Sơ lược: Tổng hợp chất ức chế ăn mòn Azometin Lời mở đầu Chương 1: Tổng quan Chương 2: Thực nghiệm Chương 3: Kết quả và thảo luận Kết luận Tài liệu tham khảo Phụ lục
Trang 1MỤC LỤC
LỜI MỞ ĐẦU
CHƯƠNG 1: TỔNG QUAN
1.1 Tổng quan về ăn mòn kim loại và chất ức chế ăn mòn kim loại
1.1.1 Ăn mòn kim loại và bảo vệ kim loại
1.1.4 Phuong pháp nghiên cứu chất ức chế ăn mòn kim loại
1.1.4.1 Đơn vị đo hiệu quả tác dụng chất ức chế
1.1.4.2 Các phương pháp nghiên cứu
1.2 Phương pháp tổng hợp chất ức chế ăn mòn azometin
1.2.1 Tổng hợp bằng phản ứng khử hóa các amit thế
1.2.2 Tổng hợp bằng các hợp chất thơm có nhóm metyl hoạt động thế vào liên
kết N=N trong các hợp chất azo
1.2.3 Từ hợp chất thơm có nhóm metylen hoạt động và hợp chất nitrozo
1.2.4 Tổng hợp bằng phản ứng giữa andehit thơm và hợp chất nitro thơm
1.2.5 Tổng hợp bằng ngưng tụ các hợp chất nitro béo, thơm béo có nhóm
metylen hoạt động với nitrozoaren với xúc tác là NaOH hoặc NaCN
1.2.6 Tổng hợp từ nitrozoaren và α-hetarylxetonitrin khi có mặt kiềm
Trang 21.2.7 Bằng các dị vòng nitơ có nhóm metyl hoạt động và các nitrozoaren
1.2.8 Tổng hợp bằng phản ứng giữa andehit và amin bậc một
1.3 Cấu trúc và phổ của azometin
1.3.1 Cấu trúc điện tử, đồng phân hình học và tính bazơ của azometin
2.2 Khảo sát tính ức chế ăn mòn kim lọa của các azometin tổng hợp được
2.2.1 Khảo sát khả năng ức chế ăn mòn thép CT-3 của các azometin trong môi
Trang 32.2.4 Khảo sát khả năng ức chế ăn mòn nhôm của các azometin trong môi
trường axit HCl 2M
2.2.5 Khảo sát khả năng ức chế ăn mòn nhôm của các azometin trong môi
trường HCl 2M + NaCl 3%
2.2.6 Khảo sát khả năng ức chế ăn mòn đồng trong môi trường HCl + NaCl
CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN
3.1 Về tổng hợp một số chất ức chế azometin
3.2 Về tính ức chế ăn mòn kim loại của các azometin tổng hợp được
3.2.1 Khả năng ức chế ăn mòn thép CT-3 trong môi trường HCl 2M
3.2.2 Khả năng ức chế ăn mòn thép CT-3 trong môi trường HCl + NaCl
3.2.3 Về ảnh hưởng của nồng độ chất ức chế đến hiệu quả ức chế
3.2.4 Khả năng ức chế ăn mòn nhôm trong môi trường HCl
3.2.5 Khả năng ức chế ăn mòn nhôm trong môi trường HCl + NaCl
3.2.6 Khả năng ức chế ăn mòn đồng trong môi trường HCl + NaCl
KẾT LUẬN
TÀI LIỆU THAM KHẢO
PHỤ LỤC
Trang 4LỜI MỞ ĐẦU
Ăn mòn kim loại là hiện tượng phá hủy kim loại dưới tác dụng của những
tác nhân ăn mòn như: không khí, hóa chất và điện hóa Sự ăn mòn không
những gây tổn thất kim loại, làm giảm độ chính xác và hỏng máy móc mà
còn gây tổn thất lớn về mặt kinh tế trong mọi ngành sản xuất của nền kinh tế
quốc dân
Trong ngành khai thác và chế biến dầu khí, vấn đề ăn mòn và bảo vệ kim
loại là một vấn đề có tầm quan trọng rất lớn, nó được coi là một trong những
nhiệm vụ hàng đầu trong quá trình sản xuất Đã có nhiều biện pháp phòng
chống ăn mòn kim loại được áp dụng, một trong những biện pháp thuận tiện
và hiệu quả là sử dụng chất ức chế ăn mòn kim loại Nhiều chất ức chế ăn
mòn kim loại đã được sử dụng để bảo vệ các đường ống dẫn dầu, các thiết bị
khai thác, chế biến và tồn chứa dầu khi Hiện nay các chất ức chế ăn mòn
mới cũng đã được đưa vào sử dụng để nâng cao tác dụng bảo vệ và giảm giá
thành chi phí
Việc nghiên cứu tổng hợp và đưa vào sử dụng những chất ức chế mới có khả
năng ức chế ăn mòn cao, giá thành thấp nhằm nâng cao tác dụng bảo vệ và
hiệu quả kinh tế trong quá trình khai thác, chế biến dầu khí ở nước ta cũng
rất được quan tâm Chình vì vậy mục đích của bản luận văn này là “nghiên
cứu tổng hợp và ứng dụng một số chất ức chế ăn mòn azometin trong khai
thác, chế biến dầu khí”
Trang 5CHUƠNG 1 TỔNG QUAN
1.1 Tổng quan về ăn mòn kim loại và chất ức chế ăn mòn kim loại
1.1.1 Ăn mòn kim loại và bảo vệ kim loại
1.1.1.1 Vấn đề ăn mòn
Kim loại và hợp kim là những vật liệu quan trọng có những tính chất cơ
lý đặc biệt, được sử dụng làm vật liệu chính trong chế tạo máy móc, thiết bị,
nhà xưởng, cầu cống… mà không có vật liệu nào khác thay thế hoàn toàn
được Tuy nhiên hạn chế của kim loại và hợp kim là khi làm việc trong các môi
trường như: không khí, khí hậu, môi trường có tính axit, bazơ, môi trường nước
biển… kim loại có thể bị ăn mòn
Việc giảm thiểu và tiến tới ngăn chặn sự ăn mòn kim loại hiện nay có ý
nghĩa rất quan trọng vì sự tổn hại kinh tế do ăn mòn gây ra là rất lớn, giá trị tổn
thất do ăn mòn hàng năm trên thế giới có thể lên tới hàng tỷ đô la Ở một số
nước đang phát triển do còn nhiều hạn chế trong bảo vệ ăn mòn kim loại, nên
có tới 30 ÷ 40% sản lượng thép sản xuất ra là để bổ sung cho sự mất mát kim
