1. Trang chủ
  2. » Giáo án - Bài giảng

Bộ 5 đề thi giữa HK2 môn Toán 10 năm 2021-2022 có đáp án Trường THPT Mạc Dĩnh Chi

13 22 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 748,8 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Vững vàng nền tảng, Khai sáng tương lai Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung bài giảng được biên soạn công phu và giảng dạ[r]

Trang 1

TRƯỜNG THPT MẠC DĨNH CHI ĐỀ THI GIỮA HỌC KÌ 2

MÔN: TOÁN 10 NĂM HỌC 2021 – 2022 Thời gian: 60 phút

ĐỀ SỐ 1

Câu 1: Tìm tập xác định của các hàm số sau:

a y= −2x2−3x−1

b

2

2 2

=

y

x

Câu 2: Giải các bất phương trình sau:

a

2

2

2 1

+ − 

x

2 3 3 + −  −

c x2+5x+ 4 3x+2

Câu 3: Cho tam giác ABC có AB=13,BC=12, trung tuyến BK=8:

a) Tính cạnh AC

b) Tính góc A

Câu 4: Chứng minh rằng trong tam giác ABC cân nếu:

2 2

ĐÁP ÁN

Câu 1:

a) Hàm số xác định 2

2 3x 1 0

 − x − − 

x 1; 1

2

  − − 

TXĐ: D = 1; 1

2

− − 

Hàm số xác định  2 2 3 5 ( )

0 1

2 2

2 2x 0

 − 

x

b) Giải (1):

Cho 2

5

1

 = −

=

x

x

2 2x− =  =0 x 1

Trang 2

Bảng xét dấu VT(1)

x − 5

2

− 1 +

VT(1) + 0 − −

Tập xác định của hàm số là ; 5

2

= − − 

D

Câu 2:

a) Điều kiện x 1

Biến đổi bất phương trình về dạng: 2 1 0

1

− 

x x

Cho x 1 0− =  = −x 1

x2− =  = 1 0 x 1

Bảng xét dấu vế trái

x − −1 1 +

VT − + +

Tập nghiệm của bất phương trình là S= − − ( ; 1)

b) + Nếu x2+ − x 2 0 ta có hệ

2

x 2 0

x 2 3 3

 + − 

 + −  −



x

2 2 hoac 1

4 x 5 0

x

 

+ − 

2 hoac 1 5

hoac 1 4

 



  −x 2 hoac x 1

+ Nếu 2

x 2 0 + − 

x ta có hệ

2

x 2 0

x 2 3 3

 + − 

− − +  −



x

2

−  

 

− − 

x

x x

1 hoac 1 2

x

−  



Trang 3

2 1

2

 −   −x

Vậy tập nghiệm của bất phương trình là (  ( ) 1

2

= − −  +  − − 

S

2

= − −  +

S

c)

2

2

5 4 0

3 2 0

 + + 

 + 

x

4 hoac 1 2

3 7 hoac 0 8

x

  −



0

 x

Vậy tập nghiệm của bất phương trình là S =(0;+)

Câu 3:

Vì BK =

4

+

2 2 12 13 -AC

8 =

4

+

2

AC = AC=

b)

370 13 12 1

A

bc

0

37 51'

 A

Câu 4:

( ) (2 )2

2 2

( )2

2

a+ a B c c− − B= aa B c c+ − B

2 2 2

2

a B= c a c a b =  =c a b

ac hay BC=AC

Vậy tam giác ABC cân tại C

ĐỀ SỐ 2

Câu 1 Giải các bất phương trình sau:

a) x 1 2 x 0

b) 2

0 3

x

x

Trang 4

c) x2 4x 3 0

Câu 2 Cho phương trình : x2 2(2 m x ) m2 2m 0, với m là tham số

Tìm tất cả các giá trị của m để phương trình có hai nghiệm trái dấu

Câu 3 Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm (1;2), (2;1)A BM 1; 3

a) Viết phương trình đường thẳng AB

b) Tính khoảng cách từ điểm M đến đường thẳng : 3x 4y 10 0

c) Viết phương trình đường thẳng d, biết dđi qua điểm Avà cắt tia O ,x Oy thứ tự tại , C N sao cho tam

giác OCN có diện tích nhỏ nhất

ĐÁP ÁN

Câu 1:

a) Giải bất phương trình (x−1 2)( −x)0

− =  =

− =  =

* Lập bảng xét dấu đúng

* Kết luận: S =( )1; 2

3

x x

− 

* Ta có:

