Tính gĩc giữa SC và SAD c.. Tính khoảng cách giữa SC và BD Lưu ý: Học sinh ghi “ĐỀ CHẴN” vào bài làm... Tính gĩc giữa SC và SAB c.. Tính khoảng cách giữa SC và BD Lưu ý: Học sinh ghi
Trang 1Trường THPT Lương Thế Vinh
ĐỀ THI HỌC KÌ II – Năm học 2014 - 2015 Môn: TOÁN 11 – Thời gian: 90 phút
Câu 1: (1,5 điểm) Tìm các giới hạn sau:
lim
x
Câu 2: (2 điểm) Tìm đạo hàm của các hàm số sau:
3
4
x
cos 1 3
Câu 3: (2,5 điểm)
a Xét tính liên tục của hàm số sau tại x0 1:
2
1
1
x
x
b Cho hàm số 2 Chứng minh
sin
Câu 4: (4 điểm) Cho hình chĩp S.ABCD cĩ đáy ABCD là hình vuơng tâm O, cạnh a, SAa 2 và
a Chứng minh SAB SBC
b Tính gĩc giữa SC và SAD
c Tính tan gĩc tạo bởi SAD và SBC
d Tính khoảng cách giữa SC và BD
Lưu ý: Học sinh ghi “ĐỀ CHẴN” vào bài làm.
ĐỀ CHẴN
Trang 2Trường THPT Lương Thế Vinh
ĐỀ THI HỌC KÌ II – Năm học 2014 - 2015 Môn: TOÁN 11 – Thời gian: 90 phút
Câu 1: (1,5 điểm) Tìm các giới hạn sau:
lim
x
Câu 2: (2 điểm) Tìm đạo hàm của các hàm số sau:
4
3
x
sin 1 3
Câu 3: (2,5 điểm)
a Xét tính liên tục của hàm số sau tại x0 1:
2
1 1
3
1 4
x x
f x
b Cho hàm số 2 Chứng minh
sin
Câu 4: (4 điểm) Cho hình chĩp S.ABCD cĩ đáy ABCD là hình vuơng tâm O, cạnh a, SAa 2 và
a Chứng minh SCD SAD
b Tính gĩc giữa SC và SAB
c Tính tan gĩc tạo bởi SAB và SCD
d Tính khoảng cách giữa SC và BD
Lưu ý: Học sinh ghi “ĐỀ LẺ” vào bài làm.
ĐỀ LẺ
Trang 3ĐÁP ÁN TOÁN 11 - HỌC KỲ II NĂM HỌC 2014 - 2015
Câu 1: (1,5 điểm) Tìm giới hạn: Câu 1: (1,5 điểm) Tìm giới hạn:
a
lim
x
lim
x
x
1 lim
2
x
2
2
3 1
lim
1 3
3 lim
4
3 1
x
x
x
x
2
2
1 lim
1 1
1 lim
6
1 1
x
x
x
x
Câu 2: (2 điểm) Tìm đạo hàm của các hàm số sau: Câu 2: (2 điểm) Tìm đạo hàm của các hàm số sau:
3
4
x
4
4
2
4
3
x
2 5
2
b ycos2 1 3 x b ysin2 1 3 x
' 2 cos 1 3 cos 1 3
2 cos 1 3 sin 1 3 1 3
3cos 1 3 sin 1 3
1 3
x
' 2sin 1 3 sin 1 3 2sin 1 3 cos 1 3 1 3 3sin 1 3 cos 1 3
1 3
x
Câu 3: (2,5 điểm) Câu 3: (2,5 điểm)
a Xét tính liên tục của hàm số sau tại x0 :1
2
1
1
x
x
a Xét tính liên tục của hàm số sau tại x0 :1
2
1 1
3
1 4
x x
f x
1 4
1 4
f
Trang 4
2
1
1
1
lim
2
x
x
x
f x
x
1
x f x f
Vậy hàm số liên tục tại x0 1
2
1
1
1
lim
lim
4
x
x
f x
x x
1
x f x f
Vậy hàm số liên tục tại x0 1
b Chứng minh 2yytanxy 2 0? b Chứng minh 2yytanx y 2 0?
2
sin
y x
2sin cos
2 cos 2sin
sin 2sin 2sin cos 2 cos 2sin 2 0
cos 2sin 2 cos 2 0
0 0
đúng
y y x y
x
x
A
D
S
O
d
D
S
O
H d
a Chứng minh SAB SBC? a Chứng minh SCD SAD ?
D
Mà BCSBC
D
Mà CDSCD
Trang 5 SD là hình chiếu của SC trên SAD
SC SAD SC SD CSD
2 2
SD a a a
·
1 tan
CD a
CSD
SD a
SC SAD CSD
SB là hình chiếu của SC trên SAB
SC SAB SC SB CSB
2 2
SB a a a
·
1 tan
BC a CSB
SB a
SC SAB CSB
c Tính tan góc tạo bởi SAD và SBC ? c Tính tan góc tạo bởi SAB và SCD ?
//
,
,
,
tan
AB a
ASB
SA a
//
,
, ,
tan
AD a
ASD
SA a
d Tính khoảng cách giữa SC và BD? d Tính khoảng cách giữa SC và BD?
Vẽ OH SC tại H
Chứng minh BDSACBDOH
OH là đường vuông góc chung của SC và BD
2
a a
OH
Giống đề chẵn