarddeviations,loadings,andt-statisticvaluesfrom itemsmeasuredareinTable3.Thet-statisticobtainedfrom boot-strapping(250iterations)showsthatallloadingsarestatistically significantat1%.FC4itemwasexcludedduetoitslowloadingand lackofstatisticalsignificance.Allotheritemswereretained Fur-thermore,itispossibletoconcludethatallitemshaveloadings
Trang 7Table 2
Accord-ingtoHairandAnderson(2010),CRquantifiesthereliabilityand
internalconsistencyofeachconstructandtheextenttowhichthe itemsrepresenttheunderlyingconstructs.Additionally,CRtakes intoaccountthatindicatorshavedifferentloadings(andCronbach’s alphadoesnot),andisthereforemoresuitableforPLS,which prior-itizesindicatorsaccordingtotheirindividualreliability(Henseler
etal.,2009).AsseeninTable4,CRandCAforeachconstructare abovetheexpectedthresholdof0.7,showingevidenceofinternal consistency
Performance expectancy (PE)
Effort expectancy (EE)
Social influence (SI)
Facilitating conditions (FC)
Perceived Risk
Performance risk (PFR)
Financial risk (FR)
Time risk (TR)
Privacy risk (PR)
Overall risk (OR)
Behaviour intention (BI)
Trang 8Table 4
Means, standard deviations, correlations, and reliability and validity measures (CR, CA, and AVE) of latent variables.
EE 5.65 1.29 0.96 0.94 0.78 *** 0.92
Diagonal elements are the square root of the average variance extracted (AVE).
PE, performance expectancy; EE, effort expectancy; SI, social influence; FC, facilitating conditions; PCR, perceived risk; BI, behavioural intention; UB, usage behaviour; NA, not applicable.
* p < 0.05.
** p < 0.01.
*** p < 0.001; all other correlations are insignificant.
In order to assess convergent validity, average variance
extracted(AVE)wasused.TheAVEistheamountofindicator
vari-ancethatisaccountedforbytheunderlyingitemsofconstructand
shouldbegreaterthan0.5,sothatthelatentvariableexplainsmore
thanhalfofthevarianceofitsindicators(Hair&Anderson,2010;
Henseleretal.,2009).AsisalsoseeninTable4,AVEforeach
con-structisabovetheexpectedthresholdof0.5,ensuringconvergent
validity
Finally, to grant discriminant validity, the square root of
AVE should begreater than the correlations between the
con-struct (Henseler et al., 2009) This is also reported in Table 4
for all constructs We conclude that all the constructs show
evidence of discrimination Additionally, another criterion that
assesses discriminant validity is the cross loadings, which
should be lower than the loadings of each indicator (Hair &
Anderson,2010).Thiswasalsoanalyzed andwe foundthatno
indicatorhasloadingswithlower values than theircross
load-ings
5.2 Structuralmodel Finally, as the assessment of construct reliability, indicator reliability, convergent validity, and discriminantvalidity of the constructsaresatisfactory,itispossibletoanalyzethestructural model.ThemodelstestedwereUTAUTandperceivedrisk(PCR) (UTAUT+PCR–themainmodel)withinteractioneffects(D+I)and withoutthem(D)tounderstandifageandgenderhadinfluence
ontheintentionand usage.Then,we alsotested UTAUT (with-outperceivedrisk(PCR))andalsowithdirecteffectsonly(D)and addinginteractioneffects(D+I).Table5showspathcoefficients andr-squares foreach modeltested Chin(1998)stated that r-squares of the structural model should beabove 0.2, which is demonstratedbothinintentionandusageandinallmodels esti-mated,asseenin Table5.Comparisonoftheestimatedmodels revealsthatonintention,moderatingeffectsalwayshaveanimpact
onr-square,increasingit(0.52vs.0.56inUTAUTand0.56vs.0.60
inUTAUT+PCR).Inasimilarway,whenweaddperceivedriskto
effects (D + I).
Behaviour intention
PE, performance expectancy; EE: effort expectancy; SI: social influence; FC: facilitating conditions; PCR: perceived risk; BI: behavioural intention; UB: usage behaviour.
* p < 0.05.
***
Trang 9Fig 4.Structural model (UTAUT + PCR–D + I) with path coefficients and r-squares.
theUTAUTmodel,r-squarealsoincreases(0.52vs.0.56withdirect
effectsonlyand0.56vs.0.60withdirectandinteractioneffects).On
theotherhand,whenweobserveusage,neithermoderatingeffects
norperceivedriskhaveanyimpactonit,becausether-squareis
alwaysthesame(0.81)
Withthesefacts,itispossibletoconcludethatourmodelthat
addedperceivedrisk(PCR)totheUTAUTmodel,withtheir
moder-atingeffects,explainstheintentionbetterthanalltheothers.We
nowfocusouranalysisonthemainmodel,thatis,UTAUT+PCRwith
moderatingeffects.Pathcoefficientsandr-squaresofthismodelare
inFig.4
Wealsocalculatedt-statisticsderivedfrombootstrapping(250
iterations).Mostdirecteffectsarestatisticallysignificant,suchas
performance expectancy( ˆˇ =0.32;p<0.001),effortexpectancy
( ˆˇ =0.33; p<0.001), social influence ( ˆˇ =0.09; p<0.05), and
perceived risk ( ˆˇ =−0.20;p<0.001) over intention To explain
usage,facilitating conditions is not statisticallysignificant ( ˆˇ=
0.03;p>0.05),andbehaviourintentionisstatisticallysignificant
( ˆˇ=0.89;p<0.001).Insummary,allofthedirecteffectsare
sta-tisticallysignificantfor intention,and forusageonlyfacilitating
conditionsisnotstatisticallysignificant
Noneoftheinteractioneffects arestatisticallysignificant,as
seeninTable5.Onlythedirecteffectofageonintentionis
sta-tisticallysignificant( ˆˇ =0.11;p<0.05)
6 Discussion
6.1 Theoreticalimplications
Theoretically,ourresultssuggestthatperceivedriskincreases
the predictive power of the UTAUT model in explaining
intention.Whileperformanceexpectancy(PE),effortexpectancy (EE),andsocialinfluence(SI)explainnearly56%ofthevariance
of behaviourintention(BI), bycouplingperceivedrisk (PCR) to UTAUT,thesevariablescontributedtoanincreaseof4p.p.of vari-ance explained, thereby providing a better explanatory power Furthermore,theproposedjointUTAUT+PCRmodelexplained81%
ofusagebehaviourvariance.Comparedwithotherinvestigations exploringInternetbankingadoption,ourstudypresentsastronger predictivepowerthansimilarstudies.For instance,Pikkarainen
et al (2004) usedTAM and explained 12.4% of intention, with perceivedusefulnessandinformationonthewebsiteasthemain determinants;LeeandChung(2011)alsoappliedTAMandadded self-efficacyasoneoftheantecedentvariablessuchasrisk, Inter-netexperience,andfacilitatingconditionsinSouthKorea’susers, withintentionbeingexplainedby32.3%throughInternet experi-ence,perceivedusefulness,andperceivedeaseofuse;andusage presentedanr-squareof4.8%,whichisconsiderablylowerthan theoneinthisstudy
Table6presentstheoutcomesofhypothesestested.Theresults
ofthemodelshowedthat,contrarytoourexpectations,theeffect
offacilitatingcondition(FC)constructfromUTAUToverusage(UB) wasnot significant.Thissuggeststhat ourrespondents arenot concernedaboutthesurroundingenvironment(necessary infras-tructures, knowledge,capabilities, etc.)toinfluence theirusage
ofInternetbanking.Asobservedinsomeotherresearch(e.g Al-Somali,Gholami,&Clegg,2009;Lee&Chung,2011;Riffai,Grant,
&Edgar,2012),theeffectsofPEandEEoverBIweresubstantial, meaningthatindividualscareabouttheoutcomesofusing Inter-netbankingandthenecessaryefforttoexpendinordertouseit Withalowmagnitude,SIalsoshowedaneffectonBI,meaningthat ourrespondentsareconcernedaboutenvironmentalfactorssuch
astheopinionsofuser’sfriends,affectingtheirintentiontoadopt
Trang 106
Internetbanking.TheimpactofBIonusagebehaviour(UB)wasalso substantial,whichindicatesthatInternetbankingusersaremore likelytousethesystemiftheyhadtheintentiontouseit Regardingtheperceivedriskpartofthemodel,ithas demon-strated evidence for a second-order composite perceived risk variable.Performance,financial,time,andprivacyrisksprovedto
bethemostsalientconcernsforperceivedrisk,thatis,theones relatedwithperformance.Socialandpsychologicalriskswereless salient.ThenegativeeffectsofPCRoverBIandPEwerealso demon-strated
Concerning theinteraction effects, we foundnosupport for eitherofthosetested,similarlytoRiffaietal.(2012)findings.We concludethatageexplainsbehaviourintentionofInternetbanking service( ˆˇ=0.11;p<0.05;inthemainmodel).Thismeansthatif respondentsareolder,theywillhavemoreintentiontouseInternet banking
6.2 Managerialimplications Thefindingsofthisstudyrevealthatperceivedriskisan impor-tantfactoraffectingend-user intentiontouseInternetbanking Therefore,managersneedfirstofalltoensurethatanInternet bank-ingplatformistechnicallysound,withgoodsecuritypracticesput
inplacetominimizetherisksfortheendusers.Thefocus,as previ-ouslynoted,shouldbeonperformancerisks,namelytime,financial, performance,andprivacy.Managersshouldadvertisetopotential usersthatInternet bankingisnot ariskyservice,bypromoting informationofsecurityandtrustontheplatform.Theyshouldalso preventuserconcernsaboutcomputercrimes,invasionofprivacy, andoverall, attempttoprovidetransactions withouterrors and allocatesufficientresourcestocorrectit,ifnecessary.Theuseof
asecurechannelfromtheconsumer’spersonalcomputertothe bankserverandhandlingofsessionswithkeyencryptionaretwo importantissuesthatinstitutionsshouldensurethatusersknow Additionaleffectiverisk-reducingstrategies mayinclude money backguaranteesandprominentlydisplayedconsumersatisfaction guarantees,sothatconsumersfeelmorecomfortableandsafewith thesystem
InrealizingthatInternetbankingplatforms’performanceand Internetbankingplatforms’easeofusearetwootherfactorsthat affectintention,institutionsneedtopromoteclarification work-shops,toteachpeopletousetheplatformandexplainthemain benefitsofInternetbanking(Bussakorn&Dieter,2005)
Lastly,bothInternetbankingmanagersanduserscantake finan-cialadvantagefromtheadoption.Withtheself-serviceconsumer software-basedserviceviaInternet,bankscandecreasecostswith branches,byencouragingandsupportingtheuseoftheplatforms Userscanalsodecreasetheircosts,bynotpayingfortransactions, benefitingfromonlineexclusiveproductswithhigherprofits,etc Additionally,Internetbankingcanprovideconsumerswithutility gainsmeasuredinconvenienceandefficiency
6.3 Limitationsandfutureresearch Whileourstudyaddstotheexistingbodyofknowledge,wealso acknowledgeitslimitations,mainlyconcerningthesampling.The respondentsweremostlyyoung,highlyeducatedpeoplewhose behaviourmight differsomewhatfrom thepopulationaverage Theyare generallymore innovativeand quicker toacceptnew technologies,andthismayhavebiasedtheresults.Itislikelythat elderlyandlesseducatedconsumersorthosewhopossessreduced computing/Internetskillswouldperceivegreaterdifficultyinuse
ofInternetbankingandhigherinherentusagerisks
Futureresearchcanbebuiltbasedonthisstudybytestingthis modelindifferentagegroups.Furthermore,itcouldbeinteresting
toapplythemodeltoothercountriesandalsoothercontexts.Next,