1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chuyên đề Phương pháp giải một số dạng bài tập chuyển động cơ học4729

20 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 247,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

- Công thức tính vận tốc: s v t  - Nếu hai chuyển động trên một đường thẳng, không đổi hướng và xuất phát ở cùng một địa điểm thì khi gặp nhau chúng đi được những quãng đường bằng nhau.

Trang 1

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI

MÔN:VẬT LÝ

Người thực hiện: Trần Thị Phượng

Chức vụ: Giáo viên

Đơn vị công tác: Trường THCS Lập Thạch

– huyện Lập Thạch- Vĩnh Phúc

Tên chuyên đề: Phương pháp giải một số dạng bài tập chuyển

động cơ học.

Dự kiến số tiết bồi dưỡng: 18 tiết

Đối tượng bồi dưỡng: Học sinh giỏi lớp 8

Trang 2

A- PHẦN MỞ ĐẦU

Qua nhiều năm bồi dưỡng học sinh giỏi vật lý 8, tôi nhận thấy các em học sinh gặp nhiều khó khăn trong việc giải bài tập phần chuyển động cơ học Nhằm tháo gỡ khó khăn, đồng thời tạo cho các em sự tự tin cũng như hứng thú học tập bộ môn, tôi mạnh dạn viết chuyên đề “ Phương pháp giải một số dạng bài tập chuyển động

cơ học” Tôi hy vọng chuyên đề này sẽ giúp đỡ các em trong quá trình ôn tập,

chuẩn bị cho các kỳ thi học sinh giỏi Dù đã cố gắng nhiều, nhưng chắc chắn không thể tránh khỏi thiếu sót Rất mong được nhiều ý kiến đóng góp để chuyên đề hoàn thiện hơn

B- PHẦN NỘI DUNG DẠNG I: ĐỊNH VỊ TRÍ VÀ THỜI GIAN CÁC CHUYỂN ĐỘNG GẶP NHAU

1 Lý thuyết:

- Độ lớn của vận tốc cho biết sự nhanh hay chậm của chuyển động Nó được tính

bằng quãng đường đi trong một đơn vị thời gian

- Công thức tính vận tốc: s

v t

- Nếu hai chuyển động trên một đường thẳng, không đổi hướng và xuất phát ở cùng một địa điểm thì khi gặp nhau chúng đi được những quãng đường bằng nhau

- Nếu hai chuyển động xuất phát cùng một thời điểm thì khi gặp nhau chúng đi được những khoảng thời gian bằng nhau

2 Ph ương pháp:

- Xác định vị trí và thời điểm xuất phát của các chuyển động Xem chúng chuyển động cùng hay ngược chiều

- Tính quãng đường s1, s2 ….( hoặc thời gian t1, t2…) của các chuyển động cho tới khi gặp nhau

- Tìm mối liên hệ giữa s1, s2… (hoặc t1, t2…) với các dữ kiện của bài toán để lập phương trình về quãng đường hoặc phương trình về thời gian

- Dùng các phép biến đổi toán học để tính toán

- Biện luận kết quả tìm được ( nếu cần)

* Chú ý: Khi các vật xuất phát vào các thời điểm khác nhau Để đơn giản ta chọn mốc thời gian gắn với vật xuất phát đầu tiên thời gian vật xuất phát đầu tiên là t 

Trang 3

Khi đó vật xuất phát ( sau vật đầu tiên thời gan ) sẽ có thời gian là (t - ) Sau đó t0 t0

ta làm như phương pháp nêu trên

3 Ví dụ:

VD 1:

Hai người xuất phát cùng một lúc từ hai địa điểm A và B cách nhau 100km Người

1 đi xe máy từ A đến B với vận tốc 40km/h Người 2 đi xe máy từ B ngược về A với vận tốc 10km/h.Sau bao lâu hai người gặp nhau? Xác định chỗ gặp nhau đó? Coi chuyển động của hai người là đều

Hướng dẫn:

Gọi t là thời gian hai người đi đến gặp nhau

- Quãng đường hai người đi được cho đến khi gặp nhau lần lượt là:

s1v t1  40t

s2 v t2  10t

Mặt khác: s1  s2 AB

 40t +10t =100 (km)  t=2h

- Vậy sau 2h thì hai người gặp nhau

- Vị trí gặp nhau cách A: 40.2 =80km

VD2:

Hai xe máy đồng thời xuất phát, chuyển động đều đi lại gặp nhau Một xe đi

từ thành phố A đến thành phố B, một xe đi từ thành phố B về thành phố A Sau khi gặp nhau tại C cách A 30km hai xe tiếp tục hành trình của mình với vận tốc cũ Khi

đã tới nơi quy định cả hai xe đều quay ngay trở lại và gặp nhau lần hai tại D cách B 36km.Coi AB là thẳng Tìm AB và tỉ số vận tốc của hai xe

Hướng dẫn:

Ta lập phương trình về thời gian cho hai lần gặp nhau:

- Gọi v v1, 2 lần lượt là vận tốc của xe xuất phát từ A và từ B

- Thời gian từ khi hai xe xuất phát đến khi hai xe gặp nhau tại C là:

1 (1)

30 AB 30

t

- Thời gian từ lúc hai gặp nhau tại C đến lúc hai xe gặp nhau tại D là:

t

- Lấy (1) : (2)  AB = 54km , thay vào (1)  1

2

5 4

v

v

VD 3:

Lúc 7 giờ một người đi bộ từ A đến B với vận tốc 4 km/h Lúc 9 giờ một người đi xe đạp từ A đuổi theo với vận tốc 12km/h

a, Tính thời điểm và vị trí họ gặp nhau

b, Lúc mấy giờ họ cách nhau 2 km?

Hướng dẫn:

Gọi t (h) là thời gian gặp nhau của hai người ( kể từ khi người đi bộ xuất phát )

Trang 4

Vậy thời gian của người đi xe đạp là ( t – 2) (h)

- Quãng đường người đi bộ đi được là: s1 v t1  4t

- Quãng đường người đi xe đạp đi được là: s2 v t2 (  2) 12  t 24

- Khi người đi bộ và người đi xe đạp gặp nhau thì:

s1s2  4t 12t 24  t 3h

- Vậy hai người gặp nhau lúc 7+ 3 = 10 giờ

- Vị trí gặp cách A là :x s1 4t 12km

b, Lúc mấy giờ họ cách nhau 2km

TH1: Họ cách nhau 2km trước khi gặp nhau:

Gọi t (h) là thời gian kể từ khi người đi bộ xuất phát đến khi hai người cách nhau 2km, vậy thời gian của người đi xe đạp khi đó là ( t – 2) ( h)

- Quãng đường người đi bộ đi được là: s1 v t1  4t

- Quãng đường người đi xe đạp đi được là: s2 v t2 (  2) 12  t 24

- Ta có : s1   s2 2 t 2, 75h

Vậy lúc 9 giờ45 phút thì hai người cách nhau 2km

TH2: Họ cách nhau 2km sau khi gặp nhau:

Tương tự ta có: s1 v t1  4t

s2 v t2(  2) 12  t 24

2 1 2 3, 25 3 15

s    s t hh

Vậy lúc 10 giờ 15 phút thì hai xe cách nhau 2km

VD 4:

Người ta rải đều bột của một chất dễ cháy thành một dải hẹp dọc theo một đoạn thẳng từ A đến B và đồng thời châm lửa đốt từ hai vị trí D1, D2 Vị trí thứ nhất D1

cách A một đoạn bằng 1/10 chiều dài của đoạn AB, vị trí thứ hai D2nằm giữa D1B

và cách vị trí thứ nhất một đoạn   2, 2 m Do có gió thổi theo chiều từ A đến B nên tốc độ cháy lan của ngọn lửa theo chiều gió nhanh gấp 7 lần theo chiều ngược lại Toàn bộ dải bột sẽ bị cháy hết trong thời gian t1=60 giây Nếu tăng lên gấp đôi 

giá trị ban đầu thì thời gian cháy hết là t2=61 giây Nếu giảm xuống còn một nửa 

giá trị ban đầu thì thời gian cháy hết là t3=60 giây Tính chiều dài của đoạn AB

Hướng dẫn:

- Đặt chiều dài AB là L, v là vận tốc cháy của ngọn lửa ngược chiều gió, khi đó vận tốc cháy theo chiều gió sẽ là 7v

- Các điểm đốt lửa sẽ chia AB làm 3 phần:

+ phần đầu phía A với chiều dài L/10 sẽ cháy với vận tốc v

+ phần giữa có chiều dài x cháy với vận tốc 8v (do hai ngọn lửa cháy từ hai đầu lại với vận tốc tương ứng là v và 7v)

+ phần cuối có chiều dài 9 L-x cháy với vận tốc 7v

10

Thời gian cháy hết đoạn AB là thời gian cháy lâu nhất của một trong ba đoạn trên đây Ta xét các khả năng có thể:

Trang 5

a) Trong trường hợp đầu khi x=l

- Thời gian cháy lâu nhất không phải là ở đoạn giữa vì nếu như vậy thì khi tăng x

đến giá trị 2l thì thời gian cháy cũng phải tăng gấp đôi, tức là t2=2t1  mâu thuẫn gt

- Thời gian cháy lâu nhất cũng không phải là đoạn phía đầu B vì nếu như vậy thì khi giảm l xuống đến l/2 thì thời gian cháy phải tăng lên  mâu thuẫn gt.