loại do bị ăn mòn
Sự ăn mòn không những gây ra tổn thất về kim loại mà còn làm giảm
tuổi thọ, độ bền, độ chính xác của máy móc, thiết bị Đặc biệt nó còn có thể
gây nguy hiểm cho người vận hành Chính vì vậy việc sử dụng các biện pháp
bảo vệ kim loại để chống lại sự ăn mòn là điều bắt buộc
1.1.1.2 Các biện pháp bảo vệ kim loại
Tùy theo bản chất của các quá trình ăn mòn mà ta có thể có những
phương pháp bảo vệ ăn mòn khác nhau như: phương pháp điện hóa, phương
pháp hóa học, phương pháp cách ly kim loại khỏi môi trường ăn mòn, phương
Trang 6a Phương pháp điện hóa
Trong phương pháp điện hóa có ba phương pháp bảo vệ kim loại:
Phương pháp protector: biến kim loại cần được bảo vệ thành điện cực
dương của một nguồn điện, muốn thể chỉ cần gắn vào nó một tấm kim loại âm
điện hơn Ví dụ muốn bảo vệ đường ống, vỏ tàu bằng thép có thể gắn một tấm
kẽm hoặc một tấm nhôm đóng vai trò cục âm của một cực pin, khi có điện thế
các điện tử chuyển động đến cực dương và kim loại âm điện hơn bị ăn mòn
Phương pháp bảo vệ anot: ta chỉ cần dùng nguồn điện một chiều, nối cực
âm với kim loại cần bảo vệ và nối cực duong với một điện cực phụ, rồi điều
chỉnh dòng điện về giá trị phù hợp thường là một vài trăm mA/cm2 [3]
Phương pháp bảo vệ catot là phương pháp ngược lại với phương pháp
anot nhưng điện áp điều chỉnh thường khá cao cỡ 0,4 ÷ 1,2V trong môi trường
trung tính [3]
b Phương pháp cách ly
Để cách ly kim loại với môi trường ăn mòn có thể sơn phủ bằng các loại
sơn, các hợp chất polyme hoặc mạ một lớp kim loại không bị ăn mòn, kim loại
thụ động hóa bề mặt
c Phương pháp chế tạo hợp kim chống ăn mòn
Dựa vào khả năng chống chịu được ăn mòn của một số kim loại mà người ta
sản xuất ra những hợp kim và kim loại có khả năng chống ăn mòn khác nhau
Trong công nghiệp chế biến dầu mỏ thì các lò gia nhiệt dầu thô và tháp chưng
cất được chế tạo từ thép molypden, lò ankyl hóa được chế tạo bằng thép chứa ít
cácbon nhiều titan để chịu được môi trường axit H2SO4 đặc Khi thép dùng
trong môi trường H2S thì thành phần có chứa 8% crôm có khả năng chống ăn
mòn tốt hơn [3]
Trong tất cả các phương pháp trên người ta thường sử dụng đồng thời các chất
ức chế để tăng cường khả năng chống ăn mòn kim loại
Trang 7d Phương pháp hóa học
Phương pháp hóa học là sử dụng các chất có khả năng ức chế ăn mòn đưa vào
môi trường gây ăn mòn nhằm làm giảm sự ăn mòn, lượng chất ức chế sử dụng
thường không nhiều chỉ cỡ phần triệu
Phương pháp sử dụng chất ức chế ăn mòn có thể được dùng kết hợp hoặc độc
lập, đây là phương pháp tương đối đơn giản, hiệu quả và vạn năng, trong một
số trường hợp nó còn là phương pháp duy nhất
1.1.2 Ăn mòn kim loại và bảo vệ kim loại
1.1.2.1 Phân loại chất ức chế
Chất ức chế ăn mòn là những chất được thêm vào môi trường ăn mòn
với một lượng nhỏ (10-6 ÷ 10-2 mol/l) có thể làm giảm mạnh tốc độ ăn mòn kim
loại, hợp kim Có nhiều cách để phân loại chất ức chế ăn mòn kim loại:
Theo bản chất các chất ức chế có thể chia thành các hợp chất vô cơ và hữu cơ
• Các hợp chất vô cơ bao gồm các muối phốt phát, muối nitrit, muối
crômát…
• Các hợp chất hữu cơ: axít béo, andehit, amin, este, hợp chất nitrô và các
azometin
Phân loại theo cơ chế tác dụng của chất ức chế người ta có thể chia thành các
loại: chất ức chế anốt, chất ức chế catốt và chất ức chế hỗn hợp
I.N.Putinova, S.A.Balezin và V.P.Barannik đã chia tất cả các chất ức chế thành
hai nhóm [8]:
• Nhóm các chất ức chế tạo ra trên bề mặt kim loại một lớp màng bảo vệ:
các chất ức chế nhóm A
• Nhóm các chất ức chế làm giảm sự xâm thực của môi trường đối với kim
loại (khử hoạt tình của môi trường ăn mòn): các chất ức chế nhóm B
Ngoài ra còn có các chất ức chế hỗn hợp loại AB hoặc BA
Trang 8Trong thực tế các chất ức chế loại A được dùng phổ biến nhất, nó bao gồm các
chất ức chế ăn mòn cho thép trong môi trường axit sunphuric, axit hydrocloric,
trong dung dịch muối, trong nước…
Các chất ức chế nhóm A có thể được phân chia sâu hơn thành ba loại:
Loại IA: các chất ức chế kìm hãm quá trình ăn mòn
Loại IIA: các chất ức chế kéo dài thời gian cảm ứng
Loại IIIA: các chất ức chế thụ động hóa bề mặt kim loại do tạo ra một lớp màng bảo vệ trên bề mặt kim loại
Ảnh hưởng của các chất ức chế nhóm A đến quá trình ăn mòn được biểu diễn
Hình 1.1: Ảnh hưởng của chất ức chế nhóm A đến quá trình ăn mòn
ρ: tốc độ ăn mòn τ: thời gian a: loại IA b: loại IIA c: loại IIIA
1 – quá trình không có chất ức chế
2 – quá trình có chất ức chế
1.1.2.2 Các chất ức chế ăn mòn azometin
