1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp

44 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 2,62 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Câu 17: Đường cong trong hình dưới đây là đồ thị của hàm số nào??. Tìm mệnh đề đúng trong các mệnh đề sau A.[r]

Trang 1

 Chọn mệnh đề sai trong các mệnh đề sau đây?

A Hàm số nghịch biến trên khoảng ;3 

B Hàm số nghịch biến trên

C Hàm số nghịch biến trên các khoảng ;3 và 3;

D Hàm số nghịch biến trên khoảng 3;

Câu 8: Thể tích khối lăng trụ tứ giác đều có tất cả các cạnh bằng a là

3

.3

a

C

3

3.4

a

D

3

.2

a

Trang 2

Câu 9: Thể tích khối lập phương có cạnh bằng 3a

1

x y x

 

2 31

x y x

2 3.1

x y x

Câu 14: Cho hàm số yf x  có đồ thị như hình vẽ:

Mệnh đề nào sau đây sai?

Trang 3

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 18: Cho số thực a0 và a1. Tìm mệnh đề đúng trong các mệnh đề sau

A loga x y loga x.loga y,x y, 0  B loga x nnloga x x, 0,n0 

C log 1aa và loga a0 D loga x có nghĩa với  x

Câu 19: Cho khối chóp S ABC có đáy là tam giác vuông cân tại B SA, vuông góc với đáy và

f x  0  0 + 0  0 +

Trang 4

Số điểm cực tiểu của hàm số yf x  là:

Câu 22: Nếu tứ diện có chiều cao giảm 3 lần và cạnh đáy tăng 3 lần thì thể tích của nó

A Tăng 3 lần B Tăng 6 lần C Giảm 3 lần D Không thay

 Gọi M là giao điểm của  C với trục tung

Tiếp tuyến của  C tại M có phương trình là

 là:

Câu 29: Trung điểm các cạnh của hình tứ diện đều tạo thành

A Lăng trụ tam giác đều B Bát diện đều

C Hình lục giác đều D Hình lập phương

Câu 30: Với giá trị nào của m thì đồ thị hàm số

2

2

x mx y

Trang 5

Câu 31: Tìm tất cả các giá trị tực của tham số m để hàm số

1

x m y

Câu 32: Cho mặt cầu S I R và điểm  ;  A nằm ngoài mặt cầu Qua A kẻ đường thẳng cắt  S tại hai

điểm phân biệt , B C Tích AB AC bằng

A.IA2R2 B.R IA C.IA2R2 D 2 R IA

Câu 33: Giả sử các biểu thức chứa logarit đều có nghĩa Mệnh đề nào sau đây đúng?

A.loga bloga c b c. B Cả 3 đáp án A, B, C đều đúng

C loga bloga c b c D loga bloga c b c

Câu 34: Gọi A là điểm cực đại của đồ thị hàm số y2x33x2 1 thì A có tọa độ là

C Không tồn tại tâm I

D I là tâm đáy ABCD

Câu 36: Cho hàm số f x có bảng xét dấu đạo hàm như hình bên dưới  

 

 

30; 2

Trang 6

A. min 2279

16

B Tmin 13 C Tmin 16 D Tmin 19

Câu 39: Tìm tất cả các giá trị của tham số m sao cho đồ thị hàm số

2

1 2021

x y

x mx m

 

   có đúng ba đường tiệm cận

   

 

; 2 22; 4

 sao cho khoảng cách từ M đến trục tung

bằng hai lần khoảng cách từ M đến trục hoành?

3

3 a D 3 3

2 a

Trang 7

2.9

Câu 48: Tìm các giá trị thực của tham số m để phương trình 2 x 1 x m x x2 có hai nghiệm phân biệt

5; 6 4

5; 6 4

Trang 8

BẢNG ĐÁP ÁN

11-C 12-D 13-C 14-D 15-C 16-D 17-D 18-B 19-B 20-A

21-D 22-A 23-C 24-C 25-A 26-D 27-B 28-B 29-B 30-C

31-D 32-A 33-C 34-B 35-B 36-D 37-D 38-C 39-A 40-A

41-D 42-A 43-B 44-D 45-B 46-A 47-A 48-B 49-B 50-C

Trang 9

D Hàm số đồng biến trên các khoảng  ; 2 và  2; 

Câu 5: Cho ba số dương a, b, c (a1,b1) và số thực  Đẳng thức nào sau đây sai?

A log

log

log

a b

b

c c

a

C loga b loga b loga c

Trang 10

Câu 6: Cho hàm số yf x  có đồ thị như hình vẽ

Hàm số yf  x nghịch biến trên khoảng nào dưới đây?

5

x y

 

  

 

Câu 10: Trong không gian với hệ toạ độ Oxyz, phương trình mặt phẳng  P đi qua M2;1; 1  và

vuông góc với đường thẳng d : 1 1

Trang 11

A 2 B 1 C 3 D 4

Câu 14: Cho hàm số yf x  có đạo hàm trên và có bảng xét dấu f x như sau:

Hàm số đạt cực đại tại điểm

A x0 B x 2 C x1 D x2

Câu 15: Cho một khối chóp có chiều cao bằng h và diện tích đáy bằng B Nếu giữ nguyên chiều cao h,

c n diện tích đáy tăng lên 3 lần thì ta được một khối chóp mới có thể tích là

Trang 12

A 1  cm B 3  cm C 4  cm D 2  cm

Câu 21: Cho hàm số 1

2

x y x

Câu 27: Cho hình chóp S ABCD có đáy ABCD là hình vuông và SAABCD Gọi M N, lần lượt

là trung điểm CDBC Trong các mệnh đề bên dưới mệnh đề nào đúng?

Trang 13

Gọi  là đường thẳng đi qua điểm A, vuông góc với đường thẳng d và cắt

trục hoành Tìm một vectơ chỉ phương u của đường thẳng 

Trang 14

ra được tối đa bao nhiêu khối cầu?

A 30 khối B 20 khối C 15 khối D 45 khối

Câu 37: Khi tính nguyên hàm 3

d1

x

x x

Trang 15

 

 

  C log12

x y

 

 

  D log4

x y

Câu 44: Một chất điểm chuyển động theo phương trình S   t3 12t230t10 trong đó t tính bằng

 sS tính bằng  m Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là

A t2s B t4s C t6s D t 5s

Câu 45: Gọi S là tập tất cả các giá trị của tham số m để đồ thị hàm số 2 1

2

x y

  có đúng một tiệm cận đứng và một tiệm cận ngang Số phần tử của S

Trang 16

Câu 48: Cho hình lập phương ABCD A B C D     có độ dài cạnh bằng 1 Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, C D  và DD Tính thể tích khối tứ diện MNPQ

S x  y  z  và hai điểm A2;1; 3 ,  B 4;0; 2  Xét mặt phẳng  P đi

qua A B , cắt mặt cầu ( )S theo thiết diện là một đường tròn ( )C Gọi  N là khối nón đỉnh I (tâm mặt cầu ( )S ) nhận ( )C là đường tr n đáy Thể tích của khối nón  N đạt lớn nhất khi

Trang 17

ĐÁP ÁN

Trang 18

Nhìn vào đồ thị hàm số f x  ta thấy hàm số nghịch biến trên khoảng 2;0

Câu 4 Cho hàm số yf x  xác định, liên tục trên và có đồ thị là đường cong trong hình vẽ bên

 

Trang 19

A 1 B 3 C 2 D 0

Lời giải

Dựa vào đồ thị ta thấy hàm số có 3 điểm cực trị

Câu 5 Tọa độ điểm cực đại của đồ thị hàm số y 2x33x21 là:

Vạy điểm cực đại của đồ thị hàm số là  1; 2

Câu 6 Tiệm cận ngang của đồ thị hàm số 2

1

x y x



21

11

x

x x



  là tiệm cận ngang của đồ thị hàm số

Câu 7 Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

2

2

Trang 20

Câu 8 Cho hàm số yf x  có bảng biến thiên như sau

Số nghiệm của phương trình f x 2

Lời giải

Số nghiệm của phương trình f x  2 0 f x 2 là số giao điểm của đồ thị hàm số yf x  và đường thẳng y2 Dựa vào BBT ta thấy đường thẳng y2 cắt đồ thị hàm số yf x  tại 4 điểm phân biệt

Câu 9 Nếu log a2 x thì

A x2a B ax2 C a2x D a2x

Lời giải

Theo định nghĩa lôgarit ta có log2a  x a 2x

Câu 10 Tập xác định của hàm số ylog2x

Trang 21

p dụng công thức m 1m

a a

Theo công thức lôgarit của tích

Câu 13 Nghiệm của phương trình log2 2x 0

Trang 22

Điểm biểu diễn của số phức 3 2i có tọa độ là 3; 2 

Câu 21 Một khối chóp có diện tích đáy bằng B và chiều cao bằng h Thể tích của khối chóp đó

Trang 23

Câu 23 Thể tích V của khối nón có bán kính đáy r và chiều cao h bằng

Mặt phẳng toạ độ Oyz có một vectơ pháp tuyến có toạ độ là i1;0;0

Câu 28 Trong không gian Oxyz , phương trình nào sau đây là phương trình của một mặt cầu?