− =  =

− =  =

* Lập bảng xét dấu đúng

* Kết luận: S =( )2;3

c) Giải bất phương trình x2−4x+ 3 0

3

x

x

=

− + =   =

* Lập bảng xét dấu đúng

* Kết luận: S =( )1;3

Câu 2:

Cho phương trình : ( ) 2 2

f =x − −m x m+ − = , với m là tham số Tìm tất cả các giá trị của m

để phương trình có hai nghiệm trái dấu

*Phương trình f x =( ) 0có hai nghiệm trái dấu

2

c

a

Trang 5

( )

0 m 2 ycbt

  

Câu 3:

a) Viết phương trình đường thẳng A B

(0.75 điểm)

AB=(1; − 1)0 là một vectơ chỉ phương của đường thẳng AB

Mà đường thẳng AB đi qua điểm (1; 2)A Vậy đường thẳng AB:

2

1

 = −

= +

b) Tính khoảng cách từ điểm M đến đường thẳng : 3x+4y+10=0(0.75 điểm)

( , ) 3.1 4.3 102 2

3 4

 =

+ 25

5

5

c) Viết phương trình đường thẳng d , biết d đi qua điểm Avà cắt tia O ,x Oy thứ tự tại M N, sao cho tam giác OMN có diện tích nhỏ nhất (0.5 điểm)

Gọi M m( ; 0),N(0; )n thì m 0 và n 0

Tam giác OMN vuông ở O nên OMN 1 1

S = OM ON = mn

Đường thẳng dcũng đi qua hai điểm M N nên :, d x y 1

m+ = n

Do đường thẳng d đi qua điểm A nên ta có: 1 2 1

m+ = n

Áp dụng BĐT giữa trung bình cộng và trung bình nhân (BĐT Côsi) cho 2 số dương 1 2,

m n ta có

m+ = n mn    , dẫn đến SOMN 4

OMN 4

S = khi và chỉ khi

1

4 0

0

m

m n

 =

=

 + = 

 

Vậy tam giác OMN có diện tích nhỏ nhất là 4 Khi đó : 1

2 4

x y

d + =

ĐỀ SỐ 3

Câu 1: Tìm tập xác định của các hàm số sau:

a y = 2x2−3x 1+

Trang 6

b

2 3x 2

1 2x

x

Câu 2: Giải các bất phương trình sau:

a

2

2

3 1 4

x

+ − 

b x2+3x−  −4 x 8

c x2+ −  − x 6 x 1

Câu 3: Cho tam giác ABC có AC=13,BC=12, AM=8:

a) Tính cạnh AB

b) Tính góc B

Câu 4: Tam giác ABC có đặc điểm gì nếu thỏa mãn:

2 2

=

ĐÁP ÁN

Câu 1:

a) Hàm số xác định 2x2−3x 1+ 0

 )

1

2

  −  +

TXĐ: D = 1  )

2

−  +

Hàm số xác định  2 3x 2 ( )

0 1

1 2x

1 2x 0

x

 + + 

 − 

 b) Giải (1):

Cho x2 3x 2 0 1

2

x x

= −

 + + =   = −

 1

1 2x 0

2

x

Bảng xét dấu VT(1)

x

− 2− 1− 1

2

+

VT(1) + 0 − 0 + −

Trang 7

Tập xác định của hàm số là (  1

2

D

Câu 2

a) Điều kiện x   2

Biến đổi bất phương trình về dạng: 2 1

0 4

x x

Cho x + =  = − 1 0 x 1

x − =  = 2 4 0 x 2

Bảng xét dấu vế trái

x − 2− 1− 2

+

VT − + 0 − +

Tập nghiệm của bất phương trình là S = − −  −( ; 2)  1;2)

b) + Nếu x2+ 3 x −  4 0 ta cĩ hệ

2 2



2

2x 4 0 luon dung

hoac

x





  −x 4 ho ac x1

+ Nếu x −  8 0 ta cĩ hệ

2 2



4 1

−  

 −  

x x

 −   4 x 1

Vậy tập nghiệm của bất phương trình là S =

c)

