D6 ciing chinh la nhiern v1.cua chan dean ky thuat... Phuong phrip l~p Iuan - ltra chon toan ttr keo theoM6i chiin doan se duo-c du'a ra v i.. Sau do du'a tren y kidn chuyen gia Mxay dun
Trang 1T -p chi Tin tioc va D i eu khie n hoc, T.17, 5.1 (2001),62 71
LE m'JNG LAN, NGUYEN VAN BANG, PHAM. THI TH HUONG
Abstract This paper presents actuality of the studie problem, necessary steps to apply fuzzy theory to technical diagnosis of automobile engines
T6rn t~ N9i dung b aiviet trlnh bay tinh tho'i su'ciiavan de n hien ciru , nh img b o'c di ca.n thiet de' ap
du ng Iy thuyet t~p mo:v ao cac lnh vuc ch.rn dean Dili tu'o'ng ap dung cu the' l~d n CO " 0 to
1 MO· DAD
Hien nay, 0 to dang la mdt tro g nhirng phu'ong ti~n d iro'c su' dung r{'mgrfii nhfit tro g giao thong van ta.i Khi khai thac , 0 to luo chiu tac do g cua cac tii tro g khac nhau Ket qui la cac
chi tiet va t5 g th anh se bi thay d5i trang thai ky thuat theo chieu huang xau di Mot trong nhiing bien ph ap d am bao cho 0 to c6 tinh tin cay cao, ng an ngira cac hu ho g c6 the' xay ra la luo p at
hien va du dean kip thai cac h u ho g D6 ciing chinh la nhiern v1.cua chan dean ky thuat
6 to bao gom rat nhieu chi tiet va t5n thanh, song d9ng co' chinh la n u n d<?n 11,1"ca "t, rai tim" cu a 0 to Do g CO" 0 to thu'o'n xuyen ph ai chiu che do khai thac nang ne, cu'ong d<?lam viec rat Ian Tron qua trinh heat d<?ngdo phai chiu ca tricd<?n h6a hoc, vat 11', CO" hoc va cac tac d<?n bat thu'o'n kh ac nen cac b phan cua don CO" d~bi mai men, bien dang, lao h6a
Sau m<?tthoi gian he t d rig,cac b<?phan cii ad n CO" bi hu ho g dan den cac hien tu'o g giam
cong sufit tang tieu hao nhien lieu, ngirn hoat d ng bat th uo ngnhieu ran, kh6 khoi do g v.v Cac hien tu'on nay chin h la trieu c irng bie'u hien r a ben ngoai cua cachu ho g ben tro g Nguyen t~c cua chin doan ky th uat la xac dinh cac tham so ctia tr ieu chirng, so sanh ch ung v6i n uc n va tien
h an h "h<?ichiin" Mtim ra benh Voi CO"che suy lu an trenta thfiy d.n ket qua chiin dean phu thuoc nhieu v ao kinh ngh iern ciia chuyen gia Do moi qu an h~ giira cac th ng so tr ieu chung va th ng so
ket cfiu cua d on CO" 0 to la mdi q an h~hon hop nen rat kh6 c1inh luong mot cac chin h xac mdi
q an h~nay Tro g nhieu truo'ng h 'p ta chi c6 tJ-.e'xac dinh mot each dinh tinh ding thong 5 chiin
d n nay c6 quan he "nhieu" hay " it " v6i thong so ket cau kia va n u'o'c lai VI thong tin ve moi
quan h~ giu·acac thong so m ang nhieu tinh dinh tinh nen trong cac ph an sau cu a bai viet nay se de c~p den viec xay d u'ng h~ tro: giup chiin dean ky thuat d<?n CO" 0 to tr en CO" 56 · logic mo, Viec st·
d ng 11' thuyet mo lam cho h~tro: giup c6 cric uu die'm sau:
- Cho phep xu li thong tin c1inhtinh dan ngon ngir
