a Pa o diagramat expiration:20 short stock short call combined position written call short stock short stock + short call FIGURE 0.1 Pa o diagramforbothashortsaleofstockandanat-the-mo
Trang 11 (a) Pa odiagramat expiration:
20
short stock short call combined position
written call
short stock
short stock + short call
FIGURE 0.1 Pa odiagramforbothashortsaleofstockandanat-the-moneycall
Trang 21 2 3 4 5 6 7 8 9 10 0
0.5 1 1.5 2 2.5 3
3.5
long put long call put + call
FIGURE 0.2 Pa odiagramforalongputwithstrikeK
1andalongcallwithstrikeK
2,K
1
<K
2
2
>K
1
Trang 3short stock short call combined position short stock
written call
short stock + short call
FIGURE 0.4 Pre-maturitypayodiagramforbothashortsaleofstockandanat-the-moneycall
Pa odiagrambeforeexpiration:
0 0.5 1 1.5 2 2.5 3 3.5
4
long put long call put + call
FIGURE 0.5 Pre-maturitypayodiagramforalong putwithstrikeK1andalongcallwithstrikeK2,K1<K2
Trang 40 1 2 3 4 5 6 7 8 9 10
−6
−4
−2 0 2 4
18theUSDLiborrateat12months
and18monthsrespectively Thecash wsaregivenb
12months 18months 24months
Floatingleg +N +N
L
12
2+N 1+
wherethe1inthe24monthscolumnrepresentsthenotional amount
(b) If onehad a rate obligation and wished to pay a xed rate, , then enter into two FRA
contractsatratewithmaturity18and24months Forexample,at18months,ifthe rate
wereabo e,thentheFRAwouldbein-the-moneyb precisely theamountrequiredto osetthe
higher ratepayment Therefore,thetotalpaymentisat therate
(c) Ifonehada rateobligationandwishedtopaya xedrate,aswapisnotnecessaryaslong
asthe appropriate interest rate options are a ailable A long position in an interest rate cap at
rate and ashort position in an interest rate orat rate ,bothmaturing on the rate
paymentdate, ensurethata xedrateofispaid Ifthe rate,sayr ,isabo eatexpiry,
anet paymentat rate isrequired after taking into accountthe valueof the cap,N (r
T
)
Ifthe rateis below at expiry, sayr , then a paymentat rater must be made onthe
rateobligation However,theshort position in the orrequires anadditionalpaymentof
N( r ) Theresultis atotalpaymentatpreciselyrate
annualinsurancecostfor1tonofwheat,andristhesimpleinterestrate IfF
t
>(S
t+c+s)(1+r),
thenconstructthefollowingarbitrageportfolio
Trang 5Shortfutures 0 F
tS
t+c+s)(1+r)
Buywheatandpaystorage,insurancecosts (S
t+c+s) S
T
t(S
t+c+s)(1+r)>0
Thus, F
t
(S
t+c+s)(1+r) If F
t
< (S
t+c+s)(1+r), one cannot immediately reverse the
holdingsin theabo eportfolioto createanotherarbitrage portfolio A problemarisessincewheat
isnottypicallyheld as aninvestmentasset If onesellswheat, itis notreasonableto assumethat
one is entitled to receive the storage and insurance Therefore, a weaker condition ensues with
heldforinvestmentsuchasgold,onecouldselltheassetandsaveonthestorageandinsurancecosts
Theseassetsproduceanexactrelationship,F
t
=(S
t+c+s)(1+r) Holdinganassetsuchaswheat
hasvaluesinceitmaybeconsumed Forinstance,alargebakeryrequireswheatforproductionand
maintainsan inventory These companies would be reluctant to substitute a futures contractfor
theactualunderlying Hence,thepriceof afutures is allowedto belessthan (S
t+c+s)(1+r)
However,ifF
t
<S