2 2

2 2

 + − 





1 0 7 3

hoặc

 

x

x

Trang 8

7 2;

3

 

x

Vậy tập nghiệm của bất phương trình là 7

2;

3

= 

S

Câu 3

2 2

4

2 2 12 13

8 =

4

AB = AC=

b)

2 2

2 2 2

12 13

2 .12 2

+ −

B

ac

0

77 17'27, 48"

 B

Câu 4

2

2

+ −

bc

Vậy tam giác ABC cân tại B

ĐỀ SỐ 4

Câu 1: Trong mặt phẳng Oxy cho hai đường thẳng d1:x+3y− = và 1 0 d1: 2x+6y− =5 0 Xét vị trí

tương đối của hai đường thẳng d và 1 d2

C Cắt nhau nhưng không vuông góc D Trùng nhau

Câu 2: Xét tam giác ABCtùy ý có BC = , AC b a = , AB c= , mệnh đề nào sau đây đúng?

A a2 =b2+c2−bc.cosA B a2 =b2+c2+2bc.cosA

C a2 =b2+c2−2bc.cosA D a2 =b2+c2+bc.cosA

Câu 3: Hàm số có kết quả xét dấu

x − 2 +

( )

f x + 0 −

Trang 9

là hàm số nào trong các hàm số sau?

A f x( )= −x 1 B ( )f x = − x 2 C ( )f x = − + x 2 D 2

Câu 4: Xét tam thức bậc hai f x( ) ax2 bx cb2 4 ac Điều kiện cần và đủ để

( ) 0,

0

a

0

a

0

a

0

a

Câu 5: Điều kiện xác định của bất phương trình 3 2 3

3x 7 − x x +

A 7.

3

3

3

3

x  −

Câu 6: Cho biểu thức f x( )=ax+b a, 0 Dấu của f x( )trên khoảng b;

a

 +

Câu 7: Tập nghiệm của hệ bất phương trình 4 0

x

− 

 +  −

A S = − 3; 4 B S = −( ; 4) C S = −( 3; 4) D S = − +  ( 3; )

Câu 8: Số x = là nghiệm của bất phương trình nào sau đây: 1

A 4x−  11 x B 2x −  1 3 C 3x +  2 4 D 2x −  3 0

Câu 9: Vectơ nào sau đây là một vectơ chỉ phương của đường thẳng có phương trình 1 3

3 2

= +

 = −

A (3; 2) B (3; 2)C (2; 3)D (2;3)

Câu 10: Xét tam thức bậc hai f x( ) ax2 bx cb2 4 ac Điều kiện cần và đủ để

( ) 0,

0

a

0

a

0

a

0

a

Câu 11: Tam giác ABC có góc A bằng 0

45 và độ dài cạnh BC bằng a Bán kính đường tròn ngoại tiếp

tam giác ABC là

A 3

2

a

2

a

D a 2

Câu 12: Một đường thẳng có bao nhiêu vectơ pháp tuyến?

Câu 13: Biểu diễn miền nghiệm ( miền không gạch chéo) được cho bởi hình bên là miền nghiệm của bất

phương trình nào ?

Trang 10

A 3x 2y 6 B 3x 2y 6.

Câu 14: Cho tam thức bậc hai ( ) 2

4 3

f x = − +x x− Mệnh đề nào dưới đây đúng ?

Câu 15: Tìm điều kiện xác định của bất phương trình 2 1

A x  3 B x = 3 C x  3 D x  3

Câu 16: Cho tam thức bậc hai g x( ) có bảng xét dấu như sau

Mệnh đề nào dưới đây đúng ?

