Luận án phó tiến sỹ Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng Tài liệu tham khảo Luận án phó tiến sỹ toán học" Chỉnh hóa một số bài toán ngược trong khoa học...
Trang 1BO GIAO ])t)C vA 1);\0 T~O [11)1H()C Qu6c cIArl jANH PH6 H6 CHI MINH TRUc)NCD~I HQC KHOAHQC H,! NHlt Na
NC Tr Y'~ N ,.( 'r')l\T(i TA"M
",1\ 1:', ,,'_.Tn ,
D
CHiNH UO,\ l\iQT 86 BAI ToAN NGtf<1C
TRONe KHOA HOC rfNG Dt)NG
II
TOM T£(TLu.~N AN Fh6 Tie'n SIKhoa hQcToan Ly
Thanh ph6116 ChI Minh
II
Trang 2~}) I.';
-"J,' ~
Tru'CJngBl}i hQc &boa hQc TV lJl'Mn Thanh pho' hI6 Chi Minh
C6th! tlm hilu Lutjn dn tQi cdc tllltvifl1 : !:I
-' Tnto/'lg Dqi h9C Khan h9C T~(Nhien Thc'rl1hpluJ' H6 Chi Minh
- Khaa H9c nfng fir]) Thanh ph/f H6 C?ll Minh
a ID
Trang 3nO GIAo D~JC vA BAo L'}O
D/\I HQC Quc5c CIA THANH PH6 HO CHi MINH
TRU<JNCDAI HOC KHOA HQC TV NHlt N
TONI TAT LUr'~NAN
~h6 Tien sl Khoa hqc Toan Ly
Thanh ph6 H6 Chi Minh
-
1996-f'
Trang 4Lu4n an n~y du<;1choan thanh t~i Khoa Toan - Tin 119C
Tnfong D<~ihQc Khw bQc Tlj N11ienThanh ph6H6 Chi Minh
Ng!-!QjJilltjn~ dKI! :
GS TS DANG DINH ANG
~-IDi(jUthill!-, TIiLLl
~gtiotllh;!11_'!fcL~_l
Cd (Juan Itlliin xet :
LUi)n illl se dlNc bao vi!:tqi HC)iDdng Cbi(m Luqn an Nhii Nltdc bqp v,"iTntongD~i hqc Khoil hQc 1'11Nhien Thanh pIle)Ho Chi Minh yito
Co thE lim hilu Lu4n c!ll '~Iiede Ilzz(vifill :
- Klzoa H,?e Tllng Hq'p Thanh pMJ'H(5 Chi Minh
Trang 5MO 8AU
Trong Khoa hl)c ling d\Ing, nolI du khao sat hili loan nglic;1cdii xullt
hi~n tit' lau, Coo de'n nhung nam 60, d6ng thdi VOlvi~c phat tri6n cac c6ng C\lloan hQC,cac hiii loan ngu'<1ckh6ng chino dii du'<1ccac nha loan hl)C tren the'giOi khao sat m(Jt cach sau r(Jng ma lieu bi6u lil t:ac c6ng trinh clia Tikhonov,Lavrentiev, Lions, Tit'thdi gian do de'n nay, cac bai loan ngu'<1ckh6ng chinongay cang du'<1c chu 9khao sat m(Jt cach r(Jng riii do nhung nhu du xullt pilattit' th,,'c te' cua khoa hl)c ling d1!ng, d~c bic$ttrong Ky nghc$, Y hl)c, V~t Iy Oiadu,
Trong Lu~n an, chling Wi khao sat m(Jt s6 hili loan nglt<,1cco a~ng
trong do r lit au ki~n nh~n du'<,1c(qua quaIl sat, do d~c), h9 th6ng A la mOt phuUngtrinh d;;toham rieng VOlcac di~u kic$nbien tuong ling va v ill du kic$ndn tlm
