ln i?*fr uat,,? rr ' rA* frJc # VA T}AS TAO * HCItrcAt{ Hoc vl*T FIAM fif,,*xt/ 8t Y @"; i*st d r &U;;*4 ;Th;a,r*,,,t*i,,1{*,#,{*;, "r llha bac hoc, vat li nguoi My B I I phorangco!in (B Franklin 1706 1790) da sap x6p 64 s6 tr"r 12 d6n 75 trong nhrrng phAn giao nhau cua cac hlnh vanh khdn dd tao thanh mO cung cac con s6 vd s6 otdm la 348 CQIS B sO theo m6i bdn kinh duong tron lon nhAt ta d6u dugc 34B, nhung ngoiri B tdng kei tr6n con nhi6u b6 8 sO khac cUng co tdng la 348 Cric hinh vanh khdn, m[.]
Trang 1*fr uat,,? rr ' rA* frJc
# VA T}AS TAO * HCItrcAt{ Hoc vl*T FIAM
fif,,*xt/
8t
Y @";
i*st .: d
r.&U;;*4
Trang 2l\lha bac hoc, vat li nguoi My B
I I phorangco!in (B Franklin 1706-1790) da
sap x6p 64 s6 tr"r 12 d6n 75 trong nhrrng phAn
giao nhau cua cac hlnh vanh khdn dd tao
thanh mO cung cac con s6 vd s6 otdm la 348.
CQIS B sO theo m6i bdn kinh duong tron lon
nhAt ta d6u dugc 34B,.nhung ngoiri B tdng kei
tr6n con nhi6u b6 8 sO khac-cUng co tdng la
348 Cric hinh vanh khdn, m6i hlnh m.6t rnau,
s6 goi ! cho cdc ban cac bd s6 nhLt th6
Ddnhchobgndgc Hay tim cac b6 B s6 co
ffiffiffi phdm se danh cho ban
nao tlm dLlorc nhi6u nh6t B b6 sO nhrth6
Gitii Cdp biii: CHUYEN CHTNG
MII\IH DTNH Li PITAGO
NHIJNC \IONC TRON IV AO
RAt tiiic ring kh6ng c6 ban nao chtrng minh din} li pitago bdng cA 3 c6ch Vi trang bdo nAy c6 han n6n m5i cdch chi dua ra m6t ldigi6i
Cdch 1 Tfnh di6n tich cdc hl nh va bi6n d6i dai sO fr t ;
')b o*ol = sABCD=sr + & s, = I & + zt)aoi
.-**b2=CCdch 2 PhAn chia hai hinh vu6ng nh6 thirnh ciic phAn ritigh6p laithinh hinh vu6ng lon (h.2)
hinh vu6ng nh6 vA vdo hinh vu6ng lon dd cirng duoc m6J
HOt NGHt cOruc rAc vtEr.r
roAN Hec rudr rRE 2ooo
S.lltg 22.122000 rai FIOi rnrdng 8t 'l'ril IIurg Dao, lli NOi
drr diin_ril Hr)i nghi coug rlc r,'i0r-r nirn 2000 cri7r t4p it,i Tofu,
Iroc vr)'fu0i tre Vli tlu cr1 GS D6 Long V0l, Chri ticli IIOi'l.oal
Itgc Vigt Niuri P(iS Vu Dultg 'l'huv I)lrti
(]i6rn doc NXII Giiro duc, cric ri1, r,ien
IIOi ddng bien tAp cr)ng hou 100 cOng tric viOn cic tinh, rhiurh tir'lhr-m Tllien -llue
trd ra v?i chc chn b0 troug toh sotui IrGS
Hohlg (lhfing vil hien tAp vi0n Trin Chi IIie{u 1ii 1'p Itd Chi Minli cunr cldn rhtun
tlu hqi
rrgtr; Hi,i rrslri diurlr'!ili rrhrins tharrlr trt'lr vlr rrllul! r itrt clrrnilarn .lrr,,r
cua nlirn 2000 r'i d0 xudr nhr-niu biCn phip
nharn tiip tUc dOi rnrii ti0i duus vir'hinir
thirc cr'ra iirp clii l.rour niuri 200 l'r,i nhunp rurrD l-it{p r.Jr.it Nlrieu i.r)rr-g liie vit rr .lll plriit
biiu rrlrtnr.u y kitit di' xuit vl lti r r.rrrs tlrrrclri s0 cr1 brr<ic chuytin lrrrnlt clrulin bi
currg dit nuric btrric vilr rrin kirrlt rtr tri
thfc Chc cOng tlc vien curls hoain rrglrenlr su ra ddi cua Torin Tu6"i tlrit Nhtur dip niy, (iS NeuyOn (lanh 'trtin
vh P(i,S Vu l)ur:rng 1-huy dir rrao llhng
danh du vi giai thuung clio circ ban doi
doqrt giZri Xuit sric vi gi?ri Nhdt cuQc tiri
giAi -'l'odn vA Var Li rCl) lap chi
nf,rn 2000.