A x2y22x4y 1 0 B 2x22y22z2 1 0

C x2y2z22x4y60 D x2y22z22x4z10

Câu 29 Chọn ngẫu nhiên một số trong các số tự nhiên từ 1 đến 30 Xác suất để chọn được số có

hai chữ số phân biệt bằng

Trang 24

Lời giải

Số phần tử không gian mẫu: n  30

Từ 10 đến 30 có tất cả 21 số có 2 chữ số, trong đó các số có hai chữ số bằng nhau gồm 11, 22

Suy ra từ 1 đến 50 có tất cả 19 số có hai chữ số phân biệt

Trang 25

Tam giác SAC cân tại A , có ACSAa 2 nên SAC là tam giác đều, suy ra SAO 60

Vậy góc giữa đường thẳng SA và mặt phẳng ABCD bằng  60

Câu 36 Cho khối lăng trụ tam giác đều ABC A B C    có cạnh đáy là a và khoảng cách từ A đến

a

3

3 216

a

3

3 248

a

Lời giải

Chọn C

Trang 26

Gọi M là trung điểm BC , H là hình chiếu của A trên A M Nhận xét d A A BC, AH

Tam giác AA M vuông tại A nên có:

Gọi I là trung điểm của AB Ta có: I1;0;1

Mặt phẳng trung trực của đoạn thẳng AB đi qua I1;0;1 và có vectơ pháp tuyến là AB4; 2;0

M A

B

C

A'

B' C'

H

Trang 27

Phương trình mặt phẳng cần tìm là: 4x 1 2 y 0 0 z 1 0 2x  y 2 0

Câu 39 Cho là hàm số xác định và có đạo hàm trên Biết rằng hàm số

có bảng xét dấu như sau

Hàm số có bao nhiêu điểm cực đại?

234

x x

x x

u

u u

u

f u

u u

Câu 40 Cho phương trình log2mm2x2x (m tham số) Có bao nhiêu giá trị nguyên

dương của m nhỏ hơn 2021 sao cho phương trình đã cho có nghiệm?

Trang 28

Vậy có 2020 giá trị m thỏa mãn yêu cầu bài toán

Câu 41 Cho hàm số f x liên tục trên ( ) và có 3  

1( )d 24

B f t t

Trang 29

Gọi M là trung điểm của BC Ta có AMBCCAM  60 ( doABCcân tại A )

Ta xác định được góc giữa A BC  và ABC là A MA  45

Trang 30

Bán kính đường tròn ngoại tiếp tam giác ABC bằng 2 2 3 2

2sin 60sin

2 4

Câu 44 Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2 m, một phía rộng 1

m, một phía rộng 1, 2 m Một người thợ cần mang một số ống thép cứng các loại có độ dài 2 m, 2,5 m, 3

m, 3,5 m, 4 m, từ bên này qua bên kia Hỏi có thể mang được mấy loại qua lối đi đó?

A 4 loại B 3 loại C 5 loại D 2 loại

Lời giải

Bài toán tổng quát:

với các kích thước như hình vẽ,

Trang 31

Câu 45 Trong không gian Oxyz, cho điểm A1;1; 2 , đường thẳng : 1 1 2

Câu 46 Cho hàm số f x( ) có bảng biến thiên sau:

Có bao nhiêu giá trị nguyên của tham số m để phương trình f 2sinxm 2 0 có đúng 6 nghiệm phân biệt thuộc 0;3?

Lời giải Chọn B

1sin

Trang 32

Để phương trình f 2sinxm 2 0 có đúng 6 nghiệm phân biệt thuộc 0;3 thì

2

m x

m x

Dựa vào đồ thị hàm số ysinx, để  1 có 4 nghiệm phân biệt và  2 có 2 nghiệm phân biệt thuộc

0;3 hoặc  1 có 2 nghiệm phân biệt và  2 có 4 nghiệm phân biệt thuộc 0;3 thì

102

12

m

m m

Đặt    2 2

2 3log 2 log

Trang 33

t t

Dễ thấy (***) luôn có ít nhất một nghiệm t  0 x 0

Vậy có 2 giá trị nguyên của y thỏa mãn là y0, y1

Câu 48 Cho vật thể có mặt đáy là hình tr n có bán kính bằng 1 (hình vẽ) Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x   1 x 1 thì được thiết diện là một tam giác đều Tính thể tích V của vật thể đó

3

V D V 

Lời giải Chọn C

Tại vị trí có hoành độ x   1 x 1 thì tam giác thiết diện có cạnh là 2 1 x 2

Do đó tam giác thiết diện có diện tích    2

Lời giải Chọn B

O, M , N không thẳng hàng nên z , 1 z không đồng thời là số thực, cũng không đồng thời là số 2

Trang 34

thuần ảo do đó, ta phải có:  a212a160   a 6 2 5; 6 2 5 

Khi đó, ta có:

2 1

2 2

      a 3 2 (thỏa mãn)

Suy ra tổng các giá trị cần tìm của a là 6

Câu 50 Trong không gian Oxyz , cho mặt cầu  S tâm I1;1;1 và đi qua điểm A0; 2; 0 Xét khối chóp đều A BCDB C D thuộc mặt cầu , ,  S Khi khối tứ diện ABCD có thể tích lớn nhất, mặt phẳng BCD có phương trình dạng xbycz d 0 Giá trị của b c d bằng

Lời giải

Mặt cầu  S có bán kính RIA 3

Gọi H K, lần lượt là tâm của tam giác đều BCD và trung điểm AB

Nhận thấy AKI và AHB là các tam giác vuông đồng dạng

Trang 35

Ta có: 2

0 ( )'( ) 3 4 3 ; '( ) 0 4 3

Trang 36

Câu 2: Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, AB2a, BCa, SAa 3 và SA

vuông góc với mặt đáy ABCD Thể tích V của khối chóp S ABCD bằng

3

33

13

x

y  xD yx43x21

Câu 4: Chọn khẳng định sai Trong một khối đa diện

A mỗi mặt có ít nhất 3 cạnh

B mỗi cạnh của một khối đa diện là cạnh chung của đúng 2 mặt

C mỗi đỉnh là đỉnh chung của ít nhất 3 mặt

D hai mặt bất kì luôn có ít nhất một điểm chung

Câu 5: Tiệm cận ngang của đồ thị hàm số 1

3 2

x y x

3 2 1

Trang 37

x y

x y x

yf x , trục hoành và hai đường thẳng xa, xbab Thể tích khối tròn xoay tạo thành khi

quay D quanh trục hoành được tính theo công thức

Trang 38

Câu 21: Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai khối chóp có hai đáy là hai đa giác bằng nhau thì thể tích bằng nhau

Trang 39

B Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau

C Hai khối đa diện bằng nhau thì thể tích bằng nhau

D Hai khối đa diện có thể tích bằng nhau thì bằng nhau

Câu 22: Cho hình phẳng H giới hạn bởi các đường yx; y0; x4 Diện tích S của hình phẳng

Câu 24: Cho khối lăng trụ có diện tích đáy bằng a và khoảng cách giữa hai đáy bằng 2 3a Tính thể tích

V của khối lăng trụ đã cho

Trang 40

5ln

Câu 36: Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A a ;0;0, B0; ;0b , C0;0;c , trong

đó a0, b0, c0 Mặt phẳng ABC đi qua điểm I1; 2;3 sao cho thể tích khối tứ diện OABC đạt

giá trị nhỏ nhất Khi đó các số a , b , c thỏa mãn đẳng thức nào sau đây?

A 2

6

a   b c B a b c  12

Trang 41

1 log x  1 log mx 4x m 1 Tìm tất cả các giá trị của m để

 1 được nghiệm đúng với mọi số thực x :

0

ln 1 d1

a

3

23

a

Trang 42

Câu 44: Tổng bình phương các giá trị của tham số m để đường thẳng d y:   x m cắt đồ thị

, m là tham số thực Gọi S là tập hợp tất cả các giá trị nguyên của tham

số m để hàm số nghịch biến trên khoảng  0;1 Tìm số phần tử của S

Trang 43

C  2

100 m

ĐÁP ÁN

Trang 44

Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên

danh tiếng

I Luyện Thi Online

- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng xây dựng các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và

Sinh Học

- Luyện thi vào lớp 10 chuyên Toán : Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các

trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên khác cùng TS.Trần Nam Dũng, TS Phạm Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn

II Khoá Học Nâng Cao và HSG

- Toán Nâng Cao THCS: Cung cấp chương trình Toán Nâng Cao, Toán Chuyên dành cho các em HS THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt điểm tốt ở các kỳ thi HSG

- Bồi dưỡng HSG Toán: Bồi dưỡng 5 phân môn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp

dành cho học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Phạm Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc

Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia

- HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả

các môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất

- HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi

miễn phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh

Vững vàng nền tảng, Khai sáng tương lai

Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%

Học Toán Online cùng Chuyên Gia

HOC247 NET cộng đồng học tập miễn phí HOC247 TV kênh Video bài giảng miễn phí

Ngày đăng: 19/04/2022, 16:33

HÌNH ẢNH LIÊN QUAN

Câu 13: Bảng biến thiên ở hình dưới là của hàm số nào trong bốn hàm số được liệt kê dưới đây. - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 13: Bảng biến thiên ở hình dưới là của hàm số nào trong bốn hàm số được liệt kê dưới đây (Trang 2)
Câu 17: Đường cong trong hình dưới đây là đồ thị của hàm số nào? - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 17: Đường cong trong hình dưới đây là đồ thị của hàm số nào? (Trang 3)
Câu 29: Trung điểm các cạnh của hình tứ diện đều tạo thành - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 29: Trung điểm các cạnh của hình tứ diện đều tạo thành (Trang 4)
Câu 35: Hình hộp chữ nhật ABCD ABCD. '' có tâm mặt cầu ngoại tiếp là điểm I. Mệnh đề nào sau đây là đúng? - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 35: Hình hộp chữ nhật ABCD ABCD. '' có tâm mặt cầu ngoại tiếp là điểm I. Mệnh đề nào sau đây là đúng? (Trang 5)
Câu 40: Cho hàm số  xác định, liên tục trên mỗi nửa khoảng    ;2 và  2;  và có bảng biến thiên như dưới đây - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 40: Cho hàm số  xác định, liên tục trên mỗi nửa khoảng    ;2 và  2;  và có bảng biến thiên như dưới đây (Trang 6)
Câu 47: Cho hình chóp S ABCD. có đáy là hình bình hành. Trên các đoạn SA SB SC SD ,, lấy lần lượt các  điểm E F G H, , ,  thỏa  mãn 1,2. - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 47: Cho hình chóp S ABCD. có đáy là hình bình hành. Trên các đoạn SA SB SC SD ,, lấy lần lượt các điểm E F G H, , , thỏa mãn 1,2 (Trang 7)
BẢNG ĐÁP ÁN - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
BẢNG ĐÁP ÁN (Trang 8)
BẢNG ĐÁP ÁN - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
BẢNG ĐÁP ÁN (Trang 8)
Câu 2: Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức  z - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 2: Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z (Trang 9)
Câu 6: Cho hàm số  có đồ thị như hình vẽ. - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 6: Cho hàm số  có đồ thị như hình vẽ (Trang 10)
Câu 14: Cho hàm số  có đạo hàm trên và có bảng xét dấu x như sau: - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 14: Cho hàm số  có đạo hàm trên và có bảng xét dấu x như sau: (Trang 11)
Câu 27: Cho hình chóp S ABCD. có đáy ABCD là hình vuông và SA  ABCD . Gọi M N, lần lượt là trung điểm CD và BC - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 27: Cho hình chóp S ABCD. có đáy ABCD là hình vuông và SA  ABCD . Gọi M N, lần lượt là trung điểm CD và BC (Trang 12)
Câu 31: Cho hàm số bậc bốn () có bảng biến thiên như hình vẽ. Phương trình 2 có bao nhiêu nghiệm? - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 31: Cho hàm số bậc bốn () có bảng biến thiên như hình vẽ. Phương trình 2 có bao nhiêu nghiệm? (Trang 13)
Câu 35: Viết phương trình tổng quát của mặt phẳng  qua ba điểm A, B, C lần lượt là hình chiếu của điểm  M 2;3; 5 xuống các trục Ox, Oy, Oz - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
u 35: Viết phương trình tổng quát của mặt phẳng  qua ba điểm A, B, C lần lượt là hình chiếu của điểm M 2;3; 5 xuống các trục Ox, Oy, Oz (Trang 14)
y  mx x m 4 có đồ thị  C. Gọi S 1 S2 là diện tích của hình phẳng giới  hạn bởi   C,  trục  hoành,  trục  tung  và  đường  thẳng x4    phần  tô  trong  hình  vẽ) - Bộ 4 đề thi thử THPT QG năm 2021 môn Toán lần 2 - Trường THPT Chuyên Đồng Tháp
y  mx x m 4 có đồ thị  C. Gọi S 1 S2 là diện tích của hình phẳng giới hạn bởi  C, trục hoành, trục tung và đường thẳng x4 phần tô trong hình vẽ) (Trang 15)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm