1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giáo án Hình học 8 tiết 48: Các trường hợp đồng dạng của tam giác vuông49191

4 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 128,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

MỤC TIÊU : Kiến thức : HS nắm được các dấu hiệu đồng dạng của tam giác vuông, nhất là dấu hiệu đặc biệt dấu hiệu về cạnh huyền và cạnh góc vuông.. Kĩ năng : Vận dụng định lý về hai tam

Trang 1

Tuần : 28

Ngày soạn :11/03/2010

Ngày dạy:19/03/2010

Tiết : 49 §8 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG

I MỤC TIÊU :

Kiến thức : HS nắm được các dấu hiệu đồng dạng của tam giác vuông, nhất là dấu hiệu đặc biệt (dấu hiệu về cạnh huyền và cạnh góc vuông)

Kĩ năng : Vận dụng định lý về hai tam giác đồng dạng để tính tỉ số các đường cao, tỉ số diện tích, tính độ dài

các cạnh

Thái độ : Rèn tính cẩn thận, Chính xác, suy luận của HS

II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH :

Chuẩn bị của GV : Bảng phụ vẽ hình 47, 48 SGK Thước thẳng, compa, êke, phấn màu, bút dạ

Chuẩn bị của HS : Ôn tập các trường hợp đồng dạng của hai tam giác, thước kẻ, compa, êke

III HOẠT ĐỘNG DẠY HỌC :

1) Tổ chức lớp : (1’)

2) Kiểm tra bài cũ : (7’)

Tb Nêu các trường hợp đồng dạng của tam

giác

Hai tam giác vuông ABC và A’B’C (hình

vẽ) có thêm một điều kiện nào nữa thì

chúng đồng dạng với nhau theo trường

hợp : (g-g) ; (c-g-c) ? Vì sao ?

- Các trường hợp đồng dạng của tam giác SGK -Nếu hai tam giác vuông ABC và A’B’C’ có :

hoặc thì chúng đồng

dạng với nhau

4

6

3)Bài mới :

Giới thiệu bài:(1’) (Đặc vấn đề) : Ta đã học các trường hợp đồng dạng của tam giác, còn hai tam giác vuông

đồng dạng với nhau khi nào ? Tỉ số hai đường cao tương ứng và tỉ số diện tích của hai tam giác đồng dạng có quan hệ như thế nào với tỉ số đồng dạng Đó là nội dung bài học hôm nay

Tiến trình bài dạy :

5’5’

10’

Hoạt động1:Aùp dụng các trường hợp

đồng dạng của tam giác vào tam

giác vuông.

Dựa vào các dấu hiệu về hai tam

giác đã học thì em nào có thể vận

dụng các trường hợp trên để tìm ra

các dấu hiệu để cho hai tam giác

vuông đồng dạng

Qua bài tập trên , hãy cho biết hai

tam giác vuông đồng dạng với nhau

khi nào ?

Sau đó g/v chốt lại và cho h/s ghi

các nội dung trên vào vở

Ngoài hai dấu hiệu này còn dấu hiệu

đặc biệt nào để nhận biết hai tam

giác vuông đồng dạng với nhau

không ?

Hoạt động 2: Dấu hiệu đặc biệt nhận

biết hai tam giác vuông đồng dạng

H/s suy nghĩ

HS trả lời

H/s chú ý và ghi nội dung vào vở

H/s quan sát và suy nghĩ

1/ Aùp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông.

Hai tam giác vuông đồng dạng với nhau nếu :

Tam giác vuông này có một góc

nhọn bằng góc nhọn của tam giác vuông kia

Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia

2/ Dấu hiệu đặc biệt nhận biết hai

A

B

B’

Trang 2

Ghi phần 2 SGK lên bảng

G/v đưa bảng phụ ghi ? 1 tr81 SGK

lên bảng

Hãy chỉ ra các cặp tam giác đồng

dạng Giải thích

Em có nhận xét gì về quan hệ giữa

hai cạnh A’B’ và B’C’ với hai cạnh

AB và BC ?

Từ đó rút ra dự đoán nào về trường

hợp đồng dạng của hai tam giác

vuông ?

GV vậy đó là trường hợp đồng dạng

đặc biệt của hai tam giác vuông

GV khẳng định lại và ghi bảng

Vậy để khẳng định được điều đó thì

ta phải chứng minh

Vậy muốn chứng minh hai tam giác

vuông trên đồng dạng thì ta phải dựa

vào đâu và phải chứng minh thêm

được điều gì ?

Hướng dẫn HS chứng minh theo sơ

đồ :

ABC A’B’C’

' '

B C

BC

' '

A B AB

' '

A C AC

2

2

' '

B C

BC

2

2 ' '

A B AB

2

2 ' '

A C AC

B'C' A'B'

=

2

2

' '

B C

BC

2

2 ' '

A B AB

B C A B

BCAB

Sau đó g/v yêu cầu h/s nêu lại

trường hợp đồng dạng đã được chứng

minh

Tỉ số hai đường cao, tỉ số diện tích

của hai tam giác đồng dạng có quan

hệ như thế nào với tỉ số đồng dạng ?

Hoạt động 3: Tỉ số hai đường cao , tỉ

số diện tích của hai tam giác đồng

dạng :

G/v treo bảng phụ ghi bài toán sau

lên bảng

Cho A’BC’ ABC theo tỉ số

đồng dạng k AH  BC ; A’H’ 

B’C’

Chứng minh :

HS quan sát hình vẽ rồi trả lời

Hai cạnh A’B’ và B’C’ tỉ lệ với hai cạnh AB và BC vì

Rút ra được định lý như SGK

H/s ghi nội dung định lý vào vở

H/s thực hiện theo hướng dẫn của g/v

2

2 ' '

B C

BC

2

2 ' '

A B

AB

B C A B

BC AB

Vì : B’C’2 – A’B’2 = A’C’2 và

BC2 – AB2 = AC2 (suy từ định lý Py-ta-go)

2

2 ' '

B C BC

2

2 ' '

A B AB

2

2 ' '

A C AC

Hay : B C ' '= =

BC

' '

A B AB

' '

A C AC

H/s đứng tại chỗ nêu lại theo yêu cầu của g/v

H/s quan sát hình vẽ trên

H/s suy nghĩ nội dung mà g/v nêu vấn đề

tam giác vuông đồng dạng

Định lý 1 : Nếu cạnh huyền và một

cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng

C'

B'

A' C A

B

GT

ABC , A’B’C’

= 900

AA

(1)

B C A B

BCAB

Chứng minh :

Từ (1) , bình phương hai vế

Ta được :

2

2 ' '

B C BC

2

2 ' '

A B AB

B C A B

BC AB

Mà : B’C’2 – A’B’2 = A’C’2 và BC2

– AB2 = AC2 (suy từ định lý Py-ta-go)

Do đó :

2

2 ' '

B C BC

2

2 ' '

A B AB

2

2 ' '

A C AC

Từ (2) suy ra :

' '

B C BC

' '

A B AB

' '

A C AC

Vậy : A’B’C’ ABC (trường hợp đồng dạng thứ nhất)

3/ Tỉ số hai đường cao , tỉ số diện tích của hai tam giác đồng dạng :

Định lý 2 : Tỉ số hai đường cao tương

ứng của hai tam giác đồng dạng

bằng tỉ số đồng dạng

Trang 3

a) A H ' ' = k

AH

b) A B C' ' ' = k2

ABC

S

S

GV hướng dẫn HS chứng minh :

- Để chứng minh A H ' ' = k =

AH

ta cần chứng minh gì ? Hãy

A'B'

AB

chứng minh ?

- Em hãy tính tỉ số diện tích của hai

tam giác A’B’C’ và ABC

Qua bài tập trên em rút ra nhận xét

gì ?

Ghi bảng và yêu cầu HS về nhà

chứng minh

Hoạt động 4:Củng cố

Em hãy nêu các trường hợp đồng

dạng của tam giác vuông ?

Nếu hai tam giác đồng dạng thì tỉ số

hai đường cao, hai đường trung

tuyến, hai đường phân giác, hai chu

vi có bằng nhau không ? vì sao?

Đưa bài tập sau lên bảng phụ :

Cho hình vẽ :

a) Tìm các tam giác đồng dạng

Viết các tam giác này theo thứ tự

các đỉnh tương ứng

b) Cho HB = 4 cm ; HC = 9 cm

Tính diện tích tam giác ABC

Hướng dẫn bài 47 tr84 SGK

Ta có : 52 = 42 + 32 nên tam giác

ABC là tam giác vuông

Vì hai tam giác ABC và A’B’C’ đồng

dạng theo tỉ số đồng dạng k nên

Một HS đứng tại chổ trình bày :

A’H’B’ AHB (g , g)

A H ' ' = = k

AH

' '

A B AB

Một HS khác trả lời :

' ' '

A B C

ABC

S S

1

2 1 2

B C A H

BC AH

= k.k = k2

' '

B C BC

A H AH

HS phát biểu

Một HS đứng tại chổ trả lời

Nếu hai tam giác đồng dạng thì tỉ số hai đường cao, hai đường trung tuyến, hai đường phân giác, hai chu vi bằng nhau vì cùng bằng tỉ số đồng dạng

HS 1 trả lời câu a

ABC HBA (g-g) vì có : chung

฀ B

Tương tự :

ABC HAC (g-g)

HBA HAC (tính bắc cầu)

HS2 làm câu b

Vì HBA HAC

2 2

HB HA

HA HC

HA 6 (cm)









Vậy SABC = 1 BC.AH

2

theo tỉ số đồng dạng k

AH  BC ; A’H’  B’C’

KL A H ' ' = k

AH

Định lý 3 : Tỉ số diện tích của hai

tam giác đồng dạng bằng bình phương tỉ số đồng dạng

GT

A’B’C’ ABC = k

' '

A B

AB

KL A B C' ' ' = k2

ABC

S S

A’

A

H’

A

Trang 4

2 A 'B'C'

ABC

2

k 3

 

Gọi ba cạnh của tam giác ABC lần

lược là a, b, c ta có

a b c 3 a 9(cm);

3 4 5

b 12(cm); c 15(cm)

    

1 13.639 (cm )2 2

4) Hướng dẫn về nhà :1’

Nắm vững các trường hợp đồng dạng của hai tam giác vuông, nhất là trường hợp đồng dạng đặc biệt (cạnh huyền cạnh góc vuông Tỉ số hai đường cao tương ứng, tỉ số diện tích hai tam giác đồng dạng

Bài tập về nhà 46, 47, 48, 49 tr84 SGK

Chứng minh định lý 3 Tiết sau luyện tập

IV/ RÚT KINH NGHIỆM - BỔ SUNG :

Ngày đăng: 31/03/2022, 20:17

🧩 Sản phẩm bạn có thể quan tâm

w