Tồn tại duy nhất một cặp mặt phẳng lần lượt chứa 2 đường thẳng a, b và song song với nhau... bên SA vuông góc với mặt đáy, SA = mpSBC?[r]
Trang 1S GIÁO D C VÀ ĐÀO T OỞ Ụ Ạ
THÁI BÌNH
⎯⎯⎯⎯⎯
ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II NĂM HỌC
2017-2018
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Môn: TOÁN 11
Th i gian làm bài: 90 phút; Đ g m 04 trangờ ề ồ
Mã đ 247 ề
A PH N TR C NGHI M Ầ Ắ Ệ (30 câu; 6,0 đi m) ể
Câu 1: Trong không gian, cho 3 đ ng th ng a, b, c phân bi t và m t ph ng (P) M nh đ nào sau đâyườ ẳ ệ ặ ẳ ệ ề đúng?
A N u aế b và b c thì a c B N u aế b thì a và b c t nhau ho c chéo nhau.ắ ặ
C N u aế c và mp(P) c thì a // mp(P) D N u aế c và b c thì a // b
Câu 2: Gi i h n ớ ạ b ng:ằ
Câu 3: Gi i h n ớ ạ b ng:ằ
Câu 4: Tính gi i h n ớ ạ ta đ c k t qu là:ượ ế ả
Câu 5: Cho hàm s ố M nh đ nào sau đây đúng?ệ ề
A Hàm s liên t c t iố ụ ạ B Hàm s không liên t c t i các đi m ố ụ ạ ể
C Hàm s liên t c t i m i ố ụ ạ ọ D Hàm s liên t c t i ố ụ ạ
Câu 6: M nh đ nào sau đây SAI?ệ ề
Câu 7: Cho hàm s ố , ti p tuy n song song v i đ ng th ng ế ế ớ ườ ẳ c a đ th hàm sủ ồ ị ố là:
Câu 9: Cho hàm số có đồ thị và điểm Gọi S là tập các giá trị của
để có đúng một tiếp tuyến của đi qua Tính tổng bình phương các phần tử
Trang 2của tập
Câu 10: Tính gi i h n ớ ạ ta đ c k t qu là:ượ ế ả
Câu 11: Cho các hàm s ố có đ o hàm trên kho ng ạ ả J và v i m i ớ ọ
M nh đ nào sau đây SAI?ệ ề
Câu 12: Tính gi i h n ớ ạ ta đ c k t qu là:ượ ế ả
Câu 13: Trong không gian cho mp(P) và đi m M không thu c mp(P) M nh đ nào sau đây đúng?ể ộ ệ ề
A Qua M k đ c vô s đ ng th ng vuông góc v i mp(P).ẻ ượ ố ườ ẳ ớ
B Qua M có vô s đ ng th ng song song v i mp(P) và các đ ng th ng đó cùng thu c m t ph ng ố ườ ẳ ớ ườ ẳ ộ ặ ẳ (Q) qua M và song song v i (P).ớ
C Qua M có duy nh t m t m t ph ng vuông góc v i mp(P).ấ ộ ặ ẳ ớ
D Có duy nh t m t đ ng th ng đi qua M t o v i mp(P) m t góc b ng 60ấ ộ ườ ẳ ạ ớ ộ ằ o
Câu 15: Cho hình lăng tr ABC.A’B’C’ đ u M nh đ nào sau đây SAI?ụ ề ệ ề
A Lăng tr đã cho là lăng tr đ ngụ ụ ứ B Các m t bên c a lăng tr là hình ch nh tặ ủ ụ ữ ậ
C Hai m t đáy c a lăng tr là các đa giác đ uặ ủ ụ ề D Tam giác B’AC đ uề
Câu 16: Ph ng trình ươ có nghi m thu c kho ng nào sau đây?ệ ộ ả
Câu 17: Trong không gian, cho hai đ ng th ng a và b chéo nhau M nh đ nào sai đây SAI?ườ ẳ ệ ề
A T n t i m t m t ph ng ch a b và song song v i a.ồ ạ ộ ặ ẳ ứ ớ
B T n t i m t m t ph ng ch a a và song song v i b.ồ ạ ộ ặ ẳ ứ ớ
C T n t i duy nh t m t c p m t ph ng l n l t ch a 2 đ ng th ng a, b và song song v i nhau.ồ ạ ấ ộ ặ ặ ẳ ầ ượ ứ ườ ẳ ớ
D Kho ng cách gi a a và b b ng đ dài đ ng vuông góc chung c a a và b.ả ữ ằ ộ ườ ủ
Câu 18: Hàm s nào sau đây có đ o hàm b ng: ố ạ ằ
Câu 19: Cho hàm s ố , ti p tuy n v i đ th c a hàm s t iế ế ớ ồ ị ủ ố ạ
đi m A(1;2) có ph ng trình là:ể ươ
Câu 20: Cho hình chóp S.ABC có đáy ABC là tam giác đ u c nh 2a; c nhề ạ ạ
Trang 3bên SA vuông góc v i m t đáy, SA = ớ ặ ; g i M là trung đi m AC Tính kho ng cách t M đ nọ ể ả ừ ế mp(SBC)
Câu 21: Trong không gian, cho đ ng th ng a và m t ph ng (P) Có bao nhiêu m t ph ng ch a đ ngườ ẳ ặ ẳ ặ ẳ ứ ườ
th ng a và vuông góc v i m t ph ng (P).ẳ ớ ặ ẳ
A Có vô số B Có duy nh t m tấ ộ C Có m t ho c vô s ộ ặ ố D Không có
Câu 22: Trong không gian, m nh đ nào sau đây đúng?ệ ề
A Côsin c a góc gi a hai đ ng th ng trong không gian có th là m t s âm.ủ ữ ườ ẳ ể ộ ố
B Góc gi a hai đ ng th ng thu c kho ng (0ữ ườ ẳ ộ ả o;90o)
C Góc gi a hai m t ph ng b ng góc gi a hai đ ng th ng l n l t vuông góc v i hai m t ph ng đó.ữ ặ ẳ ằ ữ ườ ẳ ầ ượ ớ ặ ẳ
D Góc gi a đ ng th ng và m t ph ng b ng góc gi a đ ng th ng đó và m t đ ng th ng n m ữ ườ ẳ ặ ẳ ằ ữ ườ ẳ ộ ườ ẳ ằ trong m t ph ng đó.ặ ẳ
Câu 23: Tìm m đ hàm s ể ố liên t c t i ụ ạ
Câu 24: Cho t di n ABCD đ u, g i G là tr ng tâm tam giác BCD M nh đ nào sau đây SAI?ứ ệ ề ọ ọ ệ ề
Câu 25: Đ o hàm c a hàm s ạ ủ ố b ng:ằ
Câu 26: Cho hình chóp S.ABCD có đáy ABCD là hình vuông
c nh a, c nh bên SA vuông góc v i m t đáy, SA = 2a M nh đạ ạ ớ ặ ệ ề
nào sau đây SAI?
A AC SD B Tam giác SBD cân
Câu 27: Cho hình chóp S.ABC có đáy ABC vuông cân t i A, AB = ạ ; tam giác SBC đ u n m trongề ằ
m t ph ng vuông góc v i m t đáy Tính kho ng cách gi a hai đ ng th ng AC và SB ta đ c k t quặ ẳ ớ ặ ả ữ ườ ẳ ượ ế ả là:
Câu 28: Cho hình chóp S.ABCD có đáy là hình vuông, c nhạ
bên SA vuông góc v i m t đáy; SA = AB = a G i ớ ặ ọ là góc gi aữ SB
và mp(SAC), tính ?
A = 60o B = 30o
C = 45o D Đáp án khác
Trang 4Câu 29: Bi t hàm s ế ố liên t c t i ụ ạ Tính giá tr c a bi u th cị ủ ể ứ
Câu 30: Cho hình chóp S.ABC, tam giác ABC vuông t i B, c nh bên SAạ ạ
vuông góc v i m t đáy (ABC) G i H là hình chi u vuông góc c a A lên SB.ớ ặ ọ ế ủ
M nh đ nào sau đây SAI?ệ ề
A AH SC
B Các m t bên c a hình chóp là các tam giác vuôngặ ủ
C vuông
D AH // BC
B PH N T LU N Ầ Ự Ậ (4,0 đi m) ể
Bài 1 (2,5 đi m ể )
1 Cho hàm s ố có đ th (C).ồ ị
a) Tính
b) Vi t ph ng trình ti p tuy n v i đ th (C) t i đi m M có hoành đ ế ươ ế ế ớ ồ ị ạ ể ộ
2 Cho hàm s ố Xét tính liên t c c a hàm s t i ụ ủ ố ạ
Bài 2 (1,5 đi m ể )
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, c nh b ng ạ ằ ; hình chi u vuông gócế
c a S trên m t đáy là trung đi m H c a OA; góc gi a m t ph ng (SCD) và m t đáy b ng 45ủ ặ ể ủ ữ ặ ẳ ặ ằ o
1 Ch ng minh BDứ SC
2 Tính kho ng cách t B đ n m t ph ng (SCD).ả ừ ế ặ ẳ
- H T -Ế