vK'r'
Trang 3Mathernatics and Youth
Ndm thd 38 sazas(t-20a1)
Tda sogn : Ngol87, phd Gidng Vo, HA NQi
DT : 04.51 42648-A4.51 42650FAX: @a).4.5142648
Hoi iting bian tSp :
rucuvEru cAruH ToAN,
HoANG cHUNG, ttcO o4r
rucuvEru vrEr uAr, orNH
oUANG HAo, rucuvEru
xuAtt HUY, PHAN HUY
ruAr, vU THANH xntEr, te HAt KHOI, ttcuyEru vAru
MAu,
"
uoAt'tc r-E M|NH, NGUYEN KHAC MINH, TRAN
vAT.I NHUNG I.ICUYEru
9ANG PHAT, PHAN THANH
ouANG, rn H6ruc ouAttc,
oAt'tc Huttc tui(ruc,
rnAru rnArus rRAr,
r-E eA xuAr*+r rR'iNH,
Dai didn phia Nam :
NguyZn Khdnh NguyAn - Vb tinh chAt cta m6t tri
gi6c n6i ti6p clSc bi6t
@ fieng Anh qua cfc bii torin - English through Math
Problems -Ng6 ViAt Trung
@ Ntrin ra th6 gicii - Around the \Vorld
DA thi Olympic to6n cria Li6n bang Dric
@ Cn.rdn bi thi vio Dai hqc - University Entrance
PreparationDd.ng Thanh H&i - MOt s6 tap tich phAn ddc bi6t
LTN-Tr?in Phuong - Db thi m6n To6n vho DH Ngoaithuong He N6i, kh6i D, ndm 2000
@ Nguye'n Khd.c Minh - Ldi giAi c6c biri to6n thi chon
- hgc sinh gi6i qu6c gia m6n to6n - l6p 72 THPT nim
Giii c6c bdi cria sd 279
@ firn hidu sfiu thOm todn hoc scr cdp - AdvancedElementary Mathematics
Triin Nam Dfr,ng - Song 6nh vir c6c bdi to6n giAi
tfch t6 hop
@ foan hoc vi tlli sdng - Mathematics and LifeXud.n Trung - Td lich tr6n m6t ng6n tay
@ Cau lac bQ - Math Club
Sai ldm ri tIAu ? Where's the Nlistakes ?
Bia 1: Tru sd ViQn Todn hgc ViQt Nam Bia 2 : ToSn hoc mu6n miu - Nh0ng vong trbn ki'Ao
H6i nghi C6ng tdc vi6n THTT
Bia 3 : Giei tri ts6n hoc - Math Recreation
Trang 4Qdnh eho efr.e
IRIIilG HtlG GO SO
Trong c\c tA gi6c nQi ti6p c6 mQt tti gi6c d{c
biQt Ta hly x6t bLi to6n sau :
Bdi torin 1.: Tr) mQt didm M ngotri du0ng trbn
y( cic ti6p tuydn MB MD vd c6t tuydn MAC ddn
dn0ng trdn Chung rninh rlng AB.CD = AD.BC
Tri gi6c nQi tidp ABCD c6 tinh chft d[c biet le
tich cdc cqnh ddi bdng nhau"
Ddo lai :
BAi tor{n 2: Gi?a sri tri gi6c A,BCD nQi tidp trong
drrong trdn vtr AB.CD = BC.AD, khi d6 cfc tidp
truydn tai B vd C hbflc cdt nhau tren dudng thing
AC, ho{c song song.
Chtng minh:
- Ndu BD lh,
dutrng kinh ctta
dudng trOn thi
cic ti€p tuydn tpi
B vd D se song
song vdi nhau vb
song song vdi
- Gi[ srl BD khOng lh dutng kinh vh gi6 srl cfc
ti6p tuydn tai I vl D ldn lwt cft tia CA t?i M vd
VQn dung kdt qul 2 bdi tap ren ta c6 thd giti
mQt sd btri to6n thri vi sau dhy.
Bii todn 3 Tri didm A ngotri dutng trdn v0 c6c:
tidp tuydn AM, AN vd cdt :rry€n AKL ddn dumg
ffOn Ve il$ng thtng d b{t ki song song vdi AM.Gi6 sri d cfu c6c dudng thing KM vd LM tai P va
B tuong rmg Chr:ng minh ring iluOng thflng MN
di qua trung didm do1n PQ.
Chftng minh
Se ktrOng trnh hutrng ddn kdt qu6 btri toAn khi
cho dulng thtng d di qua N (h.3) Lric d6 :
P Hitth 3LMNPa LMKN-U=Y NM
Trang 5Bii tor{n 4 Cho MBC nQi tidp trong dudng
trdn tam o, c6c tidp tuy6n tai B va c cdt nhau tpi
N V0 diy AM song song vdi BC MN c{t duOng
trdn ldn nta t4i P Chring minh rlng dudng thEng
PA di qua trung didm c:0;a BC.
Chftng minh
Cdch 1 Gitr str D ld trung didm ctra BC vd AD
cit Crfng rOn mm O Qi K Ta s0 chttng minh
cic t16p tuydn t4i B vd C c6t nhau tron duOng
thhng MK, hic d6 K trirng vdi P Xet tA gi6c
Theo kdt quA btri
tofun 2 ta c6 di6u phti
T{tcL li do dd xly ra c6c cltng thric trong ldi
glbi cdc ban cd thd tg gi6i thich don gitrn !.
- Dd kdt thric cho mOt tinh chdt dgp cira mot
tu gi6c nQi tidp d[c biQt, xin mdi cdc bAn hay gi6i
bdi to6n sau ddy :
BAi torin 5 Cho hai dudng trdn (O1) vd (Oz)
cit nhau tai A vtr B TI) mOt didm C irran duong
thlng AB vtr nlm ngoii hai dudttg trdn v0 hai
ti6p tuydn CM, CN vdi dudng trdn (O1) V0 c6c
dncrng thtrng AM, AN cit dudng trdn (O, ldn nria
tai P vh Q tr-rong tmg Chimg minh ring duong
th&ng MN di qua trung didm crta PQ.
IHAM GrA CUqC GHor DnU THIEil lllEl{ Ki
Ngudi trong Anh ?
Problem Let ABCD be a quadrilateral and
EFGH a square inscribed in ABCD such that EB
=FC=GD=IlAasin
the following Picture.
Prove that ABCD is also
a square,
Solution Rotate the
figure counterclockwise
through lr/2 about the
center of the square so
that ll falls on G, G falls
onF,Afalls on A'andD
falls on D' Since
IFGC + IGFD' = ZFGC + ZHGD = nlZ,
the line FD' is perpendicular to GC Since FD'
= GD = FC, D' is on either GC at on the side of
the line GC opposite to F, and hence A' is oneither GD or on the same side of GD as F Hence
IEHA = IHGA' does not exceed IHGD Tlrus,
applying the argument all around the square we
get Z EHA< IHGD < ZGFC < IFEB < IEHA
with the result that all these angles are equal Hence
IHGD + ZDHG = ZEHA n aPTlQr = nl2
so ICDA = xl2 Likewise, IDAB = IABC =IBCD = ICDA = xl2 The result now follows
easily.
Trimdi.
quadrilateral = tA gi6csquare = hinh vuong
inscribe = nOi tidp (dOng tu)
picture = hinh ve, [nhrotate = eua] (dQng tt)counterclockwise = theo chi6u quay ngrryc
kim ddng hd (trang tit)
center = t6fiI, trung tam
fall = roi, tr[ng (dOng tt)
perpendicular = vuOng g6c (tinh tt)
opposite = nguqc phia, ddi hp (tinh tu)
exceed = vuqt, ltrn hon (dOng tu)
apply = 6P dung (dOng tu)
argument = li le , lufln o1
result = kdt qulangle = g6c
likewise = ciing nhu vfly, tuong tu Gidi tu)
NGO VIBT TRUNG
Trang 6vtr y sao cho viOn d6 c6 thd ddn vi tri 4 sau mOt
sd hnu han lin chuy.dn Y
Bei 2 Tr0n mQt dopn thing dO dei 1 dcrn vi
c6 mOt sd hnu han do4n nh6 r0i nhau duoc t0
mhu sao cho khOng c6 hai tlidm cdch nhau 0,1
dOu duo c t0 meu Chring minh ring tdng dO
dtri cfia c6c donn dugc t6 m)u khOng thd vucrt qu6 0,5
Bei 3 X6t ngti gi6c mi mdi dudng ch6o song
song vdi mOt canh cta n6 Chrlng minh ring ti
sd cria d0 dei dudng ch6o vdi c4nh ttrong l1ng
song song vdi n6 li nhu nhau ddi vdi c6 5
c4nh Hxy x6c dinh ei|tri crha ti sd nhy
Bei 4 Chfng minh ring m6i sd nguy6n k(k > 1) c6 mQt bOi sd nh6 hon ka vI bQi sd niy
vidt trong hQ th&p phAn b&i nhi6u nhdr li 4 chtr
sd kh6c nhau.
VONG 2
BAi 5 C6 thd phri kin mOt hinh vuOng cpnh
dli 5 dcrn vi b&i 3 hinh vuOng cqnh dtri 4 don
vi duoc khOng ?
Bni 6 C6c 0 cria mOt btrng
hinh vuOng kichthufc n x n
dnqc d6nh sd trl t d€n n2,
ching han nhu hinh v0 bOn
vli n = 5 Bpn c5 thd chgn n
0 sao cho khOng c6 2 0 ntro
cing cQt honc cing hing rdi
cQng cdc sd trong cdc 0 dx chon Gi6 tri cfla
tdng ndy c6 thd bing bao nhiOu ?
Bii 7 C6 4 dulng thing tr0n mOt mat phingsao cho cri 3 ducrng thing trong chring x6c
dinh dugc mOt tam gi6c
MQt trong c6c dudng thing ntry song song
vdi mot trung tuydn cira mQt tam gi6c dugc
hinh thenh bOi 3 dtrdng thing kh6c Chfmg
minh rdng m6i dudng thing kh6c (vOi dulng
thdng vria n6i trOn) cung c6 tinh chdt nly.
Bii 8 Tim tAp hqrp tdt c6, cdc sd nguyOn
duong n sao cho n.2n-1 ld sd chinh phrxrng
Trang 7Trong c6c ki thi tuydn sinh vtro c6c trudmg dai
hoc vhcao d8ng thudng gip cfuc bhi to6n vd phdp
tinh tich phan Ndu bidt khai th6c vtr m0 rong c6c
bli to6n dO ta tnu dugc c6c kdt qui kh6 dpp vd c6c
tinh chdt qia tich phAn vh vQn dung c6c tinh chdt
nly girip ta gitri duqc mQt s6luqng l&t c6c bhi t$p
vd ph6p tich ph6n cudi cdp TIIPT Sau d0y ltr mQt
sd tinh chdt cira tich ph0n vtr c6c vfln dung cira n6.
(GV khoa cobdn Hqc vi€n Phbng kh1ng Kh6ng qudn, HdTdy)
bi gidi.ra c6 / =j!ro* ='yo* *i Xo*.
DAt : x = -l ) dx= -dt, dofl.r) l} hemle ="(-0
j.(ri*la, = Jflcosx)dx00
Tinh chdt 2: Nduflx) ren hlc ve ta ham ch6n Apdwrgtinhchdt 3=I=h#.**
fien [-a, a] thi a a
uvrr L 6' -' -'-
, =i nrr* = zi xga* - ,, j o*o- a* *T
- "** , a*chring minh tuSmg tg nhf tinh chdt 1, chti y Jo
coszr + sinu'r I sinrx + cosux
Trang 8(D0 thi tuydn sinh Hgc viQn COng nghQ Buu
chinh Vi0n thOng - 1999)
Ldi gidi VQn dqng tinh chdt 4 v1i a = 2 > 0,
f(x) = f ld ham ch5n, lien ruc tren R ta c6 :
,, Tfnh chAt S.,rNdu flx) hen tpc tren [0, l]thifa4ri*;a, = J [,r(sinx)dx
lni gidi Dfltx = rc - t + dx = -dt
,!0
3 7 = Jx,4siw)dx =- i f" - t) frsil\x - t)ldt0z
-r_ n, I,f d(2cosx) n I 2cov1n
= ' = i\- / Jo(r""*)r y=- +'i o" '8 z l o
SONG ANH (Tidp trang 22)
Pturcng phdp thtz hai cnng dnh sr rhong qua viQc tiqFlla:^tP hqp G -= {(rr, 12, "', rn)lri ltr c6c xdu
fnh f(i, k), tuy nhi€n vdi mQt c6ch nirin f<rrac : vOi r' nhi Plan d0 dai k) vd t0'ng cdn tinh bing
phdntfrnyn2, ,r,thuQc {1,2, ,n}taddmxemc6 L d(rr 12, ,rn)vtrd(ry12, ,r,)l)sdcdcx6u
bao nhieu b0 (Ar, A2, ., Ap) th6a man di6u kiQn 41 u e,,rr ,r) e G
Az w A*= {nr, n2, , n) (3), tD d6 tinh duqc I(1, t) r, kh6c (0, 0, ., 0) Vtr suy nghi xa hon mQt chrit theo
vh So hu0ng nly_, ta c6 lli gili thri ba cdn ngdn gqn vd bdt
Ta cho c6c phdn t& n1, n2, , z, ,,d6ng ki" c6 mf,t '*o}ff :fiil'r?* ou (At.A2 As) sao cho i e 41 u
trong c6c tap hsp A, theo quy tdc : n6u, chfrng h4n n, n
dang ki c6 mat trong A,, 42 vd kh0ng c6 mar rong c6c A.t w v Au thi sr = I.!o(i) (bp dpc hay ts kidm ha
6p cOn I3i thi phi6u dang ki ghi lI (1, 1,0, ,0[cdn '-z - "' - "r *
n6u n, chi c6 rirat trong,{o thi-gtri pliidu ia (0, ,'0, t) tai sao) ,=1
triX'- $frlfl H J*Xf# lf'*%il'.t'*rJtr:t J lltJ I :o ", ct.(Z')k b0 gr, l?, ,Aotvoi A, c {t,2, ,
Azi '.wA).Ylt"iptri'ciu Oang friiai1,i;-:.:;,4 n) Trong sdntry, c6 (2n-t7* b0 vdd A1w A2 \) A*
lflp dnqc b0 (Ar, Az, A) D6 thdy ring vdi hai bQ khOng chrla i (vi hic n)y vdi m6i A, chi cdn 2n-1 c6ch phidu
{Ang ki khdc nhau, ra_c6.hai bO tap hgrp (A,, Ar, chgn) Nhu th€ c6 2k - 2(n-1)k b0 (Ar, A2, , A1) vOt i
,A1)kh6cnhau v)nnut]r6sdb0 (Ar, Ar, ,eol:clr6a e ,+1u Az vAo Nhuvfly,so(i) =2i"-r)*.12r- t; vi
Ttr (3) btrng sd bQ- phidu dlng- ki.hqrp IQ Vi phi6u s,. o.2rn:r* ok - D.
aane
-ti :fi? "y'p = l' "'' i gdm 't sd 0 hoac I vl-e^Y "-
no-rang .ain giai cudi ctng rdt dn tr:qng v6 ss don c6 it.nhdt I sd 1 ncn^n, c6 2k-l cach ghi phi6u ddng ki gia, J,iJ,i3."fiiluig c6 duqc s[ doir gitrn d6, chung ra
yi_rhq vfly c6 tdtce(zk-l)i bQ phi6u ddng ki hq'p lQ 6aprr6i mtry m0 vf suy nghirh nnie"u, phtri'c6 nhimg
khdc nhau t<i nang ccr bAn, nh0ng t<1nh nghipm thu nhfln duqlcudi cr)ng, chri f rxng c6 c'In c6ch chen i phdn tri rD [i"#,rr8:3 Stl,.dji,lSt,J,1,t3,1Htli f$;f:6c quan
n phdn trl nen ta c6 T(i, k) = CL(2k - l), va tt ddy suy ""*i;;;g;;;"
sau s€ rrinh b1y tidp c6ch gitu mQt s0
ra so = n(2k - l).2k(n-t) uu toan [d trq,p co ap oung pnooig pfiap son"c anh.'
Trang 9oE rfu mou TofiN vfio Dfl Hgc lrcofil THUonc Hf, HqE
a psAtq oAmr cno rAr cA cAc rni smn
(chuv0n ban ' vtr chua Phfln ban).
Cdo I 1 Khlo s6[ su bidn thiOn vd ve d6 firi
hdm sd:
!=x3-6x2+9x-l
2 Tri mQt didm bft ki trOn cludng th&ng x = 2 ta
c6 thd kE dugc bao nhiOu tidp tuydn tdi dd thi
1 Giei phunng trinh:
sin8,x + cossr = 2(sin10r + cos10x) +l*ra
2 Cho MBC Gi6 sir G lL giao di6m cdc
dndng trung tuydn ctra tam gi6c Ki }lrigu ZGAB
= u,2GBC = p, IGCA = y Ctu:mg minh ring :
costg., + cotgB + cotgy =U-#4
trong d6 a, b, c lA d0 dAi ba c4nh vtr S ltr diQn tich
cira tam gi6c.
KH6ID.I{AM2tltlo
Tinh tich phtn :
HUONG oAnr crAr
cAu IV cho parabol !2 = 8x vd di6m I(2' 4)
nim tren parabol Xdt g6c vuong thay d6i quay
ouanh di6m 1 vtr hai cAnh cfra g6c vuOng c[t
parabol tai hai d\€m M vd N (kh6c vdi di6m f.
'Ct,org minh ring dulng thf,ng MN luOn lu0n di
qua mQt didm cd dinh
2 Cho parabol ! = x2 + 1 v) duOng thtng y =
mx+2
Chtmg minh ring khi m thay^ddi, Oudng ttrEng
luOn luOn cdt parabol t4i hai ili6m phdn biQt Hay
xfc dinh m sao cho phin dign tich hinh phlnggidi hpn bdi du0ng th8ng vI parabol lI nh6 nhft
B PHAN DANH cHo ruNG LoAI P6t
TUqNG THi SINH
CAu Va (cho th{ sinh thi theo chaong trinh
CAu I 1) Ban dqc hJ gili
2) GiL srt M(2; ru) lh didm thuQc ttudng thing
x = 2 Dudng thtng di qua M ld y = a(x-Z) + m.
Ddng thtng ntry ld tidp tuydn cira dd thi o HQ
bi6n tren R 3 (3) c6 1 nghiQm duy nhft v6i mgi
m = ti M kE clugc duy nhft mQt tidp tuydn tdi
Tt d6 suy ra : phuong trinh c6 nghiQm duy
nhdtx= 1.
Cnu III.
1) Ta vidt phrrng trinh v6 dAng :
sins(l - Zsnzx)- cos8r(2cos2x - t) =]cosX
e cosax(sin8r - cos8x - i, = o
Trang 10Vi : sinsx < 1 < I *
"or8, nOn phrrng trtnh
4 hrong dtrng vdi :
cos2r= 0 ex =;.q(keO.
2) Gqi M li trung didm cria BC Tt cOng thric
tinh d0 dli dudng tnurg tuydn ta c6 :
Tuong tUddi v6'i cotgB, cotgy Trld6 ta c6 dpcm.
C8u IV 1) Ta c6 I(2,4) e (P) : !2 = 8x
coi u (* , 4, - G, z) cung rhuoc (p)
Gi[ sr] A (xo, yJ ltr di6m c0 dinh e dudng
ldn[ye tutN Khi d6 ta c6 he sau dring Vm, n
= Di6m cd dinh le A (10, -4)
^2) Holnh dQ giao didm cria 2 dulng ll nghiQm cfia phrrng trinh :
P+1=mx+2af-mx-l=0(*)
Phtrong trinh (*) c6 P = -1 < 0 nen luon c6 2
nghiQm.ro 0 ,, = 2 dudng nly luOn cft nhau
tAi2 di6mA, B tuung rlng (xem hinh ve).
Gqi S ltr diQn tich hinh phfrng gidi hnn b&i
Trang 11Lfl GIAI CAC BAI TOAN THI CHQN HQC SINH CT6T QUOC GIA
(VyTrung hqcphd thing)
NOn tD (7) suy ra [/'(.r)l < 1 V.r e tO; f] no
d6, tt (6) ta duqc g'(x) < 0 V.r e [0; trgl Suy
ra g@) lI hlm nghich bidn r0n tO;{cl Kdt
hsp vdi (5) suy rt a = b, haY
limx21ra1 Do d6 (,rr) lh day hQi tU khi n -+ @
(dpcm)
Nhsn x6t: - KhOng it thi sinh dL, vi6t : "D6 thdy
Bei 1 Cho sd thvrc c > 2 Ddy sd (xn), n = 0, l,
2, , daqc xhv d.wg theo cdch sau ! xo = \[s,
x,n*t = G-W (n = o, 1,2, ) idu cac
bidu thtlc dudi cdn ld khAgg dm.
Chrmg minh ring d6y (xn) duo c x6c dinh vdi
mqi gi6 tri n vI tdn tai gidi h4n htru h4n limx,
- Nhi0u thi sinh dt chrng minh a = b x:udtphAt fe
gih, thiltfra) = a vdflb) = b xrn luu f : gia thi6t d6
nrtrrg duong vdi vigc thua nhan (xz) le dAy hoi tU
khi a-+o, hay, n6i mQt c6ch khdc, thr)a nh$n a = b.
Bai 2 Tran mdt phdng cho trufuc cho hai
iludng trdn (O1, rl vd (Oz, r) TrAn dudng
trbn (O1, rl ldy m\t didn Ml vd trAn dadng
ffdn (O; 12) ldy m1t di€m M2 sao cho dudng
thdng A1M1 cdt dudng thdng O2M2 tqi mQt
didm Q Cho Ml chuydn dQng tAn dudng trbn
(Ot, ri, M2 chiydn dQng tAn dudng trdn (Ov
r2i ctiig thZo chidu kim ddng hd vd vhi vQn tdcgdc nhu sau :
1) Tim qu! tfch tung didm tloqn thdng MtMz
2) Chtm7 minh rdng giao didm thrt hai cilatlwdng trdn nSoQi tidp tam gidc M1QM2 vhidudng trdn ngoqi tidp tam gidc OIQO2ld mQt
didm cd dinh
Ldi gif,i (ban dqc $ ve hinh) :
1) Gqi O ll trung dr€m Op2 Hidn nhiOn O
lI didm cd tlinh !-dy cdc- didm Ml1, M'2 saro
cho : Ollu\ = OVvI't, [fi?2 = OA2 Y, Mv
M2fiiong ring chuydn dQng trOn (Oy r1), (O2,
,2f trreol,:ng chidu vtr vdi crlng vfn tdc gpc
i6n U' 1, M'2 s€ quay quanh O theo cing chi6u
vI vd'i ctng vfn tdc g6c (8)
Ta c6 : M lt trung didm MrM, e
1 ol",* dq o olu = ltolu', * o
)(orM' t+ o2M 7)
Suy rarl dugc xdc dinh ( 1).
Git str xp (k 2 1) da duvc x6c dinh Khi d6,
hi6n nhiOn cd 0 < x1r<{ < c.
Vi thd : 0 < c + x1r1 2c +'{*-+ x1r ^{k ,
+c-.f,*rrrO.
Suy ra.rp*1 duo c x6c dinh (2)
Tri (1) vtr (2), theo nguyOn li quy nap, suy ra
Suy raflx) nghfch bidn trOn t0; {cl D6n tdi
(x2) vd (xz**) ltr cic dly dcrn diQu Kdt hsp
vdri (3) suy ra (x2) vn @z**) ltr cfc day hQi tt;
'e > Mh,trune Untrung di€m di€m cflaM'['cl0la M' ,M', (9)
Tt (8) vI-(9) ta dusc: Quf tich ctn M \d
Trang 122) Ggi P li giao didm thri hai cria dtdng trbn
ngoni tidp LMTQMz vi dudng trbn ngoq.i ridp
LO1)O2 De dtrng chring minh duo.c :
PO,fr MO1M1- LPOyMy Suy ra
d= -4 Do d6,
P thuoc duong trdn Apoloniut dlrng tron doan
OlO2cddinh, theo ti sd khong Odi 1 (10)
DE thdy : (POy POz) = c{, = const Suy ra, P
thuOc cung chria g6c dinh hud'ng khOng ddi cr
drmg trOn do4n O1O2 cd dinh (11)
Tt) (10) vI (11) suy ra P Ii didm cO dinh
(dpcm)
Ghi chri q_Uiq d f, ltr g6c dfnh hu6ng
NhAn x6t: Do kh0ng sfr firng g6c dinh hu6'ng
nOn nhidu thi sinh c6 ldi gitri ho{c khOng dny dri,
thidu chinh x6c ho{c rudm rh, phrlc t!p
Bni 3 Cho dathftc
P(x) = x3 - 9P + 24x- 27.
Chtm:g minh rdng vhi mdi sd nguyAn duong n
lu1n tdn tqi m\t sd nguy€n duong an sao iho
P(an) chia hdt cho 3n.
Ldi giii Ta c6 P(1) = 81 Do d6, khi chon
an = | thi P(an): 3n (n = I, 2, 3, 4) (I2)
= P(a) a 3n-t67o2 - 6ab + 8b)(modln+ly
Y\ a2 - 6a + 8= 3 (mod 9) (do a : I (mod9)
Bd dA 2 Yn> 5 lan:1 (mod 9) sao cho :
P(a") :0 (mod 3u)
Chftng minh : YOr n = 5 ta c6 a5 = l0 th6a
man cAc yOu cdu cria bd dC Gie su, Ud oa z
dfng vdi n = k (k > 5), nghia ll 1ap : 1
(mod 9) sao cho P(ap) = 3k.v, v e N*
X€t: apal = ak* 3k-2b, b e Z
Theo bd dd 1, ta c6 :
P(a**r) = P(ap) + 3kbh = 3k(v + bh) (moA3k+11
Vi (ft, 3) = 1 nOn c6 thd chqn b e N* sao cho
bh = -v(mod 3) V6'i b d6 ta c6 : ap*1: (mod9) vh, P(a1r*1) = Q 1ms6 3/.+1;.
Theo n-guyOn li quy nap, bd dd 2 duo c chung
minh B$ dd,2vd,(12) cho th{y :
Vn e N lan e N sao cho P(an):3" (dpcm)
NhAn x6t Chi c6 mQr rhi sinh gihi duqc bAi trOn.
Bei 4 Cho trahc gdc a vhi 0 < a < n Tim
P 3@) =x3sina - .rsin3cr + sin2cr,
= sino(,r + 2cosa)(.r2 - 2xcosa + l)
Tn d6 suy ra : vfii flx) = *2 - 2xcoso + I thi
Hom nta, Yn 2 3 ta c6 :
Pn+{x) = Tn]-l sincr - "rsin(n+1)cr + sinno
= .r'+lsincr + r[sin(n-l)a - 2sinncrcosa] +
sinacr
= xlx'zsina - xsinnc- + sin{n-l)crl +
+ (x' - 2xcoso + l)sinna
= xPn(x) + (; - 2xcoscl + l)sinncr (L4)
Tt (13) vI (14) suy rafl.r) = x2 - 2-rcosa + 1
Itr tam thric cin tim
Nhin x6t M[c dn bili to6n tren khong phli
le bei todn kh6 nhung ciing c6 tdi 107 trongtdng sd 216 thi sinh du *ri U| Cidm O.
Bei 5 Cho tri di€n ABCD cd bdn kinh dudng
tr\n ngoei tidp cdc mdt ddu bdng nhau Chtugminh rdng cdc cqnh ddi di€n cnit* diQn ABCD
bdng nhau
Ldi gifri Ki hiQu cic milt BCD, CDA, DAB
vd ABC tuong ring ld m{t 1,2,3,4 Vdi X e
{A, B, C, Dl, i e {1,2, 3, 4} takt hiQu X; ln sfi
do g6c ph6ng rai dinh X & mdt i
a
Trang 134443
Ia,*Zs,* Ic,* LDi= +n
i=2 i=l i=l i=l
Bei 6 Tlm tdt cd cdc hdm sA'fG) th1a man
didu kiQn : xzf7) + f( l-x) = 2x - f , vhi mpi sd
fa frai ngniem cria phuong trinh.r2 - x - 1 = 0.
Theo Gnh li Viet tac6'.
Dt = n - Aai D2= B4vd Dl = C+'
D6n tdi : D2 +.D3= 84 * C4= n - A4= Db
trii vdi tinh chdt cria g6c tam dien Tt d6 suy
raA4<f ve vi th€, MBC ltr tam gi6c nhsn Do
d6, tt (17) ta c6 : D1 = A4, Dz = B+ vh
Dt= Cq SuY ra ' D1+ D2* D3= v'
Kdt hatp didu ntry vdi (16) ve (15) ta dugc :
tdng tdt ie, cec g6c phing tai m6i dintr crla trl
dien Uing r Ddn diy, bing clch trlr cdc p[t
nto, cde vb, DAB 6tra tu oien ten m[t phf,ng
(ABq, d6 dlng chrtng minh duo.c ; AB = CD;
BC = DA vd, AC = DB (dpcm)
Nh{n x6t Tdt ch chc thi sinh ddu gitri bhi to6n
theo c6ch : Xudt ph6t tt gie thidt, chimg minh tam
O cira m{t cdu ngopi ti6p trl difu ABCD cdch ddu
cac mAt phang chua c6c mat cira tri diQn d6' V) tdi
dlv, tdt ia OCu hoflc khong x6t ddn kha nrng O th
mm mfi ciu blng tidp cua t0 diQn hoflc c6 xdt ddn
nhrmg khOng loai trD dugc khtr ntrng ntry.