Trong lu~n an, chung t6i khao sat mQt s6 bili loan Cauchy coo phu'ong trinhPoisson va Laplace trong doc mi~n khac nhau ct'Ia R2 va RJ Nhil'ng bili loan nay
co 9nghia qua" tn,mg trong ling d\Ing, chAng h;;tnnhu' trong V~t 19 Dja du, VInghi9m ctta cac hili loan nay se du'<,1cxac dinh khi ta hic't di~u kic$nDirichlet (hayNeumann) tren loan bien mi~n khao sat nen vic$c giai hili loan Cauchy coophuong trInh Poisson hay Laplace du'<,1ccoi nhu bili loan tlm du kic$nd~u vao v ladi6u ki9n hien Dirichlet (hay Neumann) khi bic't du kic$nd~u ra F la di0u ki~nbien CalJ<.:h'y(trcn mQt ph~n bien) va hc$thi')ng A chino la phut1ng trInh Poissonhay Laplace tuUng (tng, hong D,a V~( Iy, hili loan nilYc6 9 nghia th\l'cto vlugu'\fi
ta thuong khang (ht; do d;;tc gia tri tntong trl)ng lifc, tr9ng 1\l'caj thll'ong haygradient dw n6 tren loan bien m't chi c6 th6 do tren mOt ph~n bien ma thai,
Trang 6Phdn I chung t&i xet 3 ba.i toin Cauchy cho phtiong trmb Poisson trongdl3 troll don vi Dc R2 trong nU'a m~t phAng tren p+ c R2 va trong mta kh8ng
Cdc dOnggdp mdi cua Lu4n dn Ii :
1) Chung minh dti<;1c ding Ala toaD to' tuye'n tinh lien tvc tu H vao HI trong d6 H va HIla hai khong glaD Hilbert (thay d6i rhea tung bai loan )
2) Chung minh du'<;1cding ve' pHi F cua phu'ong trmh (1) tbuQc Hi ; (} day F du'<;1cxac dinh tif cae dfi' ki~n eho tru'ck,
3) 86i vai hai bai toan san cua phan I chung toi da:du'a ra du'qc danh gia
d6i voi chuan ~IIH >HI
Trong phan II chung toi xet bai toan Cauchy cho phu'ong trmh Laplace trong t~ng g6 gh8 cua R3nhu' san
D = {(x,y,z):-<X) < x,y,< <X), 0 < z < ~(x,y)}
vdi <\IthuQc Wp CI(R2),
Bli loin la llnl ham di~u hoa u trong D li8n tl}clrong b vdi u u uy.
u, cho tru'oc tren ph~n bien cua D dti<;kbien dieD b(}i m~t Z=$(x.y) .m.i to<ln
2
Trang 7-nay la m5 hlnh R3cua bai toan da:du'qc khao s.h (xem D.D.Ang D.N.Thanh & V.V.Thanh: HRegularized Solutions of a Cauchy problem for the LAplaceequation
in an irregular strip", :Tournal of integral equations and Applications, Vo1.5, N2.4,(1993), p,p 429_441),
B~ng phu'dng phap Green va ly thuye't the' vi, chung t51 da: du'a du'<1cbaltoaD Cauchy d teen v~ phu'dng trlnh tich phftn d~ng tich chip san dfty d6i v<'l anham v(x,y) = u(x,y.O) (la di8u ki~n Dirichlet teen bien z=O).
Ie> 4>(x,y) , V(x.y) E R2
Sd dl}ng phu'dng phap chlnh h6a Tikhonov (xem A.N.Tikhonov and
V.Y.Arsenin : Solutions of ill-posed problems Winston Willey, New York,
(1977», chung toi xiy dlfng mQt phu'dng trlnh bie'n pMn (phu'dng trlnh chInh h6a) (00) :
Trong d6 bai toaD too nghi~m v=v" da phu'dng trlnh (3) la bai "toaD
chlnh, nghia la
i) T8n t~i duy nha't v"thoa (3)
ii) v" phI} thuQc lien tl}c vao Fe
E>6ng g6p quan tn;mg khac trong Lu~n an Ia chUng t5i dii dauh gia du'<1c
5ai 56 giU'a nghi~m chlnh h6a v" neu teen so voi nghi~m chinh xac v cua phu'dng
trlnh (1)
3
Trang 8-Cl}the la ne'u sai s6 giiia dii ki~n do d."e F£ va dU'ki~n ehinh xac F la&
, nghlala
thl eh11ng t8i eh1fng t6 du'<;1ela sai s6 giiia nghi~m ehlnh h6a v£ va nghi~m chinh
xacv (Vdi~iathie'ttrdnthichh<;JP)C6b~C,fS hay [l{~)r;(0<&<1)
de dang dy dvng mQtthu~t roan l?p M tinh xa'p xl v£ O9i v£(rn)la budc l~p thd'
m Chung toi da dua ra dU<;1cdaRb gia sai s6
Iv,("> -vl< C,k'" +C~ (7)C£ 13.h!ing s8 phl} thuqc s kh8ng phl} thuQc m k E (0.1) 13.h~ s8 co Hdn niiane'u chQn budc l~p t6i thieu m=m tIll chung t8i thu du'<;JcdaRb gia sai so'
~v}",) -vii < (1 + C)J;: (8)
b) £>6ivdi bai roan trong phh II, chung toi du'a ra du'<;1ccong th1fc tu'Clnp,
minh tinh v theo dU'ki~n do d~c F£ thong qua bie'n d6i Fourier (hai chi~u) thu~II
va ngu<;1C.Vdi gia thi6t v du trdn (v E Hl(R2» chung t8i thu du'<;JcdaRbgia sai s6
Trang 9
-4-1\ v.-vll < C[~;)r
trong d6 h~ng s6 C chi ph'} thuQc vao Ilv~lh'11)
Lie ke"lqua cbillh CIIa LlI~ll all (hi<,lccong b6 trong [1] [2] va se
c!til/c cong b6"lrong [:\J.[4 J.[S J"
tJ
5
Trang 10cAc sAI loAN CAUCHY
CHO PHUONG TRINH POISSON
I BM roAN CAUCHY CHO PHtJdNG TRINH POISSON TRONG HINH TRON BdN VI :
n= (c~O ,sinO) tren t3D hu'dng ra ngoai d5i vdi D
2 Thitt l/jp phr/dnll lrinb deb phlin
Trang 11-B~ng phu'dng phap Green chung toi du'a bai toaD (9), (10) v~
phu'dngtrlnh tich phan Fredholm lo~i mQtd6i vdi /in ham v nhu' sau :
vdi F(O) :::1T[U(O)- uo(O)] - Ilit(I) In21sin I ~ 0 Idl
+ ~If f(~, 1}){21n[(cosO -~)2 + (sinB - 1})2] -In(~ 2 + 1}2))d~d1}
D
( 11)
(12)
3.Khiio sat phlidnf! trinh tfch
vhlin-,-Rtf di 1.1 Ne'u lIo,U1E L2(0,a) va f E L2(D) tIll FE L2(0,a) vdi
F xac dinh CI(12).
Ml!nh tfi 1.1: Toan tU' A: L2(a ,21<) ~ L2(0, a) la loan ttl' tuye'n tinh lien t\lC
3 Chinh hOa nghiDm:
Trang 12-Vdi P > 0 va FE L2(O.a)
eho tru'de x~t bai loan : T1m
P(\'p,ffJ)+<AVp,Af!J> = <F.AffJ> ,Vf!JEI!(a,2f'l) (15)
trong do ( , .) va <., > Ih lu'~t la tieh vo hu'dng trong L2(a.2TC) va L2(O.a) Chung ta ky hi~u cae ehuin tu'dng U'ngla 11.11H va11.11HI Ta co ke'tqua:
Dillh Iv 1.1: Vdi m6i P > 0 va FE L2(O.a) phu'dng trlnh (15) co cluy
nha't mQt nghi~m vp E L2(a.27r) , hdn m1a vp phV thuQc lien t1}c vao
Dinh It 1.2: GiasltF.FoEe(O,a) thoallF-Foll HI<Ii vavo thoa(16) ,(17) G<;>iv, lil nghi~m da phu'dng trlnh bie'n phan (15) rl'ng vdi
XtSt phu'dng trlnh bie'n phan (Ii > 0) :
£(v.,ffJ)+<Av AffJ> = <F.AffJ> ,VffJEL2(a.27r) (20)
hay tu'dng du'dng
8
Trang 13-1>1' +;\*;\1'F. B=;\*r (2\ )
ludo
I' =\'F F.-n.f'(1>1' +;\*;\1'F F.-;\*r )v(fj fJ > 0 sc ch9n sau,
(22)
V~y vI>=T vI>v8i T: L2 (a.,27t) ~ L2 (a.,27t)
du'(jc xac djnh nhu' sau :
() day
AB =;E.ld+A A ,
vii ld - to<ln tar ddn vi trong L2 (a.,27t)
Ta co ke'l qua sau :
(24)
Dillh Ii 1.3:
I>
V8i P = (E+IIA IfY thl T Iii phep co trong L2 (a.,27t)
He Qua1.1: 'liE:>0 cho tmac, phu'dngtrlnh (20) ho~c (21) co nghi~m duy
nha'l VBE L2 (a.,27t)
Ta linh VI>bAng phu'dng phap xa'p xi lien tie'p
Trang 14Cilu tb.ie!!.; m.la s8 bd&:l~p t8i thi~u di ta e6 danh gia teen.
MQt ph~n ket qua eua mvc nay dii ddcjcc6ng b6 trong [I] va[2].
II BAI ToAN CAUCHY CHO PHVcJNG TRINH POISSON TRONG NUA MAT PHANGTRtN:
u ehinh qui d v8 eung nghla Iii.t6n t~i h~ng s8 dddng B sao el1o
lim sup u(x,y) = U'"
Trang 15-~ diiy Vu - gradient cua u.
u theo y
2 Thitt llip p1uh1nll trinh tlch phlin
Ch9n v(x) =Uy(x,O) , x E J=R\I= {x:~1 ~ I} lam in ham.
B~ng phu'dng ph3.p Green, chung tBi du'a bal to~n (31 ).(32) (33),(34) v8 phu'dng trlnh tich phan Fredholm lo~i mQt sau dAy d6i v<'1ilin ham
Trang 16A: L~ (J) ~ L2(I) 13.loan t:U'tuy~n tinh, lien t1}C.Hdn m1a
11.411~ 6
~':fnh}'f)a nRhMm:
Phu'dng trlnh c6 d'l-ng : Tlm 'liv E L~(J) tho a All = F
r FE L2(I) eho tru'dc va toan td' A de dinh theo (40) trong
Vdi Ei> 0 xet phu'dngtrlnh bi~n philn
Trang 17-V~yVs= TjIB VOlloan tifT du<jcdinh nghTa nhu sail:
T:Lp(J)~;Lp(J) T,,=v-p(Asv-A"F)
i'1day
As =E.ld + A" A
va Id - loan tu don vi trong L~( J)
Dillh Ii 1.4: Voi P = E 2 thi T 1a phep co trong L~(J)
co nghi~m chinh xac Va san cho t6n t':livE L2 (I) thoa
(vO,q»L~(J)=(It; Aq»Ll(/) \::Iq>E L~(J)
(45)(46)
Trang 19Ch<?n v(x,y) =uz(x,y,O);
(x,y) E Q = Rz \0= {(x,y): XZ+ yZ 21}
lam an ham.
Bhng phtidng phap Green chung t8i dtia bai toan (49) (50), (51).
(52) v~ mQtphu'dng trlnh tich ph~n Fredholm lo~i mQt do'i vdi :in ham v(x.y)
Trang 20-Xet ham 'l/x.y:Q -) R+ (x,y) E 0 Ia tham s5
Trang 21Ae =E./d+A A /d Ja loan ttYdon vi tTOngL; (Q) Chung Laco kc't qua
Trang 22ddiJy ( ,,) va <.,.>I~nlu'(,1tlatichvBhlf<3ngtrongL:(Q) vaL2(O).
B€ til1hdi€m bit dQl1gv ctia anh x'!-co T chung ta dung phu'ong
pha p x;i'pXl lien ti€p
Trang 232 THANH LAP PH(j(JNG TRlNH TicH PHAN
Ch9n v(x,y) = u(x.,y,O)lam lin ham (-oo<x,y< 00)
X6t ham Green cua bai toaDDirichlet cho phu'dngtrlnh Laplace
trong nua khong gian tren
G(x,y,z;~,17,0 = r(x,y,z;~,t'/,0-r(x,y,z;~,t'/,-0
19
Trang 24-v~i f(x,y,z;.;, 1],0 = 1 4Jr (x-,;y +(y_1])2+(z-02 ~' 1 la nghi~m cd ban
iv) u chinh qui <"vo cung, nghla la t8n t~i h~ng s6 d1.fdngA thoa
B~ng ph1.fdngphap Green, chung ta nhb M<1cph1.fdngtrlnh tich
ph~n sau v~i ftn ham u(x,y,z) va v(x,y)
Trang 250
-G~(x,y,z;1; ,1], ,p(.; ,1]»)- ,p(1;,tJ) (77)
01]
Cho z ~ ,,(1;,1]) trong (75) chung ta nMndu'c!c phu'dng trlnh tich
phan vdi ftn ham v(x,y)
+J JG1(x,y, ;(x,y);.;, 1];(J(I;, 1]))UI(1;,17)dl;d1] i'
3 THANH LAP PHUONG TRiNH TicH PHAN CHAP
Trang 26-thl A(x,y) va p(x,y) xac dinh tren R2 va phil thuQclien ~c vao t/>(!;,1]).
G9i k Ia s6 th!fc thoa k> ,p(I;, 17) V(x,y) E R2
- J J f1(x,y,k;l;, 17;(J (I;, 17»)}.,(I;,17)d.;d17 (84)
va ta c6 phu'c1ngtrlnh nch phan cMp lo'}i mQt vrji in ham v (x,y) nhu' san
-~JJ kv(t;,17)d~d1] M=F(x,y); V(x,Y)ER2 (85)
21r -a>-«>[(x- t;)2 +(y-,d +e]
va F(x,y) la v~ phai c1la(84).
22
Trang 27-4.CHiNH HOANGHltM :
Bil db 2.2:
E>~t
k G(x,y) =
Gi:i stl' 0 < s < 1 va gia stl'nghi~m ehinh de "0 ctla (85) (l~ngvdi
ve' ph<ii Fo) thuQc HI(R2) va IIF- Fo 112< E; vdi lit la chu~n trong
L2(R2) Khid6 t6n tilinghi~mehua'nh6a ", cua (85) sao eho
CJday Ii la h~ng s3 du'dng cM phu thuQc vao. IlvoIIH (R) , .
Ke't qua ctla IDI}Cnay se du'<;1ccong b3 trong [5]
8:J
23
Trang 28-CAecottGTRlttHORcottG 80
(LIEN QUAN DEN LUA-NAN)
[1] Nguy~n C6ng Tam, Nguy~n HQi Nghla : xap xi 6n djnh lVi gidi
cua bili todn Cauchy cho phltdng tTinh Poisson trong hinh Iron ddn vi T'1-pchi "Khoa hQc & C6ng ngM" da 4 tntCfng Dqi hQc
Ky thu~ t S6 9' 95, trang 82784.
biell d6i Laplflce ng14<;c. T'1-pem "Khoa hQc & C6ng ngh~" cua
4 tnfCfngD'1-ihQc Ky thu~t S611-4/1996. Trang 65-67.
clla bai todn Cauchy cho phlldng /rinh Poisson trong Ill/a mrlt
Oqi hQc Ky thu~t (nh~n dang).
[4] Nguy6n C6ng Tam: xap xi 6n djnh lVi gidi clla bat tOOnCauchy cho ph14dngtrinh Poisson trong Ill/a khong gian tren Tqp chi
"Khoa hQc & Cong ngh~" da 4 tru'Cfng Dqi hQc Ky thu~t (nMn dang).
[5] Dang Dinh Ang, Nguyen Hoi Nghia and Nguyen Cong Tam:
Regularized solutions of a Cauchy problem for the Laplace
equation ilt an irregular layer: A three dimen.rional model. "
Acta Mathematica Vietnamica" (to appear).
&:;