1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ÔN tập LOGARIT PT LOGARIT

11 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 363,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Microsoft Word M«u docx GIẢI PHƯƠNG TRÌNH LOGARIT Câu 14 DS12 C2 6 BT a (THPT Lương Thế Vinh Hà Nội Lần 1 2017 2018 BTN) Giải phương trình  1 2 log 1 2x    A 2x  B 5 2 x  C 3 2 x  D 5x  Lời. đề cương ôn tập học kì 1 chương logarit lớp 12

Trang 1

GIẢI PHƯƠNG TRÌNH LOGARIT

Câu 14 [DS12.C2.6.BT.a] (THPT Lương Thế Vinh - Hà Nội - Lần 1 - 2017 - 2018 -

BTN) Giải phương trình 1 

2 log x  1 2

2

2

x D x5 Lời giải

Chọn D

Ta có 1 

2 log x  1 2 

2 1 1 2 x

 

      x5

Câu 19: [DS12.C2.6.BT.a] [TTGDTX Nha Trang - Khánh Hòa] Nếu

logaxlog 3 log 5 log 2a  a  a a0,a1 thì x bằng

A 2

3

6

5. Lời giải

Chọn D

3.2 log log 3 log 5 log 2 log log

Câu 23: [DS12.C2.6.BT.a] [THPT Nguyễn Huệ-Huế] Cho 1 1 1

Tìm x

A

3 2 1 5

a

b

3 2 5

a

2 3 1 5

a b

1 3 5 2

a b

Lời giải Chọn C

Điều kiện: x0;a0;b0

2 3

log x log a

b

2 3 1 5

a x b

 

Trang 2

Câu 46: [DS12.C2.6.BT.a] [THPT Lê Hồng Phong] Cho

2

1

2

ax a  a  a (với a0,a1) Tính x

A 3

3

16

8

3 Lời giải

Chọn D

1

2

1 log log 4 2log 3 log 4

2

log log 4 log 3 log 2 log 2 log

8 3 x

 

Câu 33: [DS12.C2.6.BT.a] [THPT Hà Huy Tập - 2017] Cho logab Khẳng định nào

sau đây là khẳng định đúng?

A a b a B b.a C ba D b a 

Lời giải Chọn D

Định nghĩa logarit trang 62 SGK 12

Câu 40: [DS12.C2.6.BT.a] [THPT chuyên Lê Thánh Tông - 2017] Xác định a sao cho

log alog 3 log a3

2

3

a Lời giải

Chọn B

Điều kiện: a0

3

2

Câu 18: [DS12.C2.6.BT.a] [THPT Hoàng Văn Thụ (Hòa Bình) - 2017] Chọn khẳng định

sai trong các khẳng định sau:

Lời giải

Trang 3

Chọn A

Hàm số ylogax đồng biến trên 0; nếu a1 và nghịch biến trên 0;

nếu 0 a 1 Do đó: 1 1

log alog b  0 a b

Câu 14 [DS12.C2.6.BT.a] (THPT Lương Thế Vinh - Hà Nội - Lần 1 - 2017 - 2018 -

BTN) Giải phương trình 1 

2 log x  1 2

2

2

x D x5 Lời giải

Chọn D

Ta có 1 

2

log x  1 2  1 1 2

2 x

 

      x5

Câu 19: [DS12.C2.6.BT.a] [TTGDTX Nha Trang - Khánh Hòa] Nếu

logaxlog 3 log 5 log 2a  a  a a0,a1 thì x bằng

A 2

3

6

5.

Lời giải Chọn D

3.2

Câu 23: [DS12.C2.6.BT.a] [THPT Nguyễn Huệ-Huế] Cho 1 1 1

Tìm x

A

3 2 1 5

a

b

3 2 5

a

2 3 1 5

a b

1 3 5 2

a b

Lời giải Chọn C

Điều kiện: x0;a0;b0

Trang 4

Ta có 1 1 1

2 3

log x log a

b

2 3 1 5

a x b

 

2

1 log log 16 log 3 log 4

2

ax a  a  a (với a0,a1) Tính x

A 3

3

16

8

3

Lời giải Chọn D

1 log log 16 log 3 log 4

2

1

2

log log 4 log 3 log 2 log 2 log

8. 3 x

Câu 33: [DS12.C2.6.BT.a] [THPT Hà Huy Tập - 2017] Cho logab Khẳng định nào

sau đây là khẳng định đúng?

