1. Trang chủ
  2. » Thể loại khác

KHỐI 9 - Chuong II 2 Duong kinh va day cua duong tron (1)

19 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 681 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Slide 1 Thế nào là dây của đường tròn ? Đoạn thẳng nối hai điểm phân biệt trên đường tròn được gọi là dây của đường tròn đó Dây đi qua tâm của đường tròn được gọi là đường kính của đường tròn đó Thế n[.]

Trang 2

Thế nào là dây của đường tròn ?

Đoạn thẳng nối hai điểm phân biệt trên đường

tròn được gọi là dây của đường tròn đó.

Dây đi qua tâm của đường tròn được

gọi là đường kính của đường tròn đó.

Thế nào là đường kính của đường tròn?

Lưu ý: Đường kính cũng là một dây của đường tròn.

O

O

D C

Trang 3

ĐƯỜNG KÍNH VÀ DÂY CỦA

ĐƯỜNG TRÒN

Trang 4

1 So sánh độ dài của đường kính

và dây

Bài

toán 1:

Gọi AB là một dây bất kì

của đường trịn (O ; R) Chứng minh rằng

AB 2R ≤

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRỊN

R B O

A

Giải:

TH1: AB là đường kính

Ta cĩ AB = 2R (1)

TH2: AB khơng là đường kính

Xét AOB, ta cĩ

AB < AO + OB ( theo BĐT tam giác)

R O A

B

Định lí 1

Trong các dây của đường trịn, dây lớn

nhất là đường kính.

Tiết 20

Hay AB < R + R = 2R (2)

Từ (1) và (2) suy ra AB ≤ 2R

* Vậy trong các dây của đường trịn tâm O bán kính R, dây lớn nhất cĩ

độ dài bằng bao nhiêu ?dây đĩ là gì của đường trịn ?

Trang 5

1 So sánh độ dài của đường kính

và dây

Tiết 20:

Định lí 1

Trong các dây của đường tròn, dây lớn

nhất là đường kính.

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN

Xét đường tròn (O) :

KH là dây không đi qua tâm

BC là đường kính

=> KH < BC ( định lí 1)

Giải

Bài tập Cho hình vẽ:

So sánh KH và BC

C B

O

Trang 6

MỘT ỨNG DỤNG TRONG THỰC TẾ.

 Cầu thủ nào chạm bóng trước

Hai cầu thủ ở hai vị trí như hình vẽ Nếu cả hai cầu thủ cùng bắt đầu chạy thẳng tới bóng và chạy với vận tốc bằng nhau Hỏi cầu thủ nào chạm bóng trước

Trang 7

1 So sánh độ dài của đường kính

và dây

Định lí 1

Trong các dây của đường tròn,

dây lớn nhất là đường kính.

Bài

toán 2:

Cho đường tròn (O; R),

đường kính AB vuông

góc với dây CD tại I

O

D C

B A

Giải :

TH1: CD là đường kính Ta có I O

nên IC = ID (=R)

TH2: CD không là đường kính Xét COD

có:

OC = OD (= R)

Vậy  COD cân tại O

OI là đường cao nên cũng là đường trung tuyếndo đó IC = ID

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy.

C

B A

I O

Trang 8

1 So sánh độ dài của

đường kính và dây

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRỊN

TiÕt

20:

Định lí

1

Trong các dây của

đường tròn, dây lớn

nhất là đường kính.

2 Quan hệ vuông góc

giữa đường kính và

dây

Bài

toán 2:

Cho đường tròn (O; R),

đường kính AB vuông

góc với dây CD tại I

Chứng minh rằng IC = ID

C

B A

I

O

D C

B A

Giải :

TH1: CD là đường kính Ta có I O

nên IC = ID (=R)

TH2: CD không là đường kính

Xét COD có:

OC = OD (= R) nên nó cân tại O

OI là đường cao nên cũng là đường trung tuyến, do đó IC = ID

Định lí

2

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy.

I O

Trang 9

1 So saựnh ủoọ daứi cuỷa

ủửụứng kớnh vaứ daõy

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRềN

Tiết

20:

ẹũnh lớ

1

Trong caực daõy cuỷa

ủửụứng troứn, daõy lụựn

nhaỏt laứ ủửụứng kớnh.

2 Quan heọ vuoõng goực

giửừa ủửụứng kớnh vaứ

daõy

ẹũnh lớ

2

Trong moọt ủửụứng

troứn, ủửụứng kớnh

vuoõng goực vụựi moọt

daõy thỡ ủi qua trung

ủieồm cuỷa daõy aỏy Trong moọt ủửụứng

troứn, ủửụứng kớnh ủi

qua trung ủieồm cuỷa

moọt daõy thỡ vuoõng

goực vụựi daõy aỏy.

Hãy phát biểu mệnh đề đảo của định lý 2

Mệnh đề đảo cú đỳng khụng?

Hóy đưa ra một hỡnh vẽ chứng tỏ rằng đường kớnh đi qua trung điểm của một dõy mà khụng vuụng gúc

với dõy ấy.

Trang 10

Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây thì vuông

góc với dây ấy.

Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây

1 So sánh độ dài của

đường kính và dây

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRỊN

TiÕt

20:

Định lí

1

Trong các dây của

đường tròn, dây lớn

nhất là đường kính.

2 Quan hệ vuông góc

giữa đường kính và

dây

Định lí

2

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy.

I

O

D C

B

A

I

O

D C

B A

A

B

O

C

D

TH1: Nếu dây CD không đi qua

tâm

TH2: Nếu dây CD đi qua tâm

Xét COD có:

OC = OD (= R) nên nó cân tại O

OI là đường trung tuyến nên cũng là đường cao

Mệnh đề đảo không đúng

không đi

qua tâm

Định lí

3

Do đó OI

CD

Trang 11

Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây thì vuông

góc với dây ấy.

Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây

1 So sánh độ dài của

đường kính và dây

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRỊN

TiÕt

20:

Định lí

1

Trong các dây của

đường tròn, dây lớn

nhất là đường kính.

2 Quan hệ vuông góc

giữa đường kính và

dây

Định lí

2

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy.

I

O

D C

B

A

I

O

D C

B A

A

B

O

C

D

TH1: Nếu dây CD không đi qua

tâm

TH2: Nếu dây CD đi qua tâm

Xét COD có:

OC = OD (= R) nên nó cân tại O

OI là đường trung tuyến cũng là đường cao

không đi

qua tâm

Định lí

3 Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây không đi

góc với dây ấy.

Do đó OI

CD

Trang 12

1 So sánh độ dài của

đường kính và dây

HOẠT ĐỘNG 3: LUYỆN TẬP.

TiÕt

20:

Định lí

1

Trong các dây của

đường tròn, dây lớn

nhất là đường kính.

2 Quan hệ vuông góc

giữa đường kính và

dây

Định lí

2

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy.

Định lí

3 Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây không đi

góc với dây ấy.

Bµi tËp 1:

Cho hình vẽ Hãy tính độ dài dây AB, biết

OA = 13cm, AM = MB, OM

= 5cm.

O

B

Giải :

Ta cĩ: AM = MB (gt) nên OM AB ⊥

Xét tam giác MOA vuơng tại M Theo đ/lý Pytago ta có:

2 2 13 5 2 2 144 12

AB = AM = = cm

kt

Trang 13

Hãy ghép mỗi câu ở cột A với một ý ở cột B để được

kết luận đúng

Cột B

a.nhỏ nhất b.có thể vuông góc hoặc không vuông góc với dây cung

c.luôn đi qua trung

điểm của dây cung ấy

d.lớn nhất

e dây cung đi qua tâm

g vuông góc với dây ấy

Thứ năm ngày 15 tháng 11 năm 2007

Cột A

Trong một đường tròn:

1 Đường kính vuông góc với

dây cung thì

2 Đường kính là dây có

độ dài

3 Đường kính đi qua trung

điểm của dây cung

thì

4 Đường kính đi qua trung

điểm của một dây

không đi qua tâm thì

1 Đường kính vuông góc

với dây cung thì

c.luôn đi qua trung điểm của dây cung ấy

2 Đường kính là dây có độ

dài

d.lớn nhất

3 Đường kính đi qua

trung điểm của dây

cung thì

b.có thể vuông góc hoặc không vuông góc với dây cung

4 Đường kính đi qua

trung điểm của một

dây không đi qua tâm

thì

g vuông góc với dây ấy

Trang 14

HƯỚNG DẪN VỀ NHÀ

BÀI 2 ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRỊN

TiÕt 20:

Định lí

1

Trong các dây của

đường tròn, dây lớn

nhất là đường kính. Định lí

2

Trong một đường

tròn, đường kính

vuông góc với một

dây thì đi qua trung

điểm của dây ấy. Định lí 3

Trong một đường

tròn, đường kính đi

qua trung điểm của

một dây không đi

góc với dây ấy.

- Nắm được 3 định lí đã học;

-Làm bài tập 11

(SGK/104);

-Bài tập 16, 18, 19,

20 (SBT/130-131).

kt

Trang 15

HOẠT ĐỘNG 4: VẬN DỤNG

Hãy xác định tâm của một nắp hộp

hình tròn

* Vẽ dây CD bất kỳ Lấy I là trung

điểm của CD

o

B

A

I

D C

.

* Dựng đ ường thẳng vuông góc với

CD tại I cắt đ ường tròn tại hai điểm

A, B

* AB chính là đ ường kính của

nắp hộp

* Trung điểm O của AB là tâm của

nắp hộp tròn.

Trang 16

MỘT VÀI ỨNG DỤNG TRONG THỰC TẾ.

 Một ứng dụng của thước chữ T

Một người thợ làm một chi tiết máy vòng tròn, để xác định tâm của đường tròn người thợ đã làm như sau:

Giao điểm O của hai đoạn

thẳng vừa vẽ chính là tâm của

chi tiết máy

• O

Trang 17

Đường kính

vuông góc với dây đi qua trung điểm của dây

Đường kính là dây lớn nhất

dây không qua tâm

Trang 18

HƯỚNG DẪN VỀ NHÀ

- Nắm được 3 định lí đã học;

- Làm bài tập 11 (SGK/104);

- Bài tập 16, 18, 19, 20 (SBT/130-131).

Trang 19

BÀI TẬP SỐ 10

Cho tam giác ABC, các đường cao

BD và CE Chứng minh rằng:

một đường tròn.

b) DE < BC

Ngày đăng: 20/04/2022, 14:46

🧩 Sản phẩm bạn có thể quan tâm

w