A g x( )

0,a 0

B g x( )

0,a 0

C g x( )

0,a 0

D g x( )

0,a 0

Câu 17: Biểu thức nào sau đây là nhị thức bậc nhất?

A f x( )=3x+5 B 2

f x = xx+ C f x y( , )=2x−3y−1

Câu 18: Xét tam giác ABCtùy ý có BC = , AC b a = , AB c= , đường tròn ngoại tiếp tam giác có bán

kính R.Diện tích tam giác ABC bằng

A S abc

R

2

abc S R

R

4

abc S R

=

Câu 19: Cặp số (x y nào là nghiệm của bất phương trình 40; 0) x+4y 3

A (x y0; 0) ( )= 0;0 B (x y0; 0) (= − − 1; 1) C (x y0; 0) (= − − 2; 2) D (x y0; 0) ( )= 1;1

Câu 20: Cho tam thức bậc hai ( ) 2

9 6 1

f x = xx+ Xét dấu f x ta có kết quả ( )

O

2

3

y

x

Trang 11

A 1

3

ĐÁP ÁN

Câu 12 13 14 15 16 17 18 19 20

ĐỀ SỐ 5

Bài 1: Giải bất phương trình (3 5)(2021 4 ) 0

( 5 3)

x x

Bài 2: Tìm tất cả các giá trị thực của tham số m để bất phương trình sau nghiệm đúng với mọi số thực x

Bài 3: Trong mặt phẳng (Oxy) cho điểm M(2; 4)và : 1 3

2

d

= −

 = +

 Viết phương trình đường thẳng  song song với đường thẳng d và cách điểm M một khoảng bằng 10

ĐÁP ÁN

Bài 1:

Giải được từng nghiệm của mỗi nhị thức

5; 2021; 0; 3

Lập đúng bảng xét dấu

(Nếu học sinh dùng bảng xét dấu 2 dòng thì phải giải thích việc chọn dấu trong các khoảng)

Kết luận đúng tập nghiệm 5; 0 5 ;2021

Bài 2:

f x = mxmx

1

m m

m

=

− =   = −

* m =1, f x( )=0x2−0x− 1 f x( )= −  1 0, x, thỏamãn

Trang 12

* m = −1,

2 ( ) 0 4 1

1 ( ) 4 1 0

4

= −    , không thỏamãn

1

m m

m

−     −

' (m 1) (m 1) 2m 2m

Khi đó, f x( )  0, x (0;+) xãy ratrong các trường hợp sau:

m m

    

2

2

2

0

0 1

m

P

m

−  

 KL: 0  m 1

Bài 3:

Xác định được Vt chỉ phương của đường thẳng d : u = − d ( 3;1)

Suy ra VTTP n =: d (1;3)

Suy ra VTTP n: d =n =(1;3)

PT ĐT  có dạng: x+3y+ =c 0,c −7

2 2

2 3.4

1 3

c

+

14 10 4

24

c c

c

= −

 + =   = −

KL : x+3y− =4 0;x+3y−24=0

Trang 13

Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi

về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên danh

tiếng

I Luyện Thi Online

- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng xây dựng các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và

Sinh Học

- Luyện thi vào lớp 10 chuyên Toán : Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các

trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên khác cùng TS.Trần Nam Dũng, TS Phạm Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn

II Khoá Học Nâng Cao và HSG

- Toán Nâng Cao THCS: Cung cấp chương trình Toán Nâng Cao, Toán Chuyên dành cho các em HS THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt điểm tốt ở các kỳ thi HSG

- Bồi dưỡng HSG Toán: Bồi dưỡng 5 phân môn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp

dành cho học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Phạm Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc

Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia

III Kênh học tập miễn phí

- HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả

các môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất

- HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi

miễn phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh

Vững vàng nền tảng, Khai sáng tương lai

Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%

Học Toán Online cùng Chuyên Gia

HOC247 NET cộng đồng học tập miễn phí HOC247 TV kênh Video bài giảng miễn phí

Ngày đăng: 21/03/2022, 18:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm