1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề thi khảo sát ôn tập 12 năm học 20072008 môn : toán 12 ( thời gian 90 phút )42608

3 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 149,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Trường THPT Phan Đình Phùng ĐỀ THI KHẢO SÁT ÔN TẬP 12 NĂM HỌC 2007-2008

 Câu 1 (3,5điểm ) Cho hàm số y x2 2x 5 , có đồ thị (C)

x 1

 1) Khảo sát hàm số

2) Viết phương trình tiếp tuyến với(C) biết tiếp tuyến song song với đường thẳng 2y+x+2008=0 3) Tính diện tích hình phẳng giới hạn bởi đt ( C) và các đường thẳng y=0 , x=2,x=4

Câu 2 (1,5điểm ): Cho (E) có phương trình : 2 2 1

25 9

a)Xác định tọa độ tiêu điểm , độ dài các trục ,và tâm sai (E)

b)Tìm điểm M trên (E) sao cho MF1 = 3MF2

Câu3: (1,5điểm ) Tính tích phân

2 2

dx

Câu 4:(2,5điểm ) Cho 4 điểmA,B,C,D với OD 2i 2j k     A(2;4;-1) , B(1;4;-1) , C(2;4;3)

a) Chứng minh rằng : AC AA C AD, AD C ,Tính thể tích tứ diện ABCD

b) Viết phương trình mặt phẳng chứa AD và vuông góc mặt phẳng (ABC)

Câu 5:(1điểm ) Giải hệ phương trình : 1 1

1: : 6 : 5 : 2

-Hết

Trường THPT Phan Đình Phùng ĐỀ THI KHẢO SÁT ÔN TẬP 12 NĂM HỌC 2007-2008

 Câu 1 (3,5điểm ) Cho hàm số y x2 2x 5 , có đồ thị (C)

x 1

 1) Khảo sát hàm số

2) Viết phương trình tiếp tuyến với(C) biết tiếp tuyến song song với đường thẳng 2y+x+2008=0 3) Tính diện tích hình phẳng giới hạn bởi đt ( C) và các đường thẳng y=0 , x=2,x=4

Câu 2 (1,5điểm ): Cho (E) có phương trình : 2 2 1

25 9

a)Xác định tọa độ tiêu điểm , độ dài các trục ,và tâm sai (E)

b)Tìm điểm M trên (E) sao cho MF1 = 3MF2

Câu3: (1,5điểm ) Tính tích phân

2 2

dx

Câu 4:(2,5điểm ) Cho 4 điểmA,B,C,D với OD 2i 2j k     A(2;4;-1) , B(1;4;-1) , C(2;4;3)

a) Chứng minh rằng : AC AA C AD, AD C ,Tính thể tích tứ diện ABCD

b) Viết phương trình mặt phẳng chứa AD và vuông góc mặt phẳng (ABC)

Câu 5:(1điểm ) Giải hệ phương trình : 1 1

1: : 6 : 5 : 2

Trang 2

Câu Nội dung Điểm

Câu a

2điểm 1)Khảo sát hàm số

2

y

x 1

 Txđ:฀ \ 1

, 2

4 1 ( 1)

y

x

  

y   0 x 1,x 3

, hàm số đb trên các khoảng

hàm số nb trên các khoảng

0 ( 3; 1) ( 1;1)

HSố đạt cực đại tại x=-3,ycđ=-4, HSố đạt cực tiểu tại x=1,ycđ=4

1

lim , lim , lim( ( 1)) 0

         

Tiệm cận đứng đt x=-1, tiệm cận xiên đt y=x+1

Bảng biến thiên :

y

-

-4

-  + 

4

+

Đồ thị: Giao với trục Oy điểm M(0;5), Điểm cực đại (-3;-4),cực tiểu (1;4)

Tâm đố xứng (-1;0)

Hình vẽ

2) Viết phương trình tiếp tuyến với(C) biết tiếp tuyến song song với đường thẳng

2y+x+2008=0

Gọi M(x;y) là tọa độ của tiếp tuyến cần tìm với (C) ,khi đó ta có :

2

x

 Vậy có 2 tiếp tuyến :2y x 4 6 1 0  , 2y x 4 6 1 0 

3) Tính diện tích hình phẳng giới hạn bởi đt ( C) và các đường thẳng y=0 , x=2,x=4

Diện tích hình phẳng cần tìm được xác định : 4 2

2

1

x

4

4

x

x

Cho (E) có phương trình : 2 2 1

25 9

a)Xác định tọa độ tiêu điểm , độ dài các trục ,và tâm sai (E)

Tiêu điểm: F1( 4; 0); F2(4; 0),

Trục lớn 2a =10, trục bé 2b=6,

Tâm sai 4

5

e

b)Tìm điểm M trên (E) sao cho MF 1 = 3MF 2

Gọi M(x;y) thuộc (E) , ta có :MF1 a c x MF, 2 a c x

Trang 3

Vậy có 2 điểm M thỏa bài toán : (25 3 39; ), '(25; 3 39)

Tính tích phân

2 2

dx I

x x

 Đặt t= 2 suy ra tdt =xdx, đổi cận

1

5 5

2 2

t dt

a)Chứng minh rằng : AC AA C AD, AD C ,Tính thể tích tứ diện ABCD

Có AC(0; 0; 4),AD(0; 2; 0), AB ( 1; 0; 0),BC(1; 0; 4)

Suy ra: AB AC 0,AC AD 0,BC AD 0, Đpcm

Thể tích tứ diện: 1 4

V   AB AC AD 

Viết phương trình mặt phẳng chứa AD và vuông góc mặt phẳng (ABC)

Theo trên AD vg (ABC) nên có vô số các mặt phẳng Qua A và vuông góc (ABC) thỏa

đề bài

Giải hệ phương trình : 1 1

1: : 6 : 5 : 2

Đk: 1 Biến đổi rút gọn được hệ pt:

1

y

  

8 3

x y

  

Ngày đăng: 31/03/2022, 06:52

HÌNH ẢNH LIÊN QUAN

Hình vẽ - Đề thi khảo sát ôn tập 12 năm học 20072008   môn : toán 12 ( thời gian 90 phút )42608
Hình v ẽ (Trang 2)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w