A a b a B b.a C ba D b a 

Lời giải Chọn D

Định nghĩa logarit trang 62 SGK 12

Câu 40: [DS12.C2.6.BT.a] [THPT chuyên Lê Thánh Tông - 2017] Xác định a sao cho

log alog 3 log a3

2

3

a

Lời giải Chọn B

Điều kiện: a0

3

2

Trang 5

Câu 18: [DS12.C2.6.BT.a] [THPT Hoàng Văn Thụ (Hòa Bình) - 2017] Chọn khẳng định

sai trong các khẳng định sau:

Lời giải Chọn A

Hàm số ylogax đồng biến trên 0; nếu a1 và nghịch biến trên 0;

nếu 0 a 1 Do đó: 1 1

log alog b  0 a b

Câu 1: [DS12.C2.6.BT.a] Tìm các nghiệm của phương trình log 23 x 3 2

A 11

2

2

x C x 6 D x 5

Lời giải Chọn C

3

x x

 

 

3 2 6

x x

 

 

 x 6

Câu 2: [DS12.C2.6.BT.a] Tích hai nghiệm của phương trình 2

log x6 log x  bằng 8 0

Lời giải Chọn B

Đk: x ; 0 2

log x6 log x 8 0 3

3

x x

3

x x

 

 ;

4 2

3 3 729

Câu 3: [DS12.C2.6.BT.a] Số nghiệm thực của phương trình  2

log x1 2 là

Lời giải Chọn A

ĐK:  2

x    x

Trang 6

 2

9

x

x

Câu 4: [DS12.C2.6.BT.a] Số nghiệm thực nguyên của bất phương trình

log 2x 11x15 1 là

Lời giải Chọn B

2

x  x    hoặc x x 3

log 2x 11x15  1 2x211x 15 10 2x211x  5 0 1 5

2  x Kết hợp điều kiện ta có: 1 5

2 x 2 hoặc 3  Vậy BPT có 4 nghiệm nguyên x 5 là: x1;2; 4;5

Câu 5: [DS12.C2.6.BT.a] Tập nghiệm của bất phương trình lnx22ln 4 x4 là:

A 4;

5

 

  B  1;   \ 0 C 4; \ 0 

5

 

 

4

; \ 0 3

 

Lời giải Chọn C

Đk:    ; 1 x 0 lnx22ln 4 x4 2  2

4 4

x  x 15x232x16 0 

4 3 4 5

x

x

  

  



Kết hợp với điều kiện ta được tập nghiệm 4; \ 0 

5

S   

Câu 6: [DS12.C2.6.BT.a] Tìm điều kiện xác định của bất phương trình

3

3

5 log 2x 1 6log (3 x) 12log (x1)  0

Trang 7

A 1  x 3 B 3

1

x x

 

1 2 1

x x

  

 

1

3 2

1

x x

  

 

Lời giải Chọn A

ĐK:

2 1 0

1 0

x x x

 

  

  

1 2 3 1

x x x

  

 

 

1  x 3

Câu 7: [DS12.C2.6.BT.a] Giải bất phương trình log 23 x 1 3

2 x 14

Lời giải Chọn B

3

log 2x 1 3 2x  1 33 x14

Câu 8: [DS12.C2.6.BT.a] Giải bất phương trình log 23 x 1 2 ta được nghiệm là

A 1 5

5

Lời giải Chọn A

3

x x

 

  

1 2 5

x x

 

 

Câu 9: [DS12.C2.6.BT.a] Số nghiệm của phương trình 2

0.5 (x2)[ log (x 5x   6) 1] 0

Lời giải Chọn D

Trang 8

ĐK: x25x  6 0 3

2

x x

 

0,5

x  x  x     2 

0.5

1 0

x

 



+) x    1 0 x 1

0.5 log x 5x6  1 0 x25x  6 2 x25x  4 0 1

4

x x

 

Câu 22: [DS12.C2.6.BT.a] Phương trình 2

3 log ( 3 x 5x17) 2 có tập nghiệm S là:

A S= 1; 8

3

  

8 S= 1;

3

 

8 S= 2;

3

  

8 S= 1;

3

  

Lời giải Chọn B

ĐK: 3x25x17 0  5 229 5 229

2 3

log ( 3 x 5x17) 2  3x25x17 9 

1 8 3

x x

 

 

(thỏa điều kiện)

Câu 23: [DS12.C2.6.BT.a] Tìm tập nghiệm của phương trình log(x26x 7) log(x3)

Lời giải Chọn C

Đk:

3 0

x

  

2

log(x 6x 7) log(x 3) x26x   7 x 3 5

2

x x

 

Nhận nghiệm x , loại nghiệm 5 x 2

Câu 24: [DS12.C2.6.BT.a] Giải phương trình logx 3 2

A 103 B 3 C e23 D e23

Lời giải Chọn A

log x  3 2 x103

Câu 25: [DS12.C2.6.BT.a] Giải bất phương trình 1 

2 log 1x  ? 0

Trang 9

A x0 B x0 C x0 D

1 x 0

  

Lời giải Chọn B

1

2

log 1x 0  1 0

x x

 

  

Câu 26: [DS12.C2.6.BT.a] Tập nghiệm của phương trình log6x5x1 là:

A  2;3 B  4;6 C 1; 6  D 1;6

Lời giải Chọn A

ĐK: 0  ; x 5 log6x5x1 x25x  6 0 2

3

x x

 

Câu 32: [DS12.C2.6.BT.a] (THPT Phan Đăng Lưu - Huế - Lần I - 2017 - 2018)Nghiệm

của phương trình: log 3 22  x3 là:

2

2

x 

Lời giải Chọn C

Ta có: 2 

log 3 2 3

x

x

       

Câu 12: [DS12.C2.6.BT.a] (THPT Chuyên Biên Hòa - Hà Nam - LẦN 1 - 2017 - 2018)

Phương trình log2xlog (2 x 1) 1 có tập nghiệm là:

Lời giải Chọn C

2

Câu 25: [DS12.C2.6.BT.a] (THPT Hải An - Hải Phòng - Lần 1 - 2017 - 2018) Tìm số

nghiệm của phương trình log2xlog2x  1 2

Trang 10

Lời giải Chọn B

Điều kiện x 1

Phương trình tương đương log2x x 12 x2  x 4 0

 

1 17 2

1 17 2

x

Vậy phương trình có đúng một nghiệm

Câu 14: [DS12.C2.6.BT.a] (THPT Lương Thế Vinh - HN - Lần 1- 2017 - 2018 - BTN)

Giải phương trình 1 

2 log x  1 2

2

2

x D x5

Lời giải Chọn D

Ta có 1 

2 log x  1 2 

2 1 1 2 x

 

      x5

Câu 27: [DS12.C2.6.BT.a] (THPT Thuận Thành - Bắc Ninh - Lần 2 - 2017 - 2018 - BTN)

Tập nghiệm của bất phương trình log2xlog 12 32  x là:

A  0;6 B 3; C ;3 D  0;3

Lời giải

Chọn D

Ta có log2xlog 12 32  x

0

12 3 0

12 3

x x

  

0 x 3

  

Câu 15: [DS12.C2.6.BT.a] (SGD - Quảng Nam - Lần 1 - 2017 - 2018 - BTN) Tìm tập

nghiệm S của bất phương trình 1  1

log x 3 log 4

A S 3; 7 B S  3; 7

C S   ; 7 D S7; 

Lời giải Chọn A

Trang 11

Ta có: 1  1

log x 3 log 4    0 x 3 4   3 x 7

Vậy tập nghiệm của bất phương trình là S 3; 7

Câu 13 [DS12.C2.6.BT.a] (THPT Chuyên Bắc Ninh - Lần 2 - 2017 - 2018) Giải phương

trình log201713x3log201716

A 1

2

x B x1 C x0 D x2

Lời giải Chọn B

Ta có log201713x3log20171613x 3 16 x 1

Vậy phương trình có nghiệm duy nhất x1

Ngày đăng: 01/08/2022, 09:37

🧩 Sản phẩm bạn có thể quan tâm