1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN CHẤT 2020) giải pháp giúp học sinh lớp 11 hệ thống kiến thức và sử dụng máy tính cầm tay cho bài toán viết phương trình tiếp tuyến với đường cong

17 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 574,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tên sáng kiến: “Giải pháp giúp học sinh lớp 11 hệ thống kiến thức và sử dụng máy tính cầm tay cho bài toán viết phương trình tiếp tuyến với đường cong” Lê Thị Diệu, Nguyễn Ngọc Hữu.. Chí

Trang 1

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập – Tự do – Hạnh phúc

MÔ TẢ SÁNG KIẾN

Mã số:………

I Tên sáng kiến:

“Giải pháp giúp học sinh lớp 11 hệ thống kiến thức và sử dụng máy tính cầm tay cho bài toán viết phương trình tiếp tuyến với đường cong”

(Lê Thị Diệu, Nguyễn Ngọc Hữu Nguyễn Văn Phong, @THPT Ca Văn Thỉnh)

II Lĩnh vực áp dụng sáng kiến:

Áp dụng cho giáo viên giảng day môn Toán ở trường trung học phổ thông

III Mô tả bản chất của sáng kiến

1 Tình trạng giải pháp đã biết:

Để thực hiện tốt nhiệm vụ năm học mà bộ Giáo Dục và Đào Tạo đã phát động, đối với người giáo viên đang trực tiếp làm công tác giảng dạy thì một nhiệm vụ quan trọng là phải nâng cao chất lượng giảng dạy Trong các biện pháp nâng cao chất lượng giảng dạy thì việc đi sâu nghiên cứu chương trình mà mình đang trực tiếp giảng dạy và các phương pháp tuyền thụ cho học sinh là rất cần thiết đối với giáo viên

Trong các năm qua tôi được phân công giảng dạy toán các lớp 11, nhận thấy

được trong quá trình học về phần phương trình tiếp tuyến với đường cong có số

em chưa hiểu kĩ và giải bài tập chưa đạt hiệu quả cao Ttrong các kì thi gần đây, kể

cả kì thi Tốt nghiệp THPT năm nay Bộ Giáo Dục ra đề với hình thức thi trắc nghiệm nên việc nắm vửng kiến thức để kết hợp với máy tính cầm tay ( MTCT) ( máy CASIO fx-570ES PLUS) áp dụng vào hình thức thi này không kém phần quan trọng Các em hiểu kĩ và kết hợp sử dụng MTCTthì sẽ đạt hiệu quả tối ưu

Trang 2

Chính vì vậy, tôi đã viết lên một chút kinh nghiệm là: “Giải pháp giúp học sinh

lớp 11 hệ thống kiến thức và sử dụng máy tính cầm tay cho bài toán viết phương trình tiếp tuyến với đường cong”

Năm học 2016- 2017, tôi được phân công dạy toán lớp 11C2 có 42 em, lớp có khá đông học sinh trung bình, yếu chủ yếu là hỏng kiến thức củ, không phân loại dạng bài tập thậm chí không biết sử dụng máy tính khiến tôi củng gặp không ít khó khăn Tôi cố gắng giúp các em củng cố hệ thống các nội dung, trong đó có phần

phương trình tiếp tuyến với đường cong.

Khi dạy về phần tiếp tuyến với đường cong tôi nhận thấy:

Đối với học sinh yếu: khó phân biệt được phương trình tiếp tuyến với đường cong tại một điểm và đi qua một điểm, hay biết hệ số góc

Đối với học sinh khá : chưa giải quyết được các bài toán dựa vào điều kiện tiếp xúc của hai đường

Trong thời gian thực hiện giải pháp, tôi đã luôn quan sát, tận tình giúp các em yếu giải quyết khi gặp vướn mắc trong giải toán, chỉ một cách rất rõ ràng việc sử dụng MTCT cho bài trắc nghiệm, từ đó tạo động lực cho các em tiếp thu bài một cách tốt nhất

2 Nội dung giải pháp đề nghị công nhận là sáng kiến:

2.1 Mục đích của giải pháp:

Với việc áp dụng giải pháp này, tôi đặt ra mục tiêu:

- Về kiến thức: Học sinh phải nắm được cách lập phương trình tiếp tuyến của

đường cong các dạng từ dễ đến khó

- Về tư duy: Phân biệt các dạng toán lập phương trình tiếp tuyến với đường

cong tại một điểm, biết hệ số góc và đi qua một điểm, bài toán dựa vào điều kiện tiếp xúc của hai đường Biết vận dụng linh hoạt và sáng tạo khi sử dụng điều kiện tiếp xúc của hai đường

- Về kĩ năng : Thành thạo toán lập phương trình tiếp tuyến với đường

congcác dạng, kĩ năng sử dung MTCT và sử dụng có hiệu quả.