Lin luqt thay x = a, x = b vio ding thric crha
bii ra, vdri luu y t61 (20), ta du-o c :
trpng d6 o, bll.hai nghiQm cria phuong rinh
x'2 lx - 1 = 0 Ngugc l4i, vdi luu f tdi dinhngtria cria a, b vd (20), dC kidm tra thdy flx)
dio c x6c dinh bOi (O th6a mtrn didu kiQn dd
bli.
Vfly tdt cL cLc hnm sdflx) duqc x6c dinh b&i
(4 ln tdt cL cilc him sd cdn tim
Nh$n x6t Chi c6 1 tli sinh gitri quydt trQn vgn
bli todn ften Rdt nhidu ttri sinh cho ldi giAi khong
diy dri, thi6u chinh x6c do dl dua ra c6c kdt luQn sai vd nghipm cua mOt hQ phr:ong trinh b0c nhdt hai
fln c6 ilinh thrrc blng O.
TIIONG BAO
Do thAnh pn5 tfiay odi oi6n s6 nhd,
-ban docqiJt thu vO fOa soan Todn hqc & tudi tr6 va
iodn fudlthd xin ghitheo dia chi :
" Ngd 1s7 PhO Gidng V6, He Nfli
Dia didm, s6 OiCn thoai vd Fax khOng thay ddi'
TI{TT
a+b=lvdab=-l (20)
l1
Trang 14T'C RR III IIRY
CAC LCIP THCS
BAi T1/283 Chring minh ring vdi m6i sd
nguyOn duong n thi sd (3 + n3)(3.n3 + 1) ho{c
chia hdt cho 49 hopc kh6ng chia hdt cho 7.
PHAMNGQCQUANG
(GV trudng THPT Lam Son, Thanh Hda)
B iT2l283 Tinh ginfi bidu thrlc
\fx4-yp44 + t$1+-a11a-g * ^[rt+-i$-y)
th6a mln didu kiQn : a + 2b + 3c = 1 Chring
minh ring it rf:rdt m0t trong hai phunng trinh
sau c6 nghiQm thgc :
+i - +1Za+ 1)r+ 4a2 + l9Labc + 1 = 0
4* - 4Qb+ 1).r+ 4b2 + 96abc+ 1 = 0
rnANvANnrfovn
(GV trudng THCS T1t Cudng, TiAn lnng, Hdi Phbng)
Bdi'141283 Cho tu giec (l6i) ABCD vh, M lh,
trung didm ctn AB Xdt didm P thuQc doAn
thilng AC sao cho'hai du0ng thilng MP vd BC
cdt nhau, ggi giao didm d6ld L Ggi Q lI didm
thuoc dean thhng BD sao cho * QD = O'PC
Chtmg minh ring dudmg thLngTQ luOn di qua
mOt di6m cd dinh khi P chay trOn dopn AC
NGUYENPHUdC
(GV rrudng THCS Kim Inng, Hud)
BAi T5/283 Cho tam gi6c ABC c6 diQn tich
bing 1 (dcrn vi) Gpi R vtr r tunng rmg ltr b6n
kinh dudng trdn nggai tidp vl nQi tidp tam gi6c
A.BC Chring minh ring
a = (2Q2000 a 1 120001200t
vI b=(2Q2o0r a 112tt01120o0
oAoquaNcortm
(Phbng GD-DTVdn Giang, HungYAn)
B i T71283 Cho k (k > 2) sd thuc dunng a1,
a2, , ao.Chtmgminh ring
(GV trudng THPT chuy€n Hodng VdnThu, Hda Binh)
Bei T8/283 X€t day sd thUc ay a2, a3,
th6a m6n c6c di0u kiQn : 0 1 on < I vh
(ViAn COng nghp rhdng tin)
Bei T9l283 Ggi A, B, C ll ba g6c cfia tam
gi6c ABC Chring minh ring
1 r *.o.{) (, *4) ( r *.o,{r)
, {3 ':{l
'( t *7.)
NGUYENTH6siNH
(GVtrudng THPT chuyZn Hd Giang)
Bei T10/283 Chring minh rIng ndu hai hinhn6n crlng nQi tidp mQt hinh ciu vtr c6 dign tichxung quanh blng nhau thi thd tich cta chring
cnng blng nhau Di6u ngugc l4i c6 dring
khOng ?
HOANGCONGTHANH
(GV trudng TIIPT Nguy4n Chi Thanh, ThiaThian - Hu€)
cAc oB v4r r,i Bni LY283 MQt c6i xich dugc gi{r ffOn mflt
bln nim ngang kh6ng ma '4 s6t ma I OO dli cria
xich duqc thf, thong bOn cAnh btrn Xich c6
chidu dli ll l, c6 khdi luqng ltr m duo.c ph6n bd
*