- Sti· dung logic da tri gan v6i tri th irc con ngtro'i
- Kh~c phuc diroc met tro g nhimg kh6 kh an cu a bai to an ch~n doan ky thuat khi chin dean tai cac c1ie'mngu'o'n
TREN CO· SO·LOGIC MO· Tron n hiing he th n mo thuan tuy, dau vao, d'au r a thuon la nhirng tap mo: (bie'u thi b g
n on n girt1.·nhien}, dieu d6 se gay kh6 khan khi ap d ung vao nhirn h~ thong ky th uat c6 dau vao
v a dau ra la nhirngbien d5i gia tr ithirc M<?th~tro: giup chin do an dung logic mo c6 cau true nhu
Trang 2HE TRO GnJP CHAN DOAN K THUAT DONG CO 0 TO 63
hin 1se gi ,i quyet d u'oc van de nay Phuo-n p ap (; day la lam tan them tfnh rn o' [mo: h6a) trc
la chuye n nhirrig bien d i giri tri thuc thanh t~p mo o·dau v ao va ten hanh kh u' mo: tire la chuye n
cac t~p mo: thanh gia tri thuc (; dau ra [5,1 ],
Covso
tri th uc mo
Bo
suy lufin
Ctic tap mo' E U Cac tap mo: E V Hinh 1 Cfiu t uc cua he ch n doan k thua! d n co' 0 to tren CO'so' lo ic mo
He tro giu p ch n do.n k th at d rig CO'0 to bao gom bon thanh p an CO'ban:
- CO' s d ' iri thv;c me) ': Chua dung c ac tri thtrc ve di?ng co' 0 to duc bi~ dien b n c ac t~p mo
Nhfrn tri thuc nay d uoc xfiy d u'ng tlr tri thirc cua cac chuyen gia, tri th ii:c d rroc corig n han tro g
c ac ta leu ch uyen n an h, tro g cac s ach kinh die'n, v.v
- CO' che s uy ut«. K hap v i CO'so' tri tlurc (CST ) mo, d ng c ac phiro n p ap lap lufin mo:
de' tao ra m an h xa tir n hiing tap mo: tro g khorig gian dau vao thanh cac t~p mo: tro g khorig
gian dau ra
- Cia o di e n m o ho a: Dii' lieu dau vao h~ tro' giup ch5 do an ky thua; don CO'0 to c6 the' chi
la cac n hfin din cu a c ac chuyen gia d u'oidan n o n ir Cung c6 the' la cac gia tri thuc duoc d
bang cac th idt bi do, Giao dieri mo: h a c6 n h iern vu ch ye n nh irng gia tri thuc d6 thanh c ac t~p
mo' 0' kho g gian dau v~LO
- Ciao d i€ k h J' mo : Do yeu cau cua bai to an ky thuat: dir leu la gia triro do d6 bi? khu' mo:
c6 n hiem v chuye'n cac t~ mo than h gia tri thuc (; kho ng gian dau ra Gia tri thuc nay chinh la
kid, nirig xay ra htr ho g ciia doi tu'on can ch n do an
M ot so b uo c I,h1,L ' ch~en can thiet tro g qua t r in xo.y dU ' ng h~ i o g~up:
- Mo h a cac bien lo ic vao,ra [xfiy d ung cc ham thuoc]
- Xay d u t~p luat (CSTT)
- Xay d u h iic IU'ach n ph uon p ap Hip lufin cin n u to an t ' keo theo
- Xay d u'n phfin rne m
- Kie'm chung CSTT va tfnh kh; dung ct a he
3, CO·so' TRI THlrc
3,1 Xay dirn g cac harn t.huoc
Ng yen tic cu a ch n do an la xac d in h c ac tharn so cia tr ieu ch irng , so snh chung v 'i ng frng
bien th ien thong tin q an h cac die'm n ufmg , c6 the' dan den c ac du bao thieu tn cay, Mot he tr o'
giup ch n doan dua tren co' so' logic m se khac phuc d oc rihtro'c die'm tren , n6 ch phep mo t3
mern deo hon su: bien thien th n tin quanh cac di~m n ufrn [12] De' lam diro'c dieu d6, ta dinh
n hia c ac bien ngon n ir vao,ra cling cac ham thuoc tu'o ng irrig cua c ac gia tri ngon n ir Cac bien
vao [cac th n so tr ieu chun ] du'oc mo h a than h cac quan he "1 'n hon n hieu'", "1 'n hon", "xap
xi", "nho ho " , rmrc di? chi tiet tuy theo yen c u C1). the', V6i cac bien ra, thtron g do n g ian hon ,
phan anh rmrc do h n h6c cua thiet bi nhu "kh a nang hong it", "kh a narig hong nh ieu" Viec dirih
n hia va rno: h a nay phai dam bao di? chinh xac nhat dinh ,
Hai yeu to quan tro g de' bat ky mot h~ tro: giup ch n doan nao tro: n en kha d ung la phai d arn
bao yeu cfiu do chin h x c cua ket q i chiin doan va thai gian chan dean
Trang 3Hinh dang cua cac ham thuoc va rmrc di? ph an chia cu a chung la mot trong n h ii'ng yeu to co
t.in h chat quye t dinh den di? chinh xac cu a ket qua chin dean
Tran h tro giup chin d an di?n CO ' 0 to ta xet mdi quan he cua 6 th n so chan dean (dau vaal v i 9 th n so ket cau (dau ra] V6'i m6i th n so, viec pha thanh cac ham thuoc c an chi
tet thi c gan v i h ln h dung c a can n i, di? chinh x ac khi ch n d ea n c cao v c t en
1 0icho n u i5 3:dun , Tuy n , mire do chia c ac ham t hu cua g i tri mot t uoc tinh k g the'
q a lo vi no lam tan di? plnrc tap tinh to an dan den keo d ai thai gian chitn dean [121, Gia tricua
cac bien ngon n jr cua cac th n so se du'o'c mo: hoa thanh cac ham th uoc nhir trong ban 1
Bdng 1, Nh an c a cac ham thu cu a gia tri c ac thuoc tinh
Ky hieu Ten ham th oc Ky hieu T'en Il'am thuuec Ii
A l Cong sufit G<;mgCO' "d at y e u cau" D l ,LU'{?'n hO'i19txuang cic te "G~t yeu cau" I
Lu' n g hoi 19tx o g cic te "tang it" I Corig suSt G9ng co' "gidrn it"
"gidrn tiro'n Gai"
"tang tuong Gai"
A
A
Lu -n ho'i lot xuo g cic te "tang nh ieu"
Cong s u f do g co' "gidrn nh ie u" D 4
I "gidrn r5: nhieu" "tang r fit nh ieu"
! B l ,Mu'c tieu th nhien lieu "d at yeu cau" , E2 Ap sufit dau boi tron "d at yeu cau" ,
I B 2 Muc t eu t hu nhien li eu "tang it" E 2 Ap suat dau boi tro "giim it"
"tang tu 'rig Gai"
E 3 Ap s u f dau boi trc'n "gidrn tiro'ng dai"
A p su5:t dfiu boi trol "gidrn nhie u"
Muc tieu thu nh ien li~u
"tang n isu"
"tang r t nhieu"
E [, A p sufit dfi u b i troll "g i a m rf it nhieu"
C1 Ap sufit d 'ong ang nap "d at yell Call" Gj Nhiet Gqdong C O' " dat yeu cau"
C2 Ap sufit d u'o'ng ang nap "tan it" G2 Nhiet G9d n co' "tang it"
C3 Ap s u fit d 'o-ng an n p G3 N h i e t Gq G9ng co' "tan tu'on Gai"
I
"tang tu'o g Gai"
i
I
Ap su5:t du'o-ng an n~p i G4 Nhiet G9G9ng co' "tan nhieu"
I "tan rihie u" I
c ; Ap s u f it du'o-ngang nap
"tan r5: nh i e u"
G Nhiet Gqdorig co' "tang rf it nh i'eu"
