Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó B, C là các tiếp điểm.. Gọi M là trung điểm của AB... Giải các phương trình: a.
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HÓA
ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT
Năm học: 2015 – 2016 Môn thi: Toán
Thời gian làm bài: 120 phút không kể thời gian giao đề
Ngày thi: 21 tháng 07 năm 2015
Đề có: 01 trang gồm 05 câu.
ĐỀ B
Câu 1: (2,0 điểm)
1.Giải các phương trình:
a) y – 10 = 0
b ) y2 –5y + 4 = 0
2.Giải hệ phương trình: 2 3
x y
x y
Câu 2: (2,0 điểm) Cho P = x - 1 : 1 + 2 với
x - 1
x - 1 x - x x 1
1) Rút gọn P
2) Tìm x sao cho P >0
Câu 3: (2,0 điểm)
1) Trong mặt phẳng tọa độ Oxy, đường thẳng y = ax + b đi qua điểm A (-1; 2) và
song song với đường thẳng y = 3x + 1 Tìm hệ số a và b
2) Cho phương trình: x2 – (4n – 1)x + 3n2 – 2n = 0 (ẩn x) Tìm n để phương trình có hai nghiệm phân biệt x1, x2thỏa mãn điều kiện : 2 2
1 2
x x 7
Câu 4: (3,0 điểm ) Cho điểm A nằm bên ngoài đường tròn (O) Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm) Gọi M là trung điểm của
AB Đường thẳng MC cắt đường tròn (O) tại N (N khác C)
1) Chứng minh ABOC là tứ giác nội tiếp
2) Chứng minh 2
.
MB MN MC
3) Tia AN cắt đường tròn (O) tại D ( D khác N) Chứng minh: MAN ADC
Câu 5: (1,0 điểm) Cho hai số dương x, y thõa mãn: x + 2y = 3.
Chứng minh rằng: 1 2 3
x y
-Hết -(Cán bộ coi thi không giải thích gì thêm)
Họ và tên thí sinh:………Số báo danh:………
Chữ kí giám thị 1:……….Chữ kí giám thị 2:………
ĐỀ THI THỬ
Trang 2SỞ GIÁO DỤC THANH
HÓA
HƯỚNG DẪN CHẤM MÔN TOÁN THAM KHẢO
Năm học: 2015 – 2016 Ngày thi: 21 tháng 07 năm 2015
Thời gian làm bài: 120 phút
Câu 1
(2điểm)
1 Giải các phương trình:
a y =10
b y2 – 5x + 4 = 0 Nhận thấy 1 + (-5) + 4 = 0 phương trình có dạng a+ b + c = 0 Vậy phương
đã cho
có 2 nghiệm phân biệt là: y1=1 ,y2 =4
Vậy hệ phương trình đã cho có nghiệm duy nhất là (x,y ) = (1;1 )
Câu 2
x - 1
x - 1 x - x x + 1
=
x - 1 x ( x - 1) x - 1 x + 1 x - 1 x +1
=
x - 1 x + 1
x + 1
x x - 1 x - 1 x +1 x x - 1
= x - 1
x
b) P >0 x - 1 >0 (vì x > 0 ) nên x > 0) x >1 (thoả mãn)
Câu 3
(2điểm)
1 Đường thẳng y = ax + b song song với đường thẳng y = 2x + 1 nên a = 2
Vì đường thẳng y = ax + b đi qua điểm M (-1;2) nên ta có:2 = 2.(-1) + b b= 4(t/m vì b
Vậy: a = 2, b = 4 là các giá trị cần tìm
2 + Phương trình đã cho có = (4n – 1)2 – 12n2 + 8n = 4n2 + 1 > 0, n
Vậy phương trình có 2 nghiệm phân biệt m + Theo ĐL Vi –ét, ta có: 1 2 2
1 2
Khi đó: 2 2 2
1 2 7 ( 1 2 ) 2 1 2 7
x x x x x x
(4n – 1)2 – 2(3n2 – 2n) = 7 10n2 – 4n – 6 = 0 5n2 – 2n – 3 = 0
Ta thấy tổng các hệ số: a + b + c = 0 => n = 1 hay n = 53
ĐỀ THI THỬ
ĐỀ B
Trang 3Trả lời: Vậy n = 1 hay n = 53
Câu 4
1.0
1.0
1.0
D N
M
C
B
O A
1) Xét tứ giác ABOC có :
ABO ACO90 90 180 nên tứ giác ABOC nội tiếp
2) Xét MBN và MCB có :
M chung
MBN MCB (cùng chắn cung BN)
=> MBN MCB (g-g) nên 2
.
MB MN
MB MN MC
MC MB
3) Xét MAN và MCA có góc chung.M
Vì M là trung điểm của AB nên MAMB
Theo câu b ta có: 2
.
MA MN MC MA MC
MN MA
Do đó : MAN MCA (c-g-c)
=> MANMCA NCA (1)
mà: NCANDC ( cùng chắn cung NC) (2)
Từ (1) và (2) suy ra: MAN NDC hay MAN ADC
Câu 5
2 2 a b
Ta có x + 2y = 3 x = 3 – 2y , vì x dương nên 3 – 2y > 0
Xét hiệu 1 2 3= ≥ 0 ( vì y > 0 và 3 –
x y
2
2y > 0)
Trang 4dấu “ =” xãy ra
x 1
y 1