Azometin còn gọi là bazơ Schiff là những hợp chất mà trong phân tử có
chứa nhóm liên kết –CH=N– kiểu R–CH=N–R’, trong đó R, R’ là các gốc
ankyl, aryl hoặc hetaryl Loại hợp chất này đã được biết từ lâu song chỉ vài
chục năm gần đây chúng mới được quan tâm nghiên cứu nhiều Chúng có tính
Trang 9ức chế ăn mòn rất cao đối với nhiều kim loại và hợp kim trong các môi trường
ăn mòn khác nhau [7, 12, 13, 15, 16, 17] Ngoài ra các azometin còn có nhiều
tính chất quý như: tính kháng khuẩn, diệt nấm, tính chất lưu hóa cao su [7] và
có thể phản ứng tạo phức với kim loại chuyển tiếp để tạo ra các hợp chất có
tính chất quý giá khác
Nhiều công trình nghiên cứu đã cho thấy các azometin có khả năng ức
chế ăn mòn kim loại rất cao và đa dạng với nhiều kim loại:
• Năm 1986 azometin N–(2–mecapto–phenyl)salixilidenimin(BSS) cùng
với amin tương ứng lần đầu tiên được thử nghiệm làm chất ức chế ăn
mòn cho đồng trong dung dịch NaCl 0,1M trong hỗn hợp nước – etanol
25%V [13] Các phép đo sự thay đổi khối lượng và đường cong phân
cực đã cho phép khảo sát khả năng ức chế ăn mòn đồng của azometin
này Kết quả đo cho thấy tốc độ ăn mòn đã giảm mạnh và khả năng ức
chế ăn mòn của azometin là tốt hơn so với amin
• Một công trình của Desai M.N và các cộng sự năm 1986 [12] đã thử
nghiệm 7 azometin của dãy anilin làm chất ức chế ăn mòn thép mềm
trong dung dịch axit HCl 1 ÷ 6 M Kết quả đo phân cực dòng điện tĩnh
chỉ ra rằng tất cả các chất này đều là các chất ưu tiên ức chế catot, các
chất ức chế đều làm giảm dòng catot nhiều nhất và là chất có hiệu quả ức
chế ăn mòn tốt nhất
• Năm 1991 Aben-El-Wafa và H.M Moustafa [14] đã nghiên cứu khả
năng ức chế ăn mòn đồng thau 70/30 của 2–(o-OH, p-OH, p-OCH3,
p-N(CH3)2benzyliden)hidrazonobenzothiazol Azometin có nhóm thế
o-OH trên phần andehit có khả năng ức chế ăn mòn lớn nhất trong khoản
nồng độ (1÷7)x10-5 mol/l, p-OH có khả năng ức chế ăn mòn cao trong
khoảng nồng độ (0,7÷7)x10-4 mol/l Các yếu tố ảnh hưởng đến khả năng
ức chế ăn mòn như nồng độ, cấu trúc phân tử, nhóm thế, độ bền phức
chất tạo thành của các azometin đã được nghiên cứu
Trang 10• Năm 1996, M.A.Elmossi và M.Gaber [9] đã tổng hợp các phức chất của
azometin sunfamethazin và salixilandehit với các ion Co(II), Ni(II),
Cu(II) và đã nghiên cứu khả năng ức chế ăn mòn đồng trong dung dịch
axit HNO3 0,3M của các phức này và các azometin tương ứng Khả năng
ức chế ăn mòn có quan hệ chặt chẽ với mức độ hấp phụ khác nhau của
các phối tử, phức chất giữa Cu(II) và chất ức chế tốt hơn so với azometin
tương ứng ngay cả ở nồng độ thấp hơn Cũng năm 1996 Quraishi và
những người khác [15] đã tổng hợp hai azometin từ p-anisidin với
xinamandehit (I), từ anilin với salixilandehit (II) Họ đã nghiên cứu tính
chất ức chế ăn mòn thép mềm trong dung dịch HCl và H2SO4 1N Kết
quả cho thấy azometin(I) có hiệu quả ức chế ăn mòn lớn hơn 93,8%, cả
hai azometin đều thuộc loại ức chế hỗn hợp (ức chế cả hai quá trình hòa
tan anot và catot) Đồng thời họ nhận thấy sự hấp phụ của chúng lên bề
mặt kim loại tuân theo hấp phụ đẳng nhiệt Temkin
• Năm 1998 S.L Li và cộng sự [12] đã nghiên cứu khả năng ức chế ăn
mòn mòn đồng trong môi trường clorua vả azometin
N,N’-o-phenylen-bis(3-metoxisalixil-andenimin) và kết luận rằng: khả năng ức chế ăn
mòn đồng trong môi trường NaCl 1M cao hơn nhiều so với trong dung
dịch HCl 1M, khả năng ức chế tăng cùng với việc tăng nồng độ chất ức
chế và nhiệt độ Chất ức chế tạo thành phức bền với ion Cu(II) trong
dung dịch NaCl 1M và HCl 1M, phức này kết tủa trên bề mặt đồng tạo
thành một lớp màng phim mỏng có tác dụng bảo vệ tốt hơn Các tác giả
cũng đưa ra cơ chế ức chế ăn mòn kim loại bằng việc tạo phức bền
không tan, có bốn phối tử giữa đồng(II) với nitơ của nhóm azometin và
ôxi của nhóm o-hidroxi
− Trong những năm gần đây một số nghiên cứu về tính chất ức chế ăn mòn
nhôm và hợp kim nhôm của các azometin [5, 11] đã cho thấy khả năng
ức chế ăn mòn nhôm và hợp kim nhôm cũng rất cao
Trang 111.1.2.3 Yêu cầu của chất ức chế
Các chất ức chế ăn mòn kim loại phải đáp ứng được những yêu cầu sau:
• Chất ức chế ăn mòn không làm thay đổi tính chất của môi trường ăn mòn
và tính chất của kim loại được bảo vệ
• Chỉ sử dụng với một lượng nhỏ nhưng hiệu quả ức chế cao
• Khi sử dụng chất ức chế ăn mòn ít hoặc không gây ô nhiễm môi trường
• Phù hợp với điều kiện làm việc yêu cầu
• Ít gây độc hại
1.1.2.4 Phạm vi sử dụng chất ức chế ăn mòn
Lĩnh vực sử dụng chất ức chế ăn mòn khá rộng lớn, chúng được sử dụng để
bảo vệ kim loại khỏi bị ăn mòn bởi khí quyển, ăn mòn trong môi trường axit,
môi trường nước biển, môi trường oxi hóa, môi trường dầu mỏ… Trong thực tế
chất ức chế đã được sử dụng ở nhiều lĩnh vực trong nền kinh tế quốc dân
Trong công nghiệp luyện kim, chế biến kim loại, chất ức chế được thêm vào
dung dich bôi trơn, làm mát trong quá trình gia công, nhằm hạn chế sự ăn mòn
cho các thiết bị, máy móc như: trục cán, kéo, khuôn đúc, ép để đảm bảo độ bền,
độ chính xác của các chi tiết máy
Trong công nghiệp cơ khí chế tạo máy móc, thiết bị, chất ức chế được bao phủ
lên bề mặt chi tiết kim loại cùng với màng sơn, lớp mạ, lớp tráng men hoặc lớp
dầu mỡ bảo quản sẽ cho phép bảo quản được máy móc, thiết bị trong thời gian
dài dưới tác động của môi trường làm việc
Với các thiết bị năng lượng, động cơ đốt trong, chất ức chế được đưa vào dung
dịch làm mát, dung dịch rửa trong dầu bôi trơn để chống cặn kết tủa, chống ăn
mòn ôxi hóa, làm tăng hiệu quả của quá trình trao đổi nhiệt, giảm tiêu hao
nhiên liệu và kéo dài tuổi thọ động cơ
Đối với ngành sản xuất hóa chất, điện hóa, chất ức chế được hấp phụ lên bề
mặt điện cực hoặc hòa tan trong môi trường ăn mòn như axit, chất ôxi hóa để
bảo vệ điện cực và các thiêt bị làm việc trong môi trường ăn mòn đó
Trang 12Hiện nay trong công nghiệp khai thác và chế biến dầu mỏ, chất ức chế được sử
dụng rất phổ biến và ở nhiều công đoạn của quá trình khai thác và chế biến:
• Trong khai thác dầu khí: Trước khi khai thác người ta phải xử lý vùng
cận đáy giếng bằng các axit để hòa tan đất đá vùng cận đáy giếng
(thường dùng axit HCl và HF), khi đó để lớp ống bảo vệ và các thiết bị
khác không bị ăn mòn họ phải hòa tan lẫn các chất ức chế vào dung dịch
axit trước khi tiến hành xử lý Khi khai thác các chất ức chế được hòa
tan vào dung dịch khoan hoặc nước kỹ thuật rồi được đưa xuống khoảng
không giữa lớp ống bảo vệ và ống nâng Để ống nâng không bị ăn mòn
trong quá trình khai thác các chất ức chế được bơm liên tục xuống đáy
giếng dầu Chất ức chế hoạt động theo cơ chế hấp phụ tạo màng bảo vệ,
khi có mặt chất ức chế bề mặt hydrophile (ưa nước) của các thành ống
giếng khoan được thay thế bằng bề mặt hydrophobe (ưa dầu) do đó tạo
được màng chắn bằng dầu giữa vật liệu làm giếng và môi trường ăn
mòn
• Trong thu hồi tăng cường: Sau khi xử lý nước bơm ép, chất ức chế được
hòa tan vào trong nước và đưa xuống các giếng bơm ép vào trong mỏ
chứa dầu để đẩy dầu tới giếng khai khác Chất ức chế có tác dụng bảo vệ
đường ống khỏi ăn mòn trong môi trường nước muối, các khí hidro
sunfua và vi khuẩn có trong nước, dầu
• Trong xử lý dầu – khí sau khi khai thác: Chất ức chế ăn mòn có thể được
bơm vào các trạm xử lý để bảo vệ thiết bị tách, bể chứa và đường ống
dẫn dầu vào bờ Hoặc chất ức chế có thể được bơm vào ngay tại miệng
giếng khai thác nhằm lợi dụng sự hỗn loạn của dòng chảy
• Trong hệ thống chế biến, vận chuyển và dự trữ dầu khí: trong dầu khí
luôn có các khí H2S, CO2, H2… và khi chế biến các khí đó cũng được
sinh ra gây ăn mòn, cùng với việc sử dụng thép chống ăn mòn người ta
vẫn thường dùng các loại chất ức chế Với quá trình chưng cất và chế
Trang 13biến khí chất ức chế được bơm một cách tự động và liên tục vào phần
đỉnh tháp Để bảo vệ các bể chứa thì các chất ức chế được đưa bào
đường ống dẫn sản phẩm trước khi tới bể chưa, khi xuất sản phẩm các
chất ức chế còn lại sẽ có tác dụng bảo vệ đường ỗng xuât
9 Ngoài ra các chất ức chế ăn mòn còn được sử dụng nhiều trong việc tẩy
rỉ, bảo dưỡng, bảo quản các thiết bị, chi tiết kim loại cần được lưu trữ lâu dài
1.1.3 Cơ chế ức chế ăn mòn
Cho đến nay vẫn chưa có một cơ chế chính xác nào để giải thích đầy đủ
cơ chế ức chế ăn mòn của các chất ức chế ăn mòn kim loại, bởi vì tác dụng bảo
vệ của chất ức chế phụ thuộc vào nhiều yếu tố như nồng độ, cấu tạo chất ức
chế, cấu trúc bề mặt kim loại, năng lượng hoạt hóa, của các ion nút mạng, mức
độ khuyết tật của mạng tinh thể… Tuy nhiên nhiều công trình nghiên cứu [7]
đã đưa ra quan điểm về liên hệ giữa tác dụng ức chế và khả năng hấp phụ của
nó, họ xác định được tính chất bảo vệ của các chất ức chế là do sự hấp phụ của
chúng lên bề mặt kim loại có thể là hấp phụ hóa học hoặc hấp phụ vật lý Các
chất ức chế amin, azometin có sự hấp phụ hóa học giữa phân tử chất ức chế với
bề mặt kim loại được bảo vệ theo phương pháp hấp phụ có sự liên kết giữa
nguyên tử nitơ và kim loại
Sự hấp phụ của các chất ức chế trên bề mặt kim loại chủ yếu tuân theo đường
đẳng nhiệt Langmuir (1) và Temkin (2):
B: hằng số cân bằng hấp phụ; Bmax, Bmin: hằng số cân bằng hấp phụ tương ứng
