Bài viết đề xuất phương pháp giải xử lý trực tiếp mô hình ban đầu. Phương pháp giải của chúng tôi dựa trên ý tưởng áp dụng giải thuật di truyền (GA) và NSGA-II. Đóng góp của nghiên cứu là đã đưa ra được một cách thiết kế chi tiết thuật toán GA, NSGA-II cho bài toán. Kết quả tính toán mô phỏng với số liệu đơn giản cũng đã cho thấy nghiệm cung cấp bởi thuật toán là khá tốt. Mời các bạn cùng tham khảo!
Trang 1Thuật toán di truyền và thuật toán NSGA-II cho một mô hình quy hoạch và sử dụng đất
Trần Đức Quỳnh Khoa Công Nghệ Thông Tin, Học Viện Nông Nghiệp Việt Nam- Gia Lâm, Hà Nội
Email: tdquynh@vnua.edu.vn
Tóm tắt—Bài toán quy hoạch và sử dụng đất là một bài
toán quan trọng trong nông nghiệp, tài nguyên môi trường
và kinh tế xã hội Mục tiêu của bài toán này là tìm cách
sử dụng đất sao cho hiệu quả về mặt kinh tế và đảm bảo
một số điều kiện đặt ra Tùy vào các giả thiết mà mô hình
toán học cho bài toán này có thể là mô hình tối ưu liên
tục hoặc rời rạc, một mục tiêu hoặc đa mục tiêu Trong
nghiên cứu này chúng tôi xét một mô hình cho bài toán sử
dụng đất được đưa ra bởi Jeroen và các cộng sự Trong
mô hình này người ta muốn tối ưu hóa lợi nhuận và tính
compact của các thửa đất sử dụng cùng một mục đích.
Đây là một mô hình tối ưu đa mục tiêu và có chứa biến
nguyên Việc tìm lời giải tối ưu cho bài toán này luôn là
thách thức cho các nhà toán học và khoa học máy tính.
Cách giải được đề xuất trước đó cho bài toán này là đưa
bài toán về một mục tiêu bằng cách đánh trọng số và sử
dụng phần mềm giải bằng phương pháp tất định Tuy vậy
số biến nguyên lớn dẫn đến phương pháp này chỉ áp dụng
được cho những số liệu mô phỏng khá nhỏ Trong nghiên
cứu này chúng tôi đề xuất phương pháp giải xử lý trực
tiếp mô hình ban đầu Phương pháp giải của chúng tôi
dựa trên ý tưởng áp dụng giải thuật di truyền (GA) và
NSGA-II Đóng góp của nghiên cứu là đã đưa ra được
một cách thiết kế chi tiết thuật toán GA, NSGA-II cho bài
toán Kết quả tính toán mô phỏng với số liệu đơn giản
cũng đã cho thấy nghiệm cung cấp bởi thuật toán là khá
tốt.
Từ khóa—Thuật toán di truyền (GA), NSGA-II, khoa
học máy tính, tối ưu, sử dụng đất.