Trang 3

2.2 Biện pháp thực hiện:

Phân biệt cho các em từng dạng toán và nêu cách giải cụ thể, với mỗi dạng song song lí thuyết tôi hướng dẫn cách bấm máy tính áp dụng vào bài toán trắc nghiệm

PHƯƠNG TRÌNH TIẾP TUYẾN TẠI ĐIỂM THUỘC ĐỒ THỊ

Công thức phương trình tiếp tuyến với đồ thị hàm số : tại điểm

thuộc đồ thị là:

(1)

là hoành điểm tiếp xúc và là tung độ tiếp điểm

là hệ số góc tiếp tuyến +) nếu cho , ta suy ra ,

+) nếu cho , ta suy ra ( giải phương trình )

* Đối với bài toán trắc nghiệm , trước khi tìm đáp án đúng bằng MTCT, ta sử dụng phương pháp loại trừ bỏ bớt các đáp án không đúng

* Công thức ( 1 ) được viết lại dạng : với và

Như vậy viết phương trình tiếp tuyến là đi tìm hai số k và b Ta sẽ dùng MTCT tìm hai số này:

số k =

số b =

do đó ta chỉ cần biết là có thể dùng MTCT tìm k và b dễ dàng

nhập ấn ta có kết quả k, quay lại và bấm

Trang 4

* Ta củng có thể dựa vào điều kiện tiếp xúc của hai đường y = f(x) và y = g(x) =

ax +b ( tiếp tuyến) là:

Hệ phương trình: có nghiệm

Dùng máy tính tìm a bằng cách tính đạo hàm, sau đó tìm b bằng cách lấy f(x) –

ax ( quay lai trên máy calc x? ….)

Ví dụ :Gọi M là giao điểm của đồ thị hàm số với trục tung Viết phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M:

Phân tích:

Tại giao điểm M của (C) với Oy thì điểm M có hoành độ bằng 0 Vậy dùng MTCT để tìm k và b

Với x = 0, thế vào hàm số được y = ½, ta thấy câu C và D không thỏa,

vậy loại câu C, D, còn lại A hoặc B

Giải :

Ta có = 0

MTCT: bấm = ,quay lại , nhập thêm

0

Vậy Pttt: , chọn kết quả A

Vấn đề là tìm ?

Qua các phân tích trên ta thấy việc tìm phương trình tiếp tuyến bằng cách

sử dụng máy tính cầm tay chỉ cần có thì ta sẽ tìm được các yếu tố cần

thiết khác Vậy vấn đề là tìm , nếu chưa cho ta kết hợp kiến thức tìm,

Trang 5

sau đó tiếp tục bấm máy Sau đây là một số trường hợp là các dạng

thường gặp nhất:

*DẠNG 1: Cho trước tiếp điểm

Cách giải:

+ ) Ta chỉ cần tính rồi thế vào công thức (1) có kết quả Dạng này khá đơn giản, tuy nhiên nếu giải bằng máy tính:

nhập ấn ta có kết quả k, quay lại và bấm

ấn nhập ấn ta có kết quả b

Ví dụ 1: Viết phương trình tiếp tuyến của đồ thị tại điểm có hoành

độ 0:

A B. C D

Phân tích :

Trước hết x = 0, được y = 0, câu C bị loại

ta có : = 0, nhập vào máy

Giải :

nhập x = 0 , kết quả 3, quay lại và bấm

0 bấm = kết quả 0 Vậy: phương trình tiếp tuyến là y = 3x, chọn kết quả B

Ví dụ 2: Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x0 = -1 bằng :

A B C D.3 Phân tích: tìm đạo hàm tại x0 = -1 ( bài

này khá đôn giản)

Trang 6

ấn = -2 Vậy: chọn A

* NHẬN XÉT: Dạng này có thể tính nhanh không cần máy tính

BÀI TẬP TRẮC NGHIỆM

Bài 1: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ

x0 = -1 :

A B C D

Bài 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm :

A B C D

Bài 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung :

A B C D

Bài 4: Cho hàm số có đồ thị là (H) Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của (H) với trục hoành:

A y = 2x – 4 B y = - 3x + 1 C y = - 2x + 4 D y = 2x

Bài 5: Cho ham sô có đồ thị (C) Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của (C) với trục tung:

Bài 6: Tiếp tuyến của parabol tại điểm (1; 3) tạo với 2 trục tọa độ một tam

giác vuông Diện tích của tam giác vuông đó là:

Trang 7

A B C

D

Bài 7: Tiếp tuyến của đồ thị hàm số tại điểm A( - 1 ; 0) có hệ số góc

bằng

A 1/6 B -1/6 C 6/25 D -6/25

Bài 8: Hệ số góc của tiếp tuyến của đồ thị hàm số tại giao điểm với trục tung bằng :

Bài 9: Hệ số góc của tiếp tuyến của đồ thị hàm số tại giao điểm với trục hoành bằng :

ĐÁP ÁN: 1A, 2C, 3A, 4C, 5B, 6A, 7B, 8D, 9A

*Dạng 2: Cho biết tung độ tiếp điểm

Cách giải:

+ )Ta giải phương trình để tìm ( lưu ý phương trình có bao nhiêu nghiệm là có bấy nhiêu tiếp tuyến ), sau đó áp dụng công thức 1

+ )Nếu dùng máy tính, giải phương trình bằng máy tìm , bấm máy như dạng 1

Ví dụ 1: Cho hàm số có đồ thị là (H) Viết phương trình tiếp tuyến của

đồ thị hàm số tại giao điểm của (H) với trục hoành là:

A y = 2x – 4 B y = - 3x + 1 C y = - 2x + 4 D y = 2x

Trang 8

Phân tích:

Ta biết giao điểm của (H) với trục hoành là điểm có tung độ bằng 0, giải

phương trình y = 0 tìm , bấm máy

Giải :

= 0 , tiếp điểm (2;0) ta thấy câu B, D bị loại

MTCT: ấn = được kết quả -2, quay lại và bấm

2 ấn ta có kết quả 4

Vậy: pttt là

Vậy: chọn C

Ví dụ 2: Cho hàm số Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M thuộc đồ thị biết

Phân tích: ta biết , cần tìm ( giải phương trình y = f(x) =4 )

Giải:

Ta có pt :

MTCT:

ấn = 0 quay lại và bấm

ấn = 4, suy ra tt quay lại và bấm tương tự x = -2

quay lại và bấm tương tự x = 2

Vậy có 3 phương trình tiếp tuyến thỏa đè bài là : ; ;

Trang 9

* Hạn chế: ở cách giải này, mỗi giá trị x thì ta phải bấm tìm k và b Nếu giải theo cách dùng số phức, có thể tính được nhiều kết quả cùng lúc, với cách này cần tính y’

BÀI TẬP TRẮC NGHIỆM

Bài 1: Cho đường cong và điểm có tung độ Hãy lập phương trình tiếp tuyến của tại điểm ?

Bài 2: Lập phương trình tiếp tuyến của đồ thị tại giao điểm của

và trục hoành:

A B C D.

ĐÁP ÁN: 1B, 2D

*Dạng 3: phương trình tiếp tuyến cho trước hệ số góc K

Cách giải:

+ ) Ta giải phương trình để tìm hoành độ tiếp điểm , tung độ tiếp điểm,rồi áp dụng công thức 1

+ ) Sử dụng máy giải phương trình để tìm hoành độ, bấm máy

Ví dụ: Cho hàm số Viết phương trình tiếp tuyến của (C) biết

hệ số góc tiếp tuyến K= -3:

A B

C D

Phân tích:

Không thấy trường hợp loại đáp án

Hệ số góc tiếp tuyến bằng k =

Tính f’(x), giải phương trình f’(x) = -3 được hoành độ

Giải:

Trang 10

Pt

MTCT: ấn = -3 quay lại và bấm

0 ấn ta có kết quả -1 , pttt y = -3x -1

2 ấn = ta có kq 11, pttt y = -3x + 11

Vậy: chọn kết quả câu B

BÀI TẬP TRẮC NGHIỆM

Bài 1: Viết phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc

tiếp tuyến k = -9:

Bài 2 : Trong các tiếp tuyến tại các điểm trên đồ thị hàm số , tiếp

tuyến có hệ số góc nhỏ nhất bằng:

Bài 3 : Cho hàm số ( C ) Đường thẳng nào sau đây là tiếp tuyến

của (C ) và có hệ số góc nhỏ nhất:

A B C D

Bài 4 : Cho hàm số có đồ thị Trong các tiếp tuyến với

, tiếp tuyến có hệ số góc lớn nhất bằng bao nhiêu?

A B C. D

Bài 5 Tiếp tuyến của đồ thị hàm số tại điểm A( - 1 ; 0) có hệ số góc bằng

A 1/6 B -1/6 C 6/25 D -6/25

Trang 11

ĐÁP ÁN: 1,2A, 3A, 4C, 5B.

*Dạng 4: phương trình tiếp tuyến cho song song với đường thẳng d: : Nhận xét: 2 đường thẳng song song có hệ số góc bằng nhau

Tiếp tuyến // d ( giống như trường hợp 3 )

( đả biét tiếp tuyến ) Cách giải:

+ )Ta giải phương trình để tìm hoành độ tiếp điểm, suy ra tung độ tiếp điểm, rồi áp dụng công thức 1

+ ) Dùng MTCT: giải pt f’(x) = k, rồi bấm máy như các trường hợp trên

+ ) Chú ý loại kết quả trùng đề bài

Ví dụ: Gọi (C) là đồ thị của hàm số Viết PT tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng d: y = -2x + 2:

A y = -2x – 2 B y = -2x + 4 và y = -2x + 2 ;

C y = -2x + D y = -2x + 3

Phân tích:

Không thấy đáp án bị loại, vì trong các đáp án các đương thẳng có hệ số góc bằng -2

Tính f’(x), giải phương trình f’(x) = -2, tìm x, dùng MTCT

Giải:

Ta có:

ấn ta có kq -2

= 1 kq -10/3

Trang 12

tt:

3 ấn có kq -2, 2 (loại)

Vậy: chọn C

BÀI TẬP TRẮC NGHIỆM

Bài 1 Lập phương trình tiếp tuyến của đường cong , biết tiếp tuyến đó song song với đường thẳng ?

A B C D y = x

Bài 2 Cho hàm số có đồ thị (P) Nếu tt tại điểm M của (P) có hệ số góc bằng 8, tìm hoành độ điểm M :

A B.- C D

Bài 3 Gọi (C) là đồ thị của hàm số Có hai tiếp tuyến của (C) cùng song song với đường thẳng y = -2x + 5 Hai tiếp tuyến đó là :

A y = -2x + và y = -2x + 2 ; B y = -2x + 4 và y = -2x – 2 ;

C y = -2x - và y = -2x – 2 ; D y = -2x + 3 và y = -2x – 1

Bài 4 Phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng là

A B C D

Bài 5 : Cho hàm số có đồ thị (C) Số tiếp tuyến của (C) song song với

đường thẳng là:

ĐÁP ÁN: 1D, 2B, 3A, 4A, 5D

Trang 13

* Dạng 5: phương trình tiếp tuyến cho vuông góc với đường thẳng Nhận xét: 2 đường thẳng vuông góc có tích các hệ số góc bằng -1

Tiếp tuyến d f’(x).K = -1 f’(x) = -1/K ( xem đã biết hệ số góc)

Cách giải:

+ ) Ta giải phương trình để tìm hoành độ tiếp điểm , suy ra tung

độ rồi áp dụng công thức 1

+ ) Giải bằng máy tính trước hết cần tính f’(x) bằng viết tính nhanh, bấm

máy giải pt f’(x) = -1/K tìm x ,bấm tìm tiếp tuyến

Ví dụ: Cho hàm số ( C ) Viết phương trình tiếp tuyến của ( C ) biết tiếp

tuyến vuông góc với đường thẳng d:

Giải:

Ta có pt:

Bấm máy tương tự như trên được phương trình tiếp tuyến là:

BÀI TẬP TRẮC NGHIỆM

Bài 1 Cho hàm số có đồ thị (C) Số tiếp tuyến của (C) vuông góc

với đường thẳng là:

Bài 2 Cho hàm số có đồ thị (C) Số tiếp tuyến của (C) song song với đường thẳng là:

Trang 14

A.1 B.3 C.4 D.2

Bài 3 (C) là đồ thị hàm số Tìm các điểm trên (C) mà tiếp tuyến tại

đó với (C) vuông góc với đường thẳng (d): y=x+4

A.(2;12) B.(0;0) C. D.(-2;0) ĐÁP ÁN: 1B, 2D, 3C

NHẬN XÉT CHUNG: Các dạng đã nêu trên ( dạng 1, 2) nếu giải bằng cách viết, tính nhanh, ước tính thời gian giải bằng cách này tương đương thời gian giải bằng MTCT Tuy nhiên, giải bằng MTCT thì sẽ ít tính nhẩm hay lập luận, kết quả chính xác cao, các em sẽ chọn cách giải thích hợp cho mình.

*Dạng 6: Viết phương trình tiếp tuyến (d) với (C), biết (d) đi qua điểm M(x 1 , y 1 ) cho trước: ( M(x 1 , y 1 )

Phân tích: Qua 1 điểm nằm ngoài ( C ), có rất nhiều đường thẳng, ta tìm đt

thỏa điều kiện là tiếp tuyến với ( C )

Cách giải:

+ ) Cách 1: Tìm tọa độ tiếp điểm

Gọi M là tiếp điểm Khi đó:

Phương trình tiếp tuyến tại M là:

Giải phương trình (2) tìm được , từ đó viết pttt

+ ) Cách 2: dùng điều kiện tiếp xúc

Lập phương trình đường thẳng d đi qua điểm M có hệ số góc k:

Điều kiện : (d) là tiếp tuyến với ( C ) (I) có nghiệm

Trang 15

Ta giải hệ phương trình (I) bằng phương pháp thế, tìm được x sau đó thế vào tìm k, kết luận phương trình tiếp tuyến

Lưu ý: Dạng bài tập này có kết hợp máy tính nhưng không hoàn toàn như các dạng trên, có xen vào trình bài viết, lập luận

Ví dụ: Viết pttt với đồ thị hàm số biết tiếp tuyến đi qua điểm A(-6;5)

Hướng dẫn giải:

Phương trình đường thẳng đi qua A có hệ số góc k có dạng:

y = k(x + 6)+ 5

tiếp xúc (C) hệ phương trình sau có nghiệm

Thế (2) vào (1) ta có:

Nhận xét: có thể bấm máy giải phương trình,…

BÀI TẬP

Bài 1 :Cho hàm số có đồ thị Viết phương trình tiếp tuyến của

đi qua điểm :

A B. C D

Bài 2 Số đường thẳng đi qua điểm A(0;3) và tiếp xúc với đồ thị hàm số y=x4 -2x2+3 bằng

Bài 3 Số tiếp tuyến đi qua điểm A ( 1 ; - 6) của đồ thị hàm số là:

Trang 16

A 1 B 0 C 2 D 3

Bài 4 Qua điểm có thể kẻ được bao nhiêu tiếp tuyến với đồ thị của hàm số

?

ĐÁP ÁN: 1B, 2D, 3A, 4C

Tóm lai qua các ví dụ trên việc tìm phương trình tiếp tuyến trong bài trắc

nghiệm ta chỉ cần tìm hoành độ tiếp điểm phần cón lại giai quyết bằng MTCT

3 Khả năng áp dụng của giải pháp:

Giải pháp “Giải pháp giúp học sinh lớp 11 hệ thống kiến thức và sử dụng

máy tính cầm tay cho bài toán viết phương trình tiếp tuyến với đường cong”

được áp dụng rộng rãi cho giáo viên dạy toán ở các trường phổ thông trung học, việc áp dụng giải pháp này củng giúp ít rất nhiều cho các em ( nhất là những HS trung bình, yếu ) hệ thống, phân loại được kiến thức và áp dụng linh hoạt vào sử dụng MTCT nhằm giải bài toán trắc nghiệm đạt hiệu quả

Trên đây chỉ là một vài cách sử dụng MTCT đơn giản cho học sinh lớp 11, còn khá nhiều những cách khác nữa sâu rộng hơn Tuy nhiên, trong một điều kiện khác khi lên lớp 12 các em sẽ được tiếp cận cái mới hơn, đa dạng hơn

4 Hiệu quả, lợi ích thu được do áp dụng giải pháp:

- Học sinh tự tin, mạnh dạn, chủ động và thích thú trong sử dụng MTCT chọn kết quả chính xác cho bài trắc nghiệm

- Nhiều em trong lớp có sự tiến bộ vượt trội

- Rèn luyện cho các em kĩ năng sử dụng MTCT

Cụ thể: Năm học 2016-2017 tôi dạy lớp 11C2, áp dụng giải pháp trên cho lớp này so với năm trước đó thì kết quả kiểm tra 45 phút của chương đạo hàm củng như kết quả kì thi HKII, tôi thấy có kết quả tích cực rõ rệt

Khi chưa áp dụng : hơn 50% học sinh chưa nắm được cách lập phương trình

tiếp tuyến với đường cong, không hiểu được phương trình tiếp tuyến với đường

Ngày đăng: 30/03/2022, 09:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w