với giá trị cực đại và cực tiểu của năng lượng hấp phụ
C: nồng độ chất ức chế
θ: mức độ lấp đầy bề mặt bởi các phân tử chất ức chế
f: yếu tố độ bóng
Trang 14Sự hấp phụ tuân theo đẳng nhiệt Temkim thường có bản chất hấp phụ
hóa học, còn hấp phụ tuân theo đẳng nhiệt Langmuir có bản chất vật lý [7],
được quyết đinh bởi lực tĩnh điện Vandevan
1.1.4 Phương pháp nghiên cứu chất ức chế ăn mòn kim loại
1.1.4.1 Đơn vị đo hiệu quả tác dụng của chất ức chế
Có thể đánh giá hiệu quả tác dụng của chất ức chế thông qua các chỉ số
định lượng khác nhau Chỉ số phổ biến nhất là độ giảm khối lượng kim loại
trong một đơn vị thời gian trên một đơn vị diện tích bề mặt đó chính là tốc độ
ăn mòn và được xác định theo công thức:
t : thời gian ăn mòn hay thời gian ngâm mẫu
Khi đó hiệu quả bảo vệ được đánh giá bàng hiệu quả ức chế γ hay mức
độ bảo vệ Z [19] Hiệu quả ức chế cho biết chất ức chế làm chậm tốc độ ăn
mòn đi bao nhiêu lần và được tính theo công thức:
= ℎ = = − × 100% ℎ = − × 100%
Trong đó:
ρ, ρ 0 là tốc độ ăn mòn khi có và không có chất ức chế
Δmc, Δmk là độ giảm khối lượng của mẫu kim loại trong trường hợp có
và không có chất ức chế
Hiệu quả tác dụng của chất ức chế có thể đánh giá thông qua sự thay đổi
cường độ ăn mòn trong phương pháp đường cong điện cực Trong trường hợp
này hiệu quả ức chế được tính theo công thức:
Trang 15= và = − × 100%
Trong đó i và i 0 là cường độ dòng ăn mòn đo được trong môi trường ăn mòn
khi có và không có chất ức chế
1.1.4.2 Các phương pháp nghiên cứu chất ức chế ăn mòn kim loại
Để đánh giá khả năng ức chế ăn mòn kim loại của chất ức chế, ta có thể
thực hiện thep nhiều phương pháp khác nhau tùy theo từng điều kiện cụ thể
Việc nghiên cứu khả năng ức chế ăn mòn có thể thực hiện được trong các môi
trường ăn mòn khác nhau (axit, bazơ, trung tính) với các nồng độ, nhiệt độ
khác nhau Hoặc có thể đưa vào một vật liệu nào đó như dầu, mỡ, màng sơn
bảo vệ rồi đánh giá chất lượng bảo vệ kim loại của vật liệu này so với trường
hợp không có chất ức chế Khả năng ức chế ăn mòn của chất ức chế được xác
định qua các chỉ số như hiệu quả ức chế, mức độ bảo vệ và tốc độ ăn mòn Có
bốn nhóm phương pháp chính nghiên cứu ức chế ăn mòn:
• Nhóm phương pháp ngâm nhúng (phương pháp tổn hao khối lượng)
• Nhóm phương pháp điện hóa
• Nhóm phương pháp thử gia tốc
• Nhóm phương pháp thủ nghiêm tự nhiên
Trong số các phương pháp trên thì phương pháp ngâm nhúng và phương
pháp phân cực thế động trong nhóm phương pháp điện hóa được sử dụng phổ
biến nhất và thực hiện tương đối đơn giản
a Phương pháp ngâm nhúng
Nguyên tắc của phương pháp này dựa trên sự thay đổi khối lượng mẫu
sau một thời gian ngâm nhúng trong môi trường ăn mòn khi có và không có
chất ức chế ăn mòn Đây là phương pháp thử nghiệm đơn giản nhưng để đảm
bảo độ chính xác và độ lặp của kết quả thì các điều kiện thử nghiệm phải được
thực hiện nghiêm ngặt như: các mẫu kim loại phải lớn, các mẫu phải được thực
hiện trong cùng một khoảng thời gian, cùng điều kiện áp suất, nhiệt độ…
Trang 16Khả năng ức chế ăn mòn của chất ức chế được đánh giá thông qua các
chỉ số độ bóng bề mặt, độ sâu vết ăn mòn, tốc độ ăn mòn nhưng chủ yếu là dựa
vào độ giảm khối lượng mẫu sau một đơn vị thời gian trên một đơn vị diện
tích Hiệu quả bảo vệ được xác định thông qua hiệu quả ức chế ăn mòn γ và
Phương pháp này dựa trên phép đo phân cực thế động, được thực hiện bằng
cách đặt thế quét lên mẫu theo chiều dương (gọi là phân cực anot) hoặc theo
chiều âm (phân cực catot) Cường độ dòng điện biến đổi trong quá trình đo
được ghi lại và vẽ ra theo sự phụ thuộc của thế quét sẽ cho đường cong phân
cực thế động Phép đo này được sử dụng để xác định các đặc trưng ăn mòn kim
loại trong môi trường nước, dung dịch muối Từ phép đo này có thể thu được
những thông tin về tốc độ ăn mòn, màng hấp phụ, độ thụ động và khuynh
hướng ăn mòn
1.2 Phương pháp tổng hợp chất ức chế ăn mòn azometin
Các chất ức chế azometin có thể được tổng hợp theo một số phương pháp sau
Trang 171.2.2 Tổng hợp bằng các hợp chất thơm có nhóm metyl hoạt động thế vào
liên kết −N=N− trong các hợp chất azo
1.2.5 Tổng hợp bằng cách ngưng tụ các hợp chất nitro béo hay thơm béo có
nhóm metylen hoạt động với nitrozoaren khi có xúc tác là NaOH hoặc
CH2 NO2 NO N(CH3)2NaCN
H
N(CH3)2 HNO3
Trang 181.2.6 Bằng phản ứng giữa nitroaren và các α-hetarylxetonnitrin khi có mặt
1.2.8 Phương pháp tổng hợp các chất ức chế ăn mòn azometin bằng phản
ứng giữa andehit và amin bậc một
Tổng hợp các azometin bằng phản ứng giữa andehit và amin bậc một là
một trong những phương pháp thuận tiện và phổ biến nhất, nó đi từ các nguyên
liệu đầu dễ kiếm, rẻ tiền và cho hiệu suất cao
a Phản ứng tổng quát
R−CHO + H2N−R’ R−CH=N−R’ + H2O Trong đó R và R’ có thể là gốc ankyl, aryl hay dị vòng thơm Thông
thường các azometin béo được tổng hợp từ andehit béo và amin béo đều không
bền, còn các azometin thơm thì bền vững hơn, đặc biệt là các azometin thơm
N+I
CH3
CH3
H2O
Trang 19b Cơ chế phản ứng
Phản ứng giữa andehit và amin bậc một được biểu diễn theo sơ đồ sau:
[1,2,7]:
Xúc tác cho cả hai giai đoạn tấn công nucleophin của nhóm amin vào nhóm
cacbonyl và giai đoạn tách nước (dehidrat hóa) đều là xúc tác axit hoặc bazơ, nhưng
nhìn chung xúc tác axit là hữu hiệu hơn cả Thực tế cho thấy tùy theo R và R’ của
từng phản úng mà tốc độ phản ứng đạt giá trị cực đại ở một giá trị pH xác định
Ngoài ra tốc độ phản ứng còn phụ thuộc vào các yếu tố khác như: hiệu ứng không
gian, bản chất các nhóm thế trong R và R’
Nếu dùng xúc tác axit [1] thì cơ chế phản ứng như sau:
Nếu dùng xúc tác bazơ [2] thì cơ chế phản ứng như sau:
Tùy theo môi trường phản ứng mà tốc độ chung của toàn bộ phản ứng phụ
thuộc vào các nhóm thế nhiều hay ít, nó được thể hiện qua quy luật sau: Trong môi
trường trung tính tốc độ tấn công nucleophin tăng khi có nhóm thế hút điện tử (NO2,
Cl, Br…) và giảm khi có nhóm thế đẩy điện tử (CH3, OCH3, OH…) trong nhân thơm
andehit Còn tốc độ dehidrat hóa lại phụ thuộc vào các nhóm thế theo chiều ngược
lại, do vậy tốc độ chung của phản ứng trong môi trường trung tính ít phụ thuộc vào
bản chất các nhóm thế Trong môi trường axit, tốc độ phản ứng lại tăng lên khi trong
C
R'NH2
C
HO O
R' N CH R
OH
R'N CH R H2O B
Trang 20chậm hơn giai đoạn dehidrat [7] Tuy nhiên nếu pH quá thấp thì tốc độ phản ứng lại
giảm Nếu tốc độ cộng nucleophin và dehidrat hóa bằng nhau thì khi gắn các nhóm
thế đẩy điện tử vào trong nhân thơm andehit sẽ làm tăng tốc độ dehidrat hóa nhưng
lại làm giảm tốc độ cộng hợp, khi đó giai đoạn tấn công nucleophin là giai đoạn chậm
quyết định tốc độ phản ứng và bị ảnh hưởng bởi các nhóm thế Nếu đưa nhóm thế hút
điện tử vào nhân thơm andehit thì tốc độ cộng hợp tăng lên còn tốc độ dehidrat hóa
lại giảm đi và trở thành giai đoạn quyết định tốc độ phản ứng Khi đó ảnh hưởng của
các nhóm thế đến tốc độ chung của phản ứng là không đáng kể [7]
1.3 Cấu trúc và phổ của azometin
1.3.1 Cấu trúc điện tử, đồng phân hình học và tính bazơ của azometin
a Cấu trúc điện tử, đồng phân hình học của azometin
Phân tử azometin có thể tồn tại ở hai dạng đồng phân hình học cis (syn) và trans
(anti) [7]
Do các điện tử π tạo liên hợp π, π*
và do sự liên hợp giữa cặp điện tử không chia của nguyên tử nitơ trong liên kết azometin và hệ điện tử π của nhân thơm amin
(tạo liên hợp n, π) nên các azometin thơm có hai kiểu liên hợp [4,7] (liên hợp π, π* và
liên hợp n, π) Hai kiểu liên hợp này làm cho nhân thơm amin quay ra khỏi mặt
phẳng của liên kết azometin một góc α
Khi nghiên cứu cấu trúc của benzylidenanilin C.H Waren đã tính được góc
quay của phân tử này và thấy rằng ở dạng cis có giá trị là 253˚ và ở dạng trans có giá
trị là 117˚ Momen lưỡng cực của phân tử này là 1,57D
V.I Minkin và cộng sự [10] đã nghiên cứu về tính không đồng phẳng của
azometin va đã xác định được góc quay không đồng phẳng từ 40 ÷ 90˚ Gần đây theo
phương pháp AM1 và sử dụng phần mềm Hyperchem 7.0 người ta cũng xác định
được góc nhị diện hình thành qua liên kết azometin một cách rất chính xác và nhanh
chóng
R1C H
N
R2
cis
R1C H
R2N
trans
Trang 21b Tính bazơ của azometin
Do nguyên tử nitơ trong liên kết azometin có cặp điện tử tự do nên nitơ là một
tâm bazơ Lewis Sự liên hợp n, π có ảnh hưởng nhất định đến tính bazơ của
azometin Các nhóm thế ở nhân thơm amin có ảnh hưởng lớn đến tính bazơ của phân
tử azometin, còn các nhóm thế ở nhân thơm andehit ảnh hưởng không đáng kể đến
tính bazơ của phân tử azometin Trị số pKa của benzylidenanilin nằm trong khoảng 9
÷13, hằng số pKa tương đối của azometin có thể xác định bằng phương pháp chuẩn
độ điện thế trong axetonitrin [7] hay trong hỗn hợp dung môi etanol – nước (50:50)
1.3.2 Phổ của azometin
1.3.2.1 Phổ hồng ngoại của azometin
Trong phổ hồng ngoại của các azometin có đỉnh hấp thụ nằm trong vùng 1590
÷ 1650 cm-1 đặc trưng cho dao động hóa trị của liên kết azometin −C=N− [6] Vị trí
của vạch hấp thụ này phụ thuộc vào bản chất của các nhóm thế liên kết với nhóm
azometin Các azometin béo thường cho đỉnh hấp thụ của liên kết −C=N− nằm ở số
sóng cao hơn so với các azometin thơm béo và thơm Trong trường hợp liên kết
azometin có sự liên hợp với vòng thơm thì vùng hấp thụ của liên kết này có thể giảm
mạnh [7] Các nhóm thế hút điện tử cũng làm giảm cường độ hấp thụ của đỉnh này và
ngược lại
1.3.2.2 Phổ khối lượng
Phổ khối lượng của các azometin thường cho các pic ion phân tử với cường độ
rất lớn có số khối phù hợp với khối lượng của các azometin [7] Trong phổ khối
lượng của các azometin còn xuất hiện các pic của các mảnh ion là các phần của phân
tử azometin được phân mảnh, đặc biệt luôn xuất hiện số khối của các mảnh ion là
hợp phần andehit và amin Dựa vào tỷ lệ chiều cao giữa các pic trong phổ khối và số
khối của chúng, ta có thể xác định được công thức phân tử của các azometin và góp
phần quan trong vào việc xác định cấu trúc của chúng
Trang 22CHƯƠNG 2 THỰC NGHIỆM
2.1 Tổng hợp các chất ức chế ăn mòn azometin
Các chất ức chế ăn mòn azometin được chúng tôi tổng hợp bằng phản ứng
giữa các andehit và các amin bậc một, với dung môi phản ứng là etanol tuyệt
đối, benzen, toluen hoặc là hỗn hợp các dung môi đó và chất xúc tác bazơ là
piperidin
2.1.1 Tổng hợp Benzylidenanilin
Phản ứng:
Cho vào bình cầu 2 cổ có lắp sinh hàn hồi lưu, nhiệt kế và máy khuấy 3.2ml
(0.0315mol) benzandehit và 30ml cồn tuyệt đối, thêm một vài giọt xúc tác bazơ
piperidin Cho máy khuấy chạy và nhỏ từ từ vào đó 2.7ml (0.03mol) anilin Đun hồi
lưu hỗn hợp phản ứng ở nhiệt độ sôi của dung môi trong 2 giờ Sau khi phản ứng
hoàn thành đổ hỗn hợp ra cốc thuỷ tinh dung tích 250ml, làm lạnh cho sản phẩm kết
tinh Tiến hành lọc, rửa kết tủa vài lần bằng cồn lạnh, kết tinh lại sản phẩm trong
etanol tuyệt đối Sản phẩm là chất rắn kết tinh màu trăng, sau khi sấy khô thu được
Trang 23Cho 2.07g (0.015mol) ρ-nitroanilin vào bình cầu, hòa tan bằng 30ml cồn tuyệt
đối Sau khi tan hết thêm vài giọt piperidin, tiếp theo nhỏ vào 1.6ml benzandehit, lắp
sinh hàn hồi lưu và đun bình phản ứng trong 3 giờ Sau khi đủ thời gian phản ứng thì
kết tinh sản phẩm trong nước đá Tiến hành lọc, rửa kết tủa bằng cồn lạnh Sản phẩm
là chất rắn tinh thể hình kim, màu vàng
Sản phẩm: 3.69g, hiệu suất: 86,7%
t˚nc: 144 ÷ 145˚C
Tan trong cồn, axeton, ít tan trong benzen và không tan trong nước
Phổ hồng ngoại: νC=N azometin: 1629 cm-1; νN=O thơm: 1587 ÷ 1455 cm-1 ;
νN=O ở ρ-NO2: 1296 cm-1
2.1.3 Tổng hợp Benzylidenantranilic
Phản ứng:
Cân 2.74g axit antranilic, cho vào bình cầu và hòa tan bằng 30ml cồn tuyệt
đối Sau khi tan hết nhỏ vào 2.2ml benzandehit, lắp sinh hàn hồi lưu và đun ở nhiệt
độ sôi của dung môi trong 2 giờ Khi đun bình phản ứng được một thời gian chúng
tôi thấy xuất hiện các hạt rắn bám lên thành bình Khi đủ thời gian phản ứng, cho ra
cốc và làm lạnh cho sản phẩm kết tinh triệt để hơn Lọc, rửa kết tủa vài lần bằng cồn
lạnh thu được chất rắn màu xám trăng
Sản phẩm:3.69g, hiệu suất: 82%
t˚nc: 143 ÷ 144˚C
Tan trong cồn, axeton và benzen, không tan trong nước
2.1.4 Tổng hợp p-dimetylaminobenzylidenanilin
Cho 2.98g (0.02mol) p-dimetylaminobenzandehit vào bình cầu, hòa tan bằng
25ml cồn tuyệt đối Thêm vài giọt piperidin, tiếp theo nhỏ vào 1.9ml anilin Lắp sinh
hàn hồi lưu và đun ở nhiệt độ sôi của dung môi trong 3 giờ Trong khi đun thấy có
các hạt rắn kết tinh bám lên thành bình ở trên mức lỏng thì tăng tốc độ khuấy để
chúng tan vào lỏng Sau phản ứng đem kết tinh trong nước đá, lọc và rửa kết tủa bằng
Trang 24Sản phẩm: 3.24g, hiệu suất: 72.4%
t˚nc: 100 ÷ 101˚C
Tan trong cồn, axeton, benzen, không tan trong nước
Phổ hồng ngoại: νC=N azometin: 1602cm-1; νC=C thơm: 1573 cm-1, 1526 cm-1, 1440
cm-1; νC-H của p-N(CH3): 3026 cm-1
2.1.5 Tổng hợp p-dimetylaminobenzyliden-p-nitroanilin
Phản ứng:
Cho 2.07g p-nitroanilin và 2.35g p-dimetylaminobenzandehit vào bình cầu
Hòa tan hỗn hợp chất rắn bằng 30ml cồn tuyệt đối, thêm vài giọt xúc tác piperidin và
đun hồi lưu ở nhiệt độ sôi của dung môi trong 4 giờ Sau khi đủ thời gian phản ứng
thực hiện kết tinh trong nước đá, tiền hành lọc và rửa kết tủa bằng cồn lạnh, sấy khô
Thu được 2.66g sản phẩm là chất rắn tinh thể hình kim, màu vàng cam
Cho 2.07g p-nitroanilin vào bình cầu, hòa tan bằng 25ml hỗn hợp
benzen-etanol tỉ lệ 4:1 Sau khi tan hết nhỏ từ từ 1.3ml furfuran và thêm vài giọt piperidin,
đun hồi lưu trong 3 giơ Trong quá trình đun cứ sau một khoảng thời gian 15÷30 phút
chúng tôi ngắt nhiệt nhưng không dừng khuấy Sản phẩm thu được đem kết tinh ở
nhiệt độ thấp ~10˚C, tiến hành lọc và rửa kết tủa vài lần bằng benzen lạnh Đem sấy
khô, thu được chất rắn tinh thể hình kim màu xanh lục
O C
H
O H2N NO2
O CH N NO2 H2O
Trang 252.1.7 Tổng hợp Furfurylidenantranilic
Phản ứng:
Cân 2.74g axit antranilic cho vào bình cầu và hòa tan bằng 30ml hỗn hợp
benzen-etanol tỉ lệ 5:1 Khi antranilic tan hết, nhỏ 1.75ml furfurandehit và đun hồi
lưu trong 1,5 ÷ 2 giờ Trong khi đun chúng tôi ngắt nhiệt sau một khoảng thời gian
nhất định để giảm nhiệt độ bình phản ứng Kết tinh sản phẩm ở nhiệt độ phòng, tiến
hành lọc và rửa kết tủa vài lần bằng benzen Do sản phẩm thu được sau khi lọc hút là
bột màu trắng nên chúng tôi cần phải rửa và làm khô sản phẩm kỹ hơn
Sản phẩm: 3.96g, hiệu suất: 92,1%
t˚nc: 220 ÷ 221˚C
Tan trong axeton, ít tan trong cồn và benzen, không tan trong nước
Phổ hồng ngoại: νC=N azometin: 1661cm-1; νC=O của −COOH: 1729 cm-1
, νOH:
3318 cm-1, νC-O-C: 1246 cm-1 của furfuryl
2.1.8 Tổng hợp Vanililidenanilin
Phản ứng:
Hòa tan 3g (0.02mol) vanilin vào bình cầu bằng 30ml hỗn hợp dung môi
toluen-etanol tỉ lệ 5:1 Đong 1,9ml anilin cho vào bồn cầu và thêm vài giọt piperidin,
lắp sinh hàn hồi lưu và đun ở nhiệt độ sôi của dung môi trong 3 giờ Thực hiện kết
tinh sản phẩm ở nhiệt độ thấp, lọc và rửa kết tủa bằng toluen lạnh, sấy khô kết tủa
Sản phẩm là chất rắn kết tinh màu vàng nhạt
Sản phẩm: 3.28g, hiệu suất 76.2%
t˚nc: 152 ÷ 153˚C
Tan trong axeton, ít tan trong cồn và benzen, không tan trong nước
Phổ hồng ngoại: νC=N azometin: 1619cm-1; νC=C thơm: 1581 cm-1, 1510 cm-1,
Trang 262.1.9 Tổng hợp Vanililiden-p-nitroanilin
Phản ứng:
Cân 1.38g p-nitroanilin và 1.6g vanilin cho vào bình cầu, hòa tan hỗn hợp rắn
bằng 30ml hỗn hợp toluen-etanol 5:1 Thêm vài giọt piperidin và đun hồi lưu bình
phản ứng ở nhiệt độ sôi của dung môi trong 6 giờ, sau phản ứng đem kết tinh ở nhiệt
độ thấp, tiến hành lọc hút và rửa kết tủa bằng toluen lạnh Sau khi sấy khô, sản phẩm
thu được 1,56g là chất rắn màu nâu đỏ
Cho vào bình cầu 2ml salixilandehit và 20ml cồn tuyệt đối, sau đó nhỏ từ từ
1,5ml anilin, thêm vài giọt piperidin Lắp sinh hàn và đun hồi lưu trong 2h, sau phản
ứng làm lạnh dể sản phẩm là chất rắn kết tinh màu vàng nhạt, đem sấy khô, khối
lượng sản phẩm thu được 2,85g
Hiệu suất: 90,5%
t˚nc: 54 ÷ 55˚C
Tan trong cồn, axeton và benzen, không tan trong nước
Phổ hồng ngoại: νC=N azometin: 1612 cm-1; νC=C thơm: 1571 cm-1, 1478 cm-1,
1453 cm-1; νOH: 3225 cm-1 ở o-OH
2.2 Khảo sát tính ức chế ăn mòn kim loại của các azometin tổng hợp được
Chúng tôi tiến hành khảo sát tính ức chế ăn mòn của các azometin tổng hợp được
bằng phương pháp tổn hao khối lượng theo tiêu chuẩn ASTM G46-94 [19]
Trang 272.2.1 Khảo sát khả năng ức chế ăn mòn thép CT-3 của các azometin trong môi
trường axit HCl 2M
a Chuẩn bị mẫu
Các mẫu thép được dùng để khảo sát tính ức chế ăn mòn thép CT-3 dạng tấm
có kích thước 50mm×50mm×2mm, được khoan một lỗ đường kính 4mm dùng để
buộc dây Thành phần thép CT-3: 99.369%Fe; 0.15%C, 0.42%Mn; 0.037%S;
0.024%P
Các mẫu thép được chuẩn bị theo tiêu chuẩn ASTM G1-03 [18]: mài nhẵn,
sạch và được đánh bóng bề mặt bằng giấy giáp Nhật với các cỡ 150, 240, 400 và 600
sao cho bề mặt tấm thép đạt độ phẳng Δ6 Sau đó rửa sạch các mẫu thép bằng nước
máy, nhanh chóng tráng lại bằng cồn, sấy khô và cho vào binh hút ẩm
Môi trường ăn mòn là dung dịch axit HCl 2M được pha từ axit HCl đặc (nồng độ 36
÷ 38%) loại PA do Trung Quốc sản xuất
Các chất ức chế azometin được pha vào trong môi trường ăn mòn với nồng độ
10-3M, đây là nồng độ thường sử dụng cho ức chế ăn mòn kim loại của các chất ức
chế [15] Sau khi cân chính xác lượng các chất, lần lượt hòa tan bằng 15ml cồn tuyệt
đối rồi pha vào dung dịch HCl 2M đựng trong bình định mức 500ml hoặc 1000ml và
lắc đều Nếu khi pha vào dung dịch ăn mòn thấy có vẩn không tan thì đun nóng dung
dịch đó lên cho tan hết
b Tiến hành thử nghiệm
Các mẫu thép sau khi đã chuẩn bị được cân trên cân phân tích để xác định
khối lượng trước khi ngâm và được đo kích thước bằng thước cặp có độ chính xác
1/10mm Đổ các dung dịch ăn mòn có pha chất ức chế vào các cốc được đánh dấu
tương ứng với các azometin Cốc so sánh không có chất ức chế ăn mòn mà chỉ là
dung dịch HCl 2M Các cốc phải có kích thước thích hợp sao cho khi treo mẫu thép,
chúng không bị chạm vào thành và đáy cốc, tấm thép phải được ngập hoàn toàn trong
dung dịch Sau khi ngâm 24 giờ các tấm thép được vớt ra, dùng bàn chải rửa sạch
bằng nước, tráng bằng cồn, sấy khô và cho bào bình hút ẩm 24 giờ rồi đem cân để
tính các giá trị Δm, hiệu quả ức chế ăn mòn và tốc đọ ăn mòn Tiên hành quá trình