I MỞ ĐẦU
Quy hoạch và sử dụng đất sao cho hiệu quả là vấn
đề quan trọng Một phần vì tài nguyên đất có hạn mà
số lượng người trên thế giới tăng lên hàng năm Theo
[8] thì diện tích đất nông nghiệp chiếm khoảng 46%
diện tích đất liền của trái đất Diện tích này có thể ngày
càng bị thu hẹp do sự tăng dân số trong khi đó nhu
cầu lương thực lại ngày càng tăng Ước tính đến năm
2050 thì nhu cầu lương thực sẽ tăng khoảng 70% so với
hiện nay Do đó làm sao để sử dụng hiệu quả đất nông
nghiệp là một vấn đề chung trên toàn thế giới Bài toán
tối ưu sử dụng đất nói chung và đất nông nghiệp nói
riêng đã được nhiều nhà khoa học trong lĩnh vực nông
nghiệp, tính toán khoa học, công nghệ thông tin quan tâm nghiên cứu Các nghiên cứu này thường là mô hình hóa bài toán thực tế dưới dạng một bài toán tối ưu và
đi nghiên cứu các giải thuật để giải quyết nó một cách hiệu quả Trong vòng hơn 20 năm qua, nhiều mô hình toán học đã được các nhà nghiên cứu đưa ra, trong mỗi
mô hình các tác giả xem xét các ràng buộc hoặc mục tiêu khác nhau Tuy có nhiều mô hình nhưng theo [8] ta
có thể phân ra 3 nhóm chính là: mục tiêu hiệu quả kinh
tế [3], mục tiêu quản lý hiệu quả tài nguyên nước [1], bảo vệ môi trường và hệ sinh thái [2] Một số tác giả xem xét nhiều mục tiêu đồng thời và dẫn đến bài toán tối ưu đa mục tiêu
Mặc dù bài toán quy hoạch và sử dụng đất là rất quan trọng nhưng theo hiểu biết của chúng tôi những nghiên cứu ở Việt Nam hiện nay mới chỉ dừng lại ở mức độ rất đơn giản thường là dùng các mô hình tuyến tính, biến liên tục Đặc biệt chưa có tác giả nào nghiên cứu mô hình có xét tới mức độ phù hợp của từng khu đất cho các mục đích sử dụng khác nhau Khi xét đến thông tin
về sự phù hợp đất với các mục đích sử dụng khác nhau thì mô hình sẽ gần với thực tế hơn nhưng lại làm cho bài toán trở nên phức hơn vì bài toán sẽ phải đưa vào các biến quyết định rời rạc (chỉ nhận nhận giá trị 0 hoặc 1) Do đó mô hình toán học sẽ trở thành một bài toán tối ưu không lồi, biến rời rạc và có thể là bài toán đa mục tiêu Phương pháp giải cho những bài toán tối ưu
đa mục tiêu, rời rạc và không lồi là không nhiều Vì vậy việc nghiên cứu các thuật toán cho các mô hình dạng như trên và có thể tiếp tục phát triển để ứng dụng trong điều kiện ở Việt Nam là hết sức cần thiết
Trong nghiên cứu này chúng tôi nghiên cứu phương pháp giải cho mô hình bài toán tối ưu được Jeroen và cộng sự đưa ra năm 2003 Đây là một mô hình tối ưu đa mục tiêu, không lồi, biến nhị phân và có xét đến mức
độ phù hợp của từng đơn vị đất với các mục đích sử dụng khác nhau Trước đó các nhà nghiên cứu đã dùng phương pháp đánh trọng số cho hàm mục tiêu và chuyển
về bài toán một mục tiêu sau đó dùng một phần mềm để
Trang 2giải bài toán Cách tiếp cận trong nghiên cứu của chúng
tôi là sử dụng giải thuật di truyền Trong cách làm thứ
nhất chúng tôi cũng đưa bài toán về một mục tiêu và
đưa ra thiết kế chi tiết giải thuật di truyền cho bài toán
này Trong cách làm thứ 2 thì chúng tôi giải quyết trực
tiếp bài toán đa mục tiêu ban đầu bằng cách thiết kế
một giải thuật di truyền NSGA-II
II MÔ HÌNH TOÁN HỌC
Trong mục này chúng tôi xét mô hình bài toán quy
hoạch và sử dung đất đã được phát biểu trong [7] với
một chút thay đổi cho phù hợp là mục tiêu cực tiểu hóa
hàm chi phí được thay bằng cực đại hóa hàm lợi nhuận
Bài toán được phát biểu như sau: xét một mảnh đất hình
chữ nhật được sử dụng cho nhiều mục đích sử dụng đất
khác nhau Đầu tiên ta chia mảnh đất thành N.M ô
bởi N hàng và M cột, ô đất ở hàng thứ i và cột thứ j
sẽ được gọi là ô (i, j) Giả sử ta có K mục đích khác
nhau, ký hiệu k là một mục đích sử dụng đất cụ thể,
k ∈ {1, 2, , K} Với mỗi ô (i, j) ta biết các thông tin
Bijk lợi nhuận thu được nếu ta dùng ô (i, j) cho mục
đích sử dụng k Ngoài ra ta cũng biết rằng tổng số ô đất
được sử dụng cho mục đích thứ k là Tk Bài toán đặt
ra là tìm cách sử dụng đất sao cho tổng lợi nhuận thu
được từ vùng đất là lớn nhất và các mảnh đất sử dụng
cùng một mục đích phải được đặt ở gần nhau để có thể
tạo thành một khối (tính compact).
Trong bài báo [7] các tác giả đã đưa ra mô hình toán
học cho bài toán trên dưới dạng bài toán tối ưu hai mục
tiêu biến nguyên 0-1 và ràng buộc tuyến tính Xét biến
nhị phân xijk là biến quyết định thể hiện rằng nếu ô
(i, j) được sử dụng cho mục đích k thì xijk = 1 và
bằng 0 nếu ngược lại Ta có lợi nhuận cho toàn bộ mục
đích sử dụng đất được biểu diễn bởi
f1(x) =
N
X
i=1
M
X
j=1
K
X
k=1
Bijkxijk
Để biểu diễn mục tiêu thứ 2 người ta đưa vào biến yijk
như sau
yijk= xi−1jk+ xi+1jk+ xij−1k+ xij+1k (1)
Khi đó mục tiêu về tính compact của các mục đích sử
dụng đất được biểu diễn bằng công thức
f2(x) =
N
X
i=1
M
X
j=1
K
X
k=1
yijkxijk
Về bản chất thì hàm đo tính compact f2(x) được tính
bằng số các ô cạnh nhau theo hàng hoặc theo cột có
cùng mục đích sử dụng đất Ngoài hai mục tiêu trên chúng ta còn có các ràng buộc
K
X
k=1
Ràng buộc này để đảm bảo mỗi ô đất chỉ được gán cho một mục đích sử dụng đất
N
X
i=1
M
X
j=1
Ràng buộc này để đảm bảo tổng số ô đất (tổng diện tích) được sử dụng cho mục đích k Do đó chúng ta có bài toán tối ưu đa mục tiêu như sau
max f1(x) =
N
P
i=1
M
P
j=1
K
P
k=1
Bijkxijk
max f2(x) =
N
P
i=1
M
P
j=1
K
P
k=1
yijkxijk
ràng buộc (1)-(3) và xijk∈ {0, 1}
(P )
Ta có thể chọn một trọng số w > 0 cho mục tiêu thứ 2
và chuyển bài toán này về bài toán tối ưu một mục tiêu max f (x) = f1(x) + w.f2(x)
ràng buộc (1)-(3) và xijk ∈ {0, 1} (P
0)
Bài toán (P ) là một bài toán tối ưu đa mục tiêu, với ràng buộc tuyến tính, biến nhị phân và hàm mục tiêu thứ hai f2(x) là hàm không tuyến tính Để giải bài toán này thì trong [7] các tác giả đánh trọng số để chuyển về bài toán một mục tiêu (P0) và sử dụng một phần mềm giải bài toán bằng phương pháp tất định
Trong phần tiếp theo chúng tôi sẽ đề xuất phương pháp giải bài toán trên ý tưởng của giải thuật di truyền
III PHƯƠNG PHÁP GIẢI
A Giới thiệu về GA và NSGA-II
Thuật toán di truyền (GA) là một thuật toán mô phỏng quá trình tiến hóa trong tự nhiên GA cho phép chúng ta tìm nghiệm cho một bài toán tối ưu ngay cả trong trường hợp hàm mục tiêu hay các ràng buộc không tuyến tính, không lồi, không liên tục Những tính chất này làm cho
GA có thể áp dụng được cho một số bài toán mà các thuật toán tất định không áp dụng được vì các thuật toán tất định thường yêu cầu chặt chẽ về tính chất giải tích của các hàm mục tiêu và ràng buộc Tuy thuật toán GA không cung cấp nghiệm tối ưu toàn cục cho bài toán nhưng nghiệm địa phương cho bởi GA là chấp nhận được trong thực tế Hơn nữa nhìn chung GA dễ dàng cài đặt và thời gian chạy thuật toán là hợp lý nên ngày càng được nhiều người sử dụng Ngày nay các thuật
Trang 3toán di truyền đã trở thành một hướng phổ biển trong