IU th oc ci a 6 th n so chin d an va 9 thong so ket cfiu deu co dan h in h than h a hinh
ta giac nh ir hinh 2,
3.2 Xay dtrng q , p Iuat
lieu dau ra, du'a tren m a tr an chitn doan v a kinh ng hiern cu a cac chuye gia ngu ita xay d ung mdt
CSTT bie'u di~ bin cac lu~t va c ac su' kien Trang h~ tro giup chitn dean ky th uat d n CO ' 0 to,
chung toi da xay dung CSTT gom 63 lufi the' hien mot p fin mdi quan h~ cua 6 th n so chin doan
v oi 9 th n so ke c u [1 I
Vi d u m o t liui t
IF co g sufit "giam n h ieu" AND m11'Ctieu thu nh ien li~ "tang trung bm h" AND ap sufit dirong ong
nap "tan trung bm h" AND hrong hoi lot cudrig c ac te "tang It" AND ap su at dau boi tron "g iarn
trung bm h" AND n h iet do may "tan tuong dai" THEN co' cau phfii k h i k h a nan h6ng la "n h ieu"
(1)
Trang 4J _
HE TRO ' G I UP C HA N DOA N KY TH UAT DQNG CO · 0 TO 65
o
- .• , ,
n hien
Corig sufit dong co "g idrn" 0,2 0,6 0,8 0,7 0,7 0,8 0,6 0,7 0,8
Mire teu thu nh ien li~u "tang" 0 3 0,3 0,6 0,5 0,2 0,9 0,3 0,6 0,7
Ap suat du-o-rig on n,!-p"tang" 0,1 0,2 0,7 0,5 0,8 0,3 0,2 0,2 0,1
Ap sufi t dau boi tro "gidrn" 0,2 0,9 0,4 0,3 0,2 0,1 0 9 0,4 0,1
Nh iet di? di?ng co' "tang" 0,2 0 4 0,4 0,7 0,2 0,3 0 4 0,9 0,8
ILm;mg hO' 1 1 t xuon cac te "tang" I 1,0 I 0,1 I 0,2 I 0,2 I 0,2 I 0,2 I 0,1 I 0,2 I 0,1 I
ve "benh" do tham so "cong suiLt dong co)' se drro'c tinh nhir sau:
Fa = max{1 - a ,F).
Trang 54.2 Phuong phrip l~p Iuan - ltra chon toan ttr keo theo
M6i chiin doan se duo-c du'a ra v i rmrc di,'>chitc chln n~m giira 0 v a l Tro g nhirn tru'o'n
ho'p ro rang, mot chiin dean se c6 rmrc di,'>chitc chiin bin 0 h ac bing 1
He tro giup chiin dean k thu~t d n co' 0 to dua tren CSTT diu tao b6i 63 lu~t dieu khie'n
mo tu'ong tu n ir dan (1), to g d6 gia tri cil a cac tho g so chin de n va ket cau deu la cac t~p
mo du'oc bie'u thi bhg cac ham th uoc
Bai toan chin doan do g CO' 0 to chinh la b ai toan I~pIu n mo:da di'eu kien Phuong phap gi<i
bai toan nay duo'c neu trong cac Uti lieu [3,9)
Ph ep keo theo mo itA (x) > ItD (y) du'o'c su: dung de'bie'u thi nhirng luat dieu k ie'n mo: c6 d ng:
IF x Ia A THEN y Ia B (2) C6 rat n hieu toan ttl· keo theo diro'c gio'i thieu to g c c tai leu ve Iy
th uyet tap m o [3,4,7) Tuy theo tirng bai toan c~ the' ta co the' hra ch n hoac xay d u'ng toan ttl keo
theo thich hop
Tron h tro: giup chin dean ky thufit di,'>ngco'0 to stl· dung c ach tinh ItA(U) > It D ( V ) nhir sau
de' xac dinh cac q an h~ mo giira hai tap nen U v a V [giii'a cac thong so ket cau va cac thOng so
chfin doan ]
t > s = (tA s )V(1 - t , trong d6 R: quan h mo chi moi quan h giia U va V ; A- phep lay min; V - phep lay max
Nhir v ay, tron t~p luat, m6i merih de IF-THEN (m6i luat) t.hu' i tron t~p lu~t xac dinh
mot qu an h mo: R D, j A, ( u, v ) Ket hap cac quan h~ rno:R D,/A , ( u , v ) theo cong th irc R T Q (U , v ) =
ARD, / A, ( u, v ) chu ng ta thu d uo'c quan h~ mo: R to'n quat (R TQ )'
Voi bo duolieu dau vao la A' , ket lufin B' duoc tinh: B ' =A ' aRT Q, to g d : 0 la phep hop
t.hanh Max-rn in
Tro g h~ tro giip chin doan chung toi phan cac hu ho g cua d '>ngco' 0 to thanh 9 nh6m kha
n ang hu ho g ch inh, trn v i m6i nh6m 1h<inan hu ho g se c6 mot R T Q do vay se c6 9 R T Q Voi
mot, bi? duo li~u dau vao A' doi tu'o'ng chii'n doan diro'c gin mot ti,p9chin doan , tro g d m6i chitn
dean dtro'c bie'u thi bh mot t~p mo,
Doi v6i bai to an chin do an ky th uat d ng co' 0 to, duo li~u dau vao c6 the' la ngon ngii' hoac gia
trl thuc Khi duoleu dau vao la giri trith u'c (inh mo: b~ng khong] thl ta ph ai rno' h a n6 b ng each
dung ham dac tr ung [ 1 )
4.3 Khu' rn o'k et q a cha'n doan
Cudi cu ng, k u mo' cac chin doan ,cluing ta se co mot ti),pcac ket qua chin dean diroc the' hien
biing cric gia tri 1'0
Tro g [3) neu 4 phuo ng phap khu mo: thong dung Qua thl'!'n hiern chUng toi tHy ring h tro:
giup chin dorin di?n CO' 0 to sl'! d ung phuong ph ap klnr mo Maxima la thich hop hon d
5. TAP HOl> Y KIEN CHUYEN GIA
Khi xay dung mot h~ tro giu p, tap h p y kieri chuyen gia d n mot vai tro quan tro g , trong
su ot qui trlnh xay d ung h~, hau het cac giai d an deu can y kien cua chuyen gia Mire di?chinh xac
cu a y kien chuyen gia an h hu -n rat nhieu [tharn chi c6 tinh quyet dinh] den di? chinh xac ctia h~
Viec thu th~p y kien chuyen gia chiern rat nhie u th i gian va cong sU·C.Do vay, y kien ch uyen gia
ph ai darn bao di? chinh xac d ni5 thoi th a man dieu kien ch p ep ve th 'i gian ciin nhir kha n ang
kinh te
C6 nhieu phuo'n phap M lay y kien chuyen gia, song de' phu hop vo i ho an canh thu'c te, cac
t.ac gi<i da.so: dung phiong p ap Delp i cii a Hordon v a Helmer [ 4 , 15 ) Cach lam la thu th p y kien
cu a cac chuyen gia ve van de n hien cuu to g dieu kien kho g to' chirc ca cuoc tranh lu~n truc
tep gi a h v6i n au, n hu g ch p ep moi ngu o'ico the' can nhic lai y kien cua minh, tham khao
va td lai cac cau h6i qua d.c phieu do de tai gl'!-iden V&idoi tU'9 g chitn doin cu the' la di?n CO '
Trang 6H E TR O ' G H J P C HA N DO AN K Y T H UAT DONG CO'0TO 67
xang , de tai da g1 'icac phie u hoi aen cac tien S1, ky su va ccng nhan lanh ng e cti a Bi? Giao thong
Van tii, Tru'ong Dai hoc Giao thong V%n t.ai, Hoc vien Ky thu%t quan sir Sau do du'a tren y kidn
chuyen gia Mxay dung CSTT, bing trorig so, D~c bi~t la y kien chiin doan cua cac chuyen gia voi
9 bi?dir li~u VaGcho doi tu'o'ng chiin dean C1). the' la d9ng CO ' xang da qua s11'dung , chira dai tu dtro-c
dung de' kie'm nghiern t.Inh kh a dung cu a h~ tro giup,
6, GIO'! THI~U H~ TRQ' GIUP CHAN DOAN KY THU~T D9NG CO· a TO
6.1 Gio·i t.hieu
Sau khi xfiy du'ng duoc cac ham thuoc cu a cac thong so chiin doan va ke't ciiu, IU'a chon to an t1 '
keo theo v a phuong phap khu mo, cac tac gia da xay du'ng phlin mern chiin doan ben h cti a dong co' 0
to Phan mem nay duoc cai d~t trong moi tru'o'ng Windows tien loi h nguo i sri: dung va duo'c xay dung du'oidang me-(co the' sU:dung cho nhing doi tuong chiin doan kh ac ch i can thay d6i CSTT),
Cfiu truc chiro'ng trinh gom nhlrng menu chinh sau:
• Soan dir li~u: Cho phep nguo i srt'dung lam cac vi~c sau:
- C%p nhfit tham so chiin dean
- Cap n at cac ham thuoc cti a tirng tham so chiin de n
- Sua d6i dir lieu da co,
• Soan lu~t
- Cho ph ep soan cac lu%t bie'u hien moi quan h~ giira thOng so chari dean va cac lnr hong,
- Ch phep kie'm tra va sua d6i cac lu dt da so an
- Cho phep them, bot lufit,
• So an t.rorrg so: Cho phep c%p nh at bing trong so the' hien rmrc quan tro ng cu a m6i tham so
chiin do an vo'i cac thong so ket diu,
• Ho i d ap: Cho phep ug uo i srt, dung dua gia tri cac tham so chan do an VaGtir ban phirn , roi
ten hanh chiin do an v a dua ke't qui chiin doan r a man hmh Ngu'ci sil: dung co the' dua d ir
lieu VaG bang ngon ngir (vi du "cong suat dc;mgco' giarn nhieu"] hoac bing con so (vi du 87 mji
luc] De'tien lo i cho ng u'oi srt, dung, chiro'ng trinh dtroc thiet ke hien len cacbing co gia tr ic ac
tham so chiin do.in bKng ngon ngir Nguo'i sli'dung chi viec dung chuot ho~c cac ph im m iiiten
de'xac dinh dir li~u dau v ao Neu ngu oi s1 'dung muon nhfip gia trt cu the' thi chuye n con tro
dieu khie'n ve m\lc nllap gia tri vabarn gia tri vao tir ban ph im
6.2 Ket qua kii:?m chtrng
He tr o:gnip chfiri doan ky th uat dong CO' 0 to co thai gian chiin dean ~ 3 giay/b~nh (may 586
toc d9), Tien hanh kie'm righiern th uc te de tai da thu duoc mot so Ht qua nlur trong cac bing 3
v a 4,
• Kii:?m chtrng lu~t modus ponens
Lu at modus kin die'n co dang:
A - t B, A
B
tro g do A - t B, A : la tien de, B : la ket luan
Tro g sa do l%p luan mo ,luat modus ponens t6ng quat co dang
X = A'
Y = B' ?
Phuong p ap l%p luan de' tin h B ' duo'c coi la chap rihan dtroc neu ket luan B' dtrocrut r a tu'
lu at modus ponens t6ng quat xfip xi B khi dir lieu dau vao A' xap xi A ,
Bai t.oan chiin dean ky thuat d on CO ' 0 to la bai toan l%p luan mo, CSTT cua h~ tro giup bao
gom n hieu luat modus ponens t6ng quat 0 -thrr n hiern 1, vo i nhirrig bo dir lieu dau v ao A' = A
Trang 7(A chfnh la cac tien de trong cac lufit ciia CSTT) chung toi dii tien h anh l~p luan (chin dean] tlm
CO " 0 to Ket qua thong ke & bang 3cho thay B' bhg h ac xfip xi bhg B.
Bdng 3 Ket qua chin doan vo i6 b<?dii'li uvao (A I = A) cho 9nh6m benh cu a d<?ngCO" 0 to
A3 and B3 and C3 and D3 and E3 and G3 0,65 0,50
A4 and B4 and C4 and D4 and E4 and G4 0,85 0,95
AJ and BI and CI and DI and EI and GI 0,00 0,00
A2 and BI and CI and D2 and E2 and G2 0,10 i 0,00
I A3 an B2 and C2 and D3 and E2 and G2 I 0,25 I 0,25
A4 and B 4 and C4 and 1)4 and E4 and G4 0,90 0,95
A5 and B5 and C5 and D5 and E5 and G5 1,00 1,00
Hong gioang qui lat
A2 and B3 and C3 and D3 and E3 and G3 0,65 0,50
A4 and B4 and C4 and D4 and E4 and G4 0,90 0,95
Trang 8HE TRO' Grup CHAN DOAN KY THUAT DONG CO '0 T O 69
Hong gioang ong nap
Hong h~ thong cung dip nhien lieu
Hong h~ thong boi tron
Hong h~ lam mat
Trang 97 Li t H UN G LA N, N UYEN VAN BANG , P H AM THI TH U H ' O NG
IA1 and B 2 an C2 and D1 an E 3 and G31 0,00 10,00 I 0,8 1 ,83 i 0,50 I 0,5 I 0,50 0,50 I
A2 and B" and C3 and D2 and E2 and G3 0,30 0,2 0,50 0,50 0,50 0,5 0,80 10,90
(2)
(4) r 1,00 0,50 0,50 0,50 0,50 0,50 ,0,50
A" an B1 and C1 and D " and E1 and G" 1,00
A2 and B2 and C4 and D1 and E" and G2 1 f1,00 ,0,00 0,70 0,7 0,50 0,50 0,50 0,50
A 3 and B4 and C3 and D 3 and E2 and G2 I O,SO I0,50 I 0,50 I0,50 I 0,50 i 0,50 i 0,50 I0,50 I
I
I
I
(2) 0,80 0,90 I 0,90 0,90 0,50 I0,50 I 0,60 I0,70 I 0,80 0,90
I (9) I 0,70 1 ,70 I 0,7 0,50 0,5 0,5 0,5 10,7 I 0,70 0,5 I
Trang 10H ¢ TRO' G n JP C H AN D OAN KY T HUAT DONG C 'a TO 71
Cac ket qua bU'<1Cdau nay can dtro'c khlng dinh va cung co tho g qua cac nghien ci ru s au rong hem
d ve Iy luan v a t.lurc tien
TAl LIlPU THAM KHA 0
[1) Ngo Thanh Bic, Nguyen Dire Ph u, cis« d otu i k thsuit a to ,Nh a xu at ban Giao thong V~n
1992
[3) Nguyen Cat H a , "Bai giang Iy thuydt t~p mo: va I~p lu~ mo ch lop cao h c", Dai h9C Bach
khoa Ha N9i, 1997
[4) Li Xin Wang, A co rse in systems and control, Prentice- Hall, 1997
[5) Timothy J Ross, Fuzzy logic with en ineering applicatio s, McGraw- Hill, 1 9
[6) Cheng Teng Lin and C.S George Lee, Neural Fuzzy systems, Prentice - Hall, 1996
[ 7 ) Paul Harmo and David King, Expert Systems, Arti cial Intelligences in Bu s iness, Jonh Wiley
- Son Inc., 1 85
i8) A Kaufmann, Introductions to the Theor of Fuz z Sub s t s, Academic press, 1975
! 9 ) M Mizumoto, H.J Zimmerman, Comparisio of fuzzy reasoning Methods, Fuz z Se t s and
Sy s tems 8 (1982) 253-283
[11) Nguyen Thanh Thuy, Tri tu~ nh iin dao, Nh a xufit ban Oiao due, 1995
[1 ) Ph am Thi Thu Hu'o'ng , "Nghien ctiu xay d u'ng h~ tro giup chin dean ky th uat cac phuc ng ti~n
giao tho g van tai ten co' s&logic mo'", Luan van Thac si, 1997
[1 ) Pham Thi Thu Huo g , Mo hinh h~ tro giup chin dean ky thuat cac phu'o'ng ti~n giao thong
xufit bin Giao thong Van tai, Ha N9i, 1987
[15) Gavisianhi va Linshkin, Khoa hoc D« btio, Nha xuat ban Khoa h9C Ky thuat, Ha Noi, 1976
[1 ) Le Hung Lan, Phtro'ng ph ap thiet kif he th n tu:d n h6a chiin dean trang thai ky thu~t cac
phu'o g t~ giao tho g v n tai tren CO ' sO'ly thuyet logic mo, Tap chi CTVT 10 (1997) 37-39