hệ số góc của đường thẳng d là.. Phương trình tiếp tuyến tại : .... Phương trình tiếp tuyến tại : ...
Trang 1Trường THPT Nguyễn Hữu Cầu
Tên học sinh: …
Số báo danh: …
ĐỀ KIỂM TRA HỌC KỲ 2 (2014-2015)
Môn Toán học - Lớp 11
Ngày 23 tháng 4 năm 2015
_
Thời gian làm bài 90 phút
Bài 1 (1 điểm):Tính giới hạn
2 lim 3 1 9 4 3
x
Bài 2 (1 điểm): Xét tính liên tục của hàm số sau tại điểm x o 0
2
2 2
2
0
0
x
khi x x
x
khi x x
Bài 3 (2 điểm) Tìm đạo hàm của các hàm số sau:
1
x x y
x
2 sin 2
1 cos 2
y
x
Bài 4 (2 điểm):Cho hàm số y x +1 có đồ thị (C)
x - 2
a) Viết phương trình tiếp tuyến với (C) Tại giao điểm của (C) với trục tung
b) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến vuông góc với
đường thẳng d : 3y x 1 0
Bài 5 (4 điểm): Cho hình chóp S.ABCD ABCD là hình chữ nhật tâm O , AB = a , BC = 2a
SA = SB = SC = SD = 3a I , J lần lượt là trung điểm của AB và CD
2 a) Chứng minh rằng : mp(SOJ) (SCD)
b) Tính theo a khoảng cách từ O đến (SCD)
c) Tính số đo góc giữa mp(SAB) và mp(SCD)
- Hết
Trang 2-Trường THPT Nguyễn Hữu Cầu
Môn Toán học - Lớp 11
Ngày 23 tháng 4 năm 2015
Bài 1 (1 điểm):
2
2
10 4
x
0, 25
2
lim
x
x
x x
0, 25
2
4 10 lim
x
x
0, 25
5
3
Bài 2 (1 điểm):
(0.25)
f
(0.25)
2
2 2
1
x
f x
x x
(0.25)
2
f x
x x
Bài 3 (2 điểm):
2
x x y
x
sin
y
x
Bài 4 (2 điểm):Cho hàm số y x +1 có đồ thị (C)
x - 2
a) Viết phương trình tiếp tuyến với (C) Tại giao điểm của (C) với trục tung
Giao điểm của (C) với trục tung: M 0; 1
2
Phương trình tiếp tuyến với (C) tại M: y y ' 1 x 1 y 3x 1
b) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến vuông góc với đường thẳng d : 3y x 1 0
Gọi M x ; y 0 0 là tiếp điểm
hệ số góc của đường thẳng d là
d : 3y x 1 0 y x
Tiếp tuyến song song đường thẳng d y ' x 0 3 x 0 3, x 0 1 0, 25
Phương trình tiếp tuyến tại :
Phương trình tiếp tuyến tại :
Trang 3Bài 5 (4 điểm):
a/ mp(SOJ) (SCD)
OJ CD(do OC OD)
0.25 đ
0.5 đ 0.25 đ
CD (SOJ) (SCD) (SOJ)
CD (SCD)
-b/ Khoảng cách từ O đến (SCD)
(SOJ) (SCD) (cmt)
trongmp(SOJ) vẽ OH, SJ
d(O, (SCD)) = OH… 0.25 đ
AD
2
0.25 đ
.
SO BD(doSB SD)
SO=
OJ (ABCD)
SJ OJ a 0.25 đ
SOJ vuông cân tại O
SO OJ a
SO OJ
OH = SJ a 2 Vậy d(O, (SCD)) = ….
a 2
2 0.25 đ
-c/ Số đo gĩc giữa mp(SAB) và mp(SCD)
(SAB) (SCD) Sx,AB/ / Sx/ / CD
SI (SAB) , SJ (SCD)
Gọi là gĩc giữa mp(SAB) và mp(SCD) ,
suy ra = ·(SI,SJ)……….0.5 đ
SI = SJ = a 2 , IJ = BC = 2a
SIJ vuơng cân tại S
Suy ra = ·(SI,SJ) = 90o ……….0.5 đ
-c/ Cách 2 : SI AB SI CD
AB / /CD
SI = SJ = a 2 , IJ = BC = 2a
SIJ vuơng cân tại S
SI SJ
SI CD
SI SJ
SJ CD J trongmp(SCD)
SI (SCD)
SI (SCD)
(SCD) (SAB)
SI (SAB)
Vậy số đo của gĩc giữa mp(SAB) và mp(SCD) bằng 90o
……… c/ Cách 3:
SI = SJ = a 2 , IJ = BC = 2a
SIJ vuơng cân tại S SI SJ
SI CD
SI SJ
SJ CD J trongmp(SCD)
SI (SCD)
SJ AB
SI SJ
SI AB I trongmp(SAB)
SJ (SAB)
Gọi là gĩc giữa mp(SAB) và mp(SCD) , suy ra = ·(SI,SJ) = 90o
- Hết
O
S
J I
H