lĩnh vực khoa học máy tính Về cơ bản thì thuật toán di
truyền gồm các bước sau:
Khởi tạo
Bước 1: Sinh ngẫu nhiên một tập hợp đại diện cho
các nghiệm (quần thể)
Các bước lặp
Bước 2: Đánh giá độ thích nghi của từng cá thể và
quần thể Có nhiều cách đánh giá độ thích nghi nhưng
về cơ bản thì dựa trên giá trị của hàm mục tiêu
Bước 3: Kiểm tra điều kiện dừng nếu thỏa mãn thì
dừng thuật toán nếu không thì chuyển sang Bước 4
Bước 4: Lai tạo và đột biến
Bước 5: Chọn lọc các cá thể để đưa vào thế hệ tiếp
theo và quay lại Bước 2
Thuật toán GA dùng cho bài toán tối ưu một mục tiêu
thì NSGA-II là một thuật toán di truyền để giải quyết
bài toán tối ưu đa mục tiêu Đây cũng là một thuật toán
trong nhóm các thuật toán tính toán tiến hóa Hiện nay
đã có rất nhiều nhà nghiên cứu ứng dụng thuật toán
NSGA-II để giải các bài toán của họ Để hiểu rõ hơn
về NSGA-II chúng ta có thể tham khảo trong các công
trình [5] Các bước cơ bản của thuật toán NSGA-II có
thể được mô tả như sau:
Khởi tạo
Bước 1: Sinh ngẫu nhiên quần thể ban đầu Tính toán
độ thích nghi với từng cá thể
Các bước lặp
Bước 2: Kiểm tra điều kiện dừng Nếu điều kiện thỏa
mãn thì dừng thuật toán Nếu điều kiện chưa thỏa mãn
thì chuyển sang Bước 3
Bước 3: Lai tạo, đột biến để tạo ra thêm các cá thể
mới
Bước 4: Sắp xếp các nghiệm bằng một thủ tục non
dominated sorting Kết thúc bước này các nghiệm sẽ
được sắp xếp thành các lớp F1: tập các nghiệm (có
rank=1) mà không có nghiệm nào trội hơn nó về mọi
mục tiêu, F2: tập các nghiệm (rank=2) có một nghiệm
trội hơn nó, F3: tập các nghiệm (rank=3) có hai nghiệm
trội hơn nó,
Bước 5: Tính khoảng cách quy tụ từ một nghiệm đến
quần thể (xem chi tiết trong [4],[5])
Bước 6: Chọn lọc ra những cá thể có rank thấp, khi
các cá thể có rank bằng nhau ta chọn cá thể có khoảng
cách quy tụ lớn hơn để đưa vào quần thể tiếp theo và
quay lại Bước 2
Chúng ta có thể thấy NSGA-II cơ bản khác thuật toán
di truyền ở việc xét đồng thời tất cả các mục tiêu mà
không đưa về một mục tiêu Chính vì vậy mà để đánh
giá độ thích nghi các nghiệm và lựa chọn cá thể đưa
vào thế hệ tiếp theo thì trong thuật toán NSGA-II người
ta dựa vào thủ tục sắp xếp non dominated sorting và
khoảng cách quy tụ
Trên đây là những bước cơ bản của thuật toán di truyền GA và thuật toán NSGA-II Để áp dụng các thuật toán này cho một bài toán cụ thể chúng ta phải nghiên cứu cách mã hóa các nghiệm sao cho thỏa mãn các yêu cầu bài toán, toán tử tính độ thích nghi, thủ tục sinh quần thể, thủ tục lai tạo và đột biến Chi tiết của những thủ tục này sẽ được chúng tôi trình bày trong phần tiếp theo
B Thiết kế thuật toán
Mã hóa: Mỗi phương án sẽ được mã hóa bởi một mảng hai chiều X có N dòng và M cột Nếu Xij = k
có nghĩa là ô (i, j) được sử dụng cho mục đích k Hàm mục tiêu thứ nhất được tính bởi công thức:
f1(X) =
N
X
i=1
M
X
j=1
Bijk với k = Xij Hàm mục tiêu thứ hai được tính như sau:
f2(X) = 2
N
X
i=1
M −1
X
j=1
rij+ 2
N −1
X
i=1
M
X
j=1
cij
Ở đây rij = 1 nếu Xij = Xij+1 và bằng 0 nếu ngược lại, cij= 1 nếu Xij = Xi+1j và bằng 0 nếu ngược lại
Sinh cá thể ngẫu nhiên: Để đảm bảo trong mảng X
có đúng Tk ô nhận giá trị bằng k ta thực hiện vòng lặp với k từ 1 đến K, ở mỗi bước ta chọn ngẫu nhiên ra Tk
ô chưa sử dụng trong mảng X và gán giá trị cho các ô này bằng k
Lai tạo:Chọn ngẫu nhiên 2 mảng X và Y trong quần thể hiện thời và cho lai ghép với nhau ra X’ và Y’ X’ được tạo thành bởi nửa trái của X ghép với nửa phải của Y còn Y’được tạo nửa trái của Y ghép với nửa phải của X Nếu chỉ ghép như vậy thì sẽ có thể xẩy ra trường hợp X’, Y’ không thỏa mãn ràng buộc (3) ta phải dùng một thủ tục để chuẩn hóa X’, Y’ nhằm đảm bảo X’, Y’ thỏa mãn các ràng buộc của bài toán Trong thủ tục này chúng tôi sẽ xem xét các mục đích sử dụng đất chưa đảm bảo ràng buộc (3) sau đó điều chỉnh thêm hoặc bớt các ô đất để đảm bảo mục đích k được sử dụng bởi đúng Tk ô đất
Đột biến: Đổi chỗ một số ô một cách ngẫu nhiên trong mảng
IV KẾT QUẢ SỐ THỬ NGHIỆM
Chúng tôi chạy thử nghiệm hai thuật toán đề xuất là
GA và NSGA-II Thuật toán GA được dùng để giải bài toán (P0), thuật toán NSGA-II được áp dụng để giải bài toán (P ) Cả hai thuật toán được cài đặt thử nghiệm
Trang 4Bảng I
K ẾT QUẢ CỦA 20 LẦN CHẠY THUẬT TOÁN
Lần chạy 1 2 3 4 5 6 7
GA 411 428 423 418 457 419 433
NSGAII 464 465 466 470 456 477 466
Lần chạy 8 9 10 11 12 13 14
GA 451 420 437 446 422 425 429
NSGAII 465 450 473 475 460 472 471
Lần chạy 15 16 17 18 19 20 TB
NSGAII 467 465 469 456 482 466 466,75
trên Matlab và chạy trên máy tính có CPU Core2Duo
2.4 GHz, Ram 4GB Do chưa thể thu thập được số liệu
thực tế và một phần để có thể kiểm tra được chất lượng
của nghiệm thu được nên chúng tôi dùng số liệu giả
định với mục đích quan sát kết quả của thuật toán Dữ
liệu giả định xem xét với một vùng đất được chia thành
10 hàng, 10 cột (100 ô đất) Có 4 mục đích sử dụng
đất khác nhau (K=4) Sự phù hợp đất với các mục đích
được giả định là: góc phần tư trên cùng bên trái rất phù
hợp với mục đích 1, góc phần tư phía trên bên phải phù
hợp cho mục đích 2, góc dưới bên phải phù hợp cho
mục đích 3, góc dưới bên phải phù hợp cho mục đích 4
Giá trị lợi nhuận mang lại khi dùng đất phù hợp được
đặt gấp 5 lần so với đất không phù hợp Diện tích đất
sử dụng cho mục đích sử dụng đất lần lượt là 20, 30,
30, 20 Giá trị cho hệ số w được chọn là 0,5 Số vòng
lặp tối đa đặt cho cả hai thuật toán là 500 vòng lặp
Chúng tôi thực hiện chạy thuật toán 20 lần và lấy kết
quả tốt nhất ở mỗi lần để so sánh Các tham số về kích
thước quần thể, tỷ lệ lai ghép và tỷ lệ đột biến được
cài đặt cho cả hai thuật toán là như nhau và lần lượt là
psize=60, pc=0,9, pm=0,1 Kết quả về giá trị hàm mục
tiêu (là tổ hợp của hai mục tiêu với trọng số w = 0, 5)
của 20 lần chạy thuật toán GA và NSGA-II được trình
bày ở trong Bảng I Số liệu trong bảng cho ta thấy kết
quả cho bởi NSGA-II tốt hơn kết quả của thuật toán GA
ở hầu hết các lần chạy Kết quả trung bình của thuật
toán NSGA-II là 466,75 trong khi kết quả trung bình
của GA chỉ là 427,2 Như vậy kết quả trung bình của
NSGA-II tốt hơn kết quả trung bình của GA 9,13% Kết
quả tốt nhất của NSGA-II là 482 trong khi đó kết quả
tốt nhất của GA chỉ là 457 Ngoài ra chúng ta cũng có
thế thấy trong 20 lần chạy thuật toán NSGA-II chỉ có
3 lần cho kết quả thấp hơn 457 và giá trị thấp hơn là
không đáng kể, các giá trị đó lần lượt là 456 (lần 5),
450 (lần 9), 456 (lần 18) Từ kết quả này cho thấy với
bộ số liệu thử nghiệm thì thuật toán NSGA-II cho kết
quả tốt hơn thuật toán GA
Hình 1 biểu diễn kết quả tốt nhất cho bởi GA Hình 2
Hình 1 Kết quả tốt nhất với GA.
Hình 2 Kết quả tốt nhất với NSGA-II.
biểu diễn kết quả cho bởi NSGA Từ kết quả này chúng
ta có thể thấy các ô đất phục vụ cho mục đích sử dụng
1 (màu xanh) tập trung chủ yếu ở góc trên cùng bên trái, các ô sử dụng cho mục đích thứ 2 (màu vàng) tập trung chủ yếu góc trên cùng bên phải, các ô dùng cho mục đích sử dụng 3 (màu đỏ) tâp trung ở góc dưới bên trái và các ô dùng cho mục đích 4 (màu mận chín) tập trung chủ yếu cho góc dưới cùng bên phải Từ hình ảnh kết quả chúng ta có thể thấy nghiệm thu được chưa phải
là nghiệm tối ưu toàn cục nhưng mức độ tập trung của các ô sử dụng cho cùng một mục đích là cao và chủ yếu nằm ở phần đất đem lại lợi nhuận cao hơn Kết quả này cho thấy nghiệm thu được bởi các thuật toán đề xuất là khá tốt
Trang 5V KẾT LUẬN
Trong bài báo này chúng tôi đã nghiên cứu thuật giải
một mô hình tối ưu một cho bài toán quy hoạch sử dụng
đất Hai thuật toán dựa trên ý tưởng của giải thuật di
truyền là GA và NSGA-II đã được thiết kế một cách
chi tiết cho bài toán Các thuật toán cũng đã được cài
đặt trên Matlab và chạy thử nghiệm để so sánh kết quả
thu được Từ kết quả số với dữ liệu mô phỏng cho thấy
thuật toán NSGA-II cho kết quả tốt hơn khi tổ hợp cả
hai mục tiêu với trọng số cho tính compact của các mục
đích sử dụng đất là 0,5 Hình ảnh nghiệm cũng cho thấy
các nghiệm thu được cho kết quả quy hoạch khá tốt Tuy
vậy, có nhiều vấn đề chúng tôi dự định sẽ tiếp tục đào
sâu trong các nghiên cứu tiếp theo như áp dụng mô hình
và thuật toán cho bộ dữ liệu thực cấp huyện hoặc cấp
tỉnh Khi đó kích thước của bài toán sẽ lớn hơn cũng
như cần có số liệu được cung cấp bởi cơ quan quản lý
hoặc các nhà nghiên cứu về đất đai Ngoài ra về phương
diện khoa học máy tính thì tiếp tục nghiên cứu các biến
thể của NSGAII hoặc lựa chọn các phương pháp tối ưu
tất định để có thể cải thiện chất lượng nghiệm thu được
là một đề tài hứa hẹn cho thêm các kết quả sâu sắc hơn
TÀI LIỆU THAM KHẢO [1] Altinakar M, Qi H (2008), Numerical-simulation based
multi-objective optimization of agricultural land-use with uncertainty.
In: World Environmental and Water Resources Congress,
Hon-olulu, Hawaii, United States, May 12–16, 2008, Pages 1–10.
doi:10.1061/40976(316) 481.
[2] Aerts JJH, Herwijnen M, Stewart T (2003), Using simulated
annealing and spatial goal programming for solving a multi site
land use allocation problem In: Fonseca C, Fleming P, Zitzler E,
Thiele L, Deb K (eds) Evolutionary multi-criterion optimization,
vol 2632 Lecture Notes in Computer Science Springer Berlin,
Heidelberg, Pages 448– 463.
[3] Chetty S, Adewumi AO (2013), Three new stochastic local
search metaheuristics for the annual crop planning problem based
on a new irrigation scheme J Appl Math 2013, 14 pages,
https://www.hindawi.com/journals/jam/2013/158538/.
[4] Keith B Matthews (2000), Applying Genetic Algorithms to
Multi-Objective Land Use Planning, Proceedings of the 2nd Annual
Conference on Genetic and Evolutionary Computation, Pages
613-620, ISBN:1-55860-708-0(2000).
[5] K Deb, A Pratap, S Agarwal, T Meyarivan, A Fast and Elitist
Multiobjective Genetic Algorithm NSGA-II, IEEE Transactions
on Evolutionary Computation, Volume 6 , Issue 2, Pages 182
-197(2002).
[6] Michael Batty ,Bo Huang ,Yan Liu,Le Yu, Spatial multi-objective
land use optimization: extensions to the non-dominated sorting
genetic algorithm-II,International Journal of Geographical
Infor-mation Science Volume 25, Issue 12, Pages 1949-1969(2011).
[7] Jeroen C.J.H., Using Linear Integer Programming for Multi-Site
Land- Use Allocation, Journal: Geographical Analysis, Volume
35; Pages 148-169(2003).
[8] Mohamed-Mahmoud Memmah, Franc¸oise Lescourret, Xin Yao,
Claire Lavigne, Metaheuristics for agricultural land use
optimiza-tion A review, Agron Sustain Dev Volume 35, Pages 975–998
(2015).
[9] Mohammad M., et al., Optimization Crops Pattern in Variable Field Ownership, World Applied Sciences Journal 21 (4): Pages 492-497 (2013).