t(1+r),thenconstructthefollowingarbitrageportfolio
Position Pa oatt Pa oatT
TF
S
t(1+r)F
t
(S
t+c+s)(1+r)
(b) F
t
=$1;500<$1;543:50=(1;470)(1+:05)=S
t(1+r) Thisviolatestheabo einequality Totake
advantageofthisarbitrageopportunity,followthesecondarbitragestrategyoutlinedabo e
Trang 71 = (1+r)
u+(1+r)
t+1d
andafterdividingthesecondequationb S
t
1 = (1+r)
u+(1+r)
d
1 =
Su
t+1
S
tu+Sd
t+1
S
td
Substituteinthevaluesforr,S
u
t+1, Sd
t+1andexpressthese equationsas
d
Trang 8t+1+~d
Sd
t+1
=1
1:0125(:3917320+:6083260)
= 280
t
(e) Only the up state is relevant for pricing the call option asthe call expires worthless if the stock
decreasesto$260nextperiod Thecallpriceequals
Thesamepricecalculatedinpart(b)
(f) No,dierentmartingalemeasures(i.e dierentriskneutralprobabilities~
u
and~d
(g) Adierentnormalization(numeraireasset)is used An analoguetopart(f)wouldbeastatement
assertingthat thearbitrage-freeoptionpriceisindependentofthenumeraireasset
(h) The risk premium incorporated in the option's price satis es: (1+r+ riskpremiumforC
t) =
This risk premium is usually notcalculated in thereal world Oneuses risk
-neutralprobabilitiesforcallpricing, E
Inan
incompletemarket,theremayexistriskpremiumswhich requireexplicitcalculation
2 (a) Assumetherisk-freeinterestrateriszeroandconsider thesystemofequationsgivenb
4A
2withtheproperties
1:
1+
2
=1
(1+r)
=1 assumedr=0
2:
1,
2
>0
such that therighthand sideof this systemofequations is positive, thenthe\current prices"are
arbitrage -free Inthis particular case, since nocurrentpricesare speci ed, there are anin nite
numberofpossible
1and
2solutionsin whichbothstatepricesarepositive,sumtothediscount
factor,andgeneratepositivevaluesforA
0,B
0,andC
0
(b) Ifnosuchsolutionexists,thenatleastoneofthecurrentprices(A
0,B
0,orC
0
isnon-positive In
thiscase,onewould\buy"theassetforthenon- positivepriceand beassuredofpositivepayos
inallfuturestatesoftheworld Hence,anarbitragepro texists
Trang 92
4A
497:5
72:0
126:03
1+61 Thisvalue
ofKwasgeneratedb theequation
0=
1(83 K)+(1
1)(61 K)
where
1
= ~
1sincer =0 In general, risk - neutralprobabilities and not stateprices are used
Alternatively, ifthecontractwasstruckon apreviousdate with apreviouslyspeci edstrike price
K,it'scurrentvalueisgivenb theexpectedpayoundertherisk-neutralmeasure
F
0
=p(83~ K)+(1 p)(61~ K)
Notethatin generalonedoesnotdiscountthepayowhenpricingafutures' contract
(e) Theput optiononassetC onlydependsonthe rststateasthe $92payo islessthan thestrike
price Itspriceisthereforethediscountedpayoin the ...
Thiswouldcontradictproperty(1)abo e Therefore,
i(t)>0foralli andforallt
Thesecond property requiresthe sumof thestatepricesacrossthe number ofstatesto equalthe
discountfactorforaxedt Thisassertionfollowsfrom...
\average" ;of theprevioustwointegralsandthereforehasanexpectedvalueequalto zero Overall,
thisexampleshouldnotformtheimpressionthatthechoiceofintegrandisirrelevant Forinstance,
considertheintegral...
rateobligation However,theshort position in the orrequires anadditionalpaymentof
N( r ) Theresultis atotalpaymentatpreciselyrate
annualinsurancecostfor1tonofwheat,andristhesimpleinterestrate