- Vậy thời gian cháy lâu nhất là ở đoạn đầu và bằng t1: t =1 L =60 s (1)

10v

b) Khi tăng x đến 2l, tương tự ta xét các khả năng:

- Thời gian cháy lâu nhất không phải là phần đầu A vì đoạn này như cũ nên thời gian cháy trên đó không thay đổi

- Thời gian cháy lâu nhất cũng không phải là đầu B vì đoạn này được rút ngắn lại

so với trường hợp trên

- Vậy thời gian cháy lâu nhất chỉ có thể là đoạn ở giữa: 2 2 61 (2)

8

l

v

Từ (1) và (2) ta tính được chiều dài của đoạn AB: 150

5, 4 61

l

4 Bài tập vận dụng:

Bài 1: Một người đi bộ khởi hành từ C đến B với vận tốc v1= 5km/h, sau khi đi được 2h người ấy ngồi nghỉ 30 phút, rồi đi tiếp về B Một người khác đi xe đạp khởi hành từ A (AB>CB và C nằm giữa A và B) cũng đi về B với vận tốc v2

=15km/h nhưng khởi hành sau người đi bộ 1h

a.Tính quãng đường AB và AC biết 2 người đó đến B cùngmột lúc và khi người đi

bộ bắt đầu ngồi nghỉ thì người đi xe đạp đã đi được ¾ quãng đường AC

b.Để gặp người đi bộ tại chỗ ngồi nghỉ, người đi xe đạp phải đi với vận tốc bằng bao nhiêu?

Bài 2: Ba người cùng khởi hành từ A lúc 8h để đến B (AB=S=8km) do chỉ có 1 xe đạp nên người thứ nhất chở người thứ hai đến B với vận tốc v1=16km/h, rồi quay lại đón người thứ 3 trong lúc đó người 3 đi bộ đến B với vận tốc v2=4km/h

a.Người thứ ba đến B lúc mấy giờ? Quãng đường phải đi bộ là bao nhiêu?

b.Để đến B chậm nhất lúc 9h, người thứ nhất bỏ người thứ hai tại điểm nào đó rồi quay lại đón người thứ ba Tìm quãng đường đi bộ của người thứ hai và thứ 3, người thứ hai đến B lúc mấy giờ?

Bài 3 Lúc 6h một xe tải đi từ A về C, đến 6h30 một xe tải khác đi từ B về C với cùng vận tốc với xe tải 1, lúc 7h một ô tô đi từ A về C, ô tô gặp xe tải thứ nhất lúc 9h, gặp xe tải thứ hai lúc 9h30’ Tìm vận tốc của xe tải và ô tô Biết AB = 30km

Bài 4. Lúc 6h sáng một người đi xe gắn máy từ thành phố A đi về phía thành phố B

ở cách thành phố A 300km, với vận ốc v1=50km/h lúc 7h một xe ô tô đi từ B về phía A với vận tốc v2=75km/h

Trang 6

a.Hỏi hai xe gặp nhau lúc mấy giờ và cách A bao nhiêu km ?

b.Trên đường có một người đi xe đạp lúc nào cũng cách đều 2 xe trên Biết rằng người đi xe đạp khởi hành lúc 7h hỏi:

- Vận tốc của người đi xe đạp bằng bao nhiêu?

- Người đó đi theo hướng nào?

- Điểm khởi hành của người đó cách B bao nhiêu km?

Bài 5:

Khi đi qua chiều dài cầu AB, một người nghe sau lưng mình tiếng còi của 3

8

chiếc ô tô đang đi lại cầu với vận tốc không đổi 60 Km/h Nếu người này chạy ngược lại thì gặp ô tô ở A, còn nếu chạy về phía trước thì ô tô sẽ đuổi kịp anh ta ở

B Hỏi vận tốc của người ấy bằng bao nhiêu?

DẠNG 2: VẬN TỐC TRUNG BÌNH

1 lý thuyết:

- Chuyển động không đều là chuyển động mà độ lớn của vận tốc thay đổi theo thời gian

- Với chuyển động không đều, tỉ số chỉ cho biết vận tốc trung bình trên đường s

t

đi s

- Công thức tính vận tốc trung bình:

1 2

1 2

n tb

n

s V

t t t t

  

 

  

- Với chuyển động không đều, để so sánh sự nhanh, chậm của các chuyển động, ta phải tính vận tốc trung bình trên cả quãng đường rồi so sánh các vận tốc đó với nhau

2 phương pháp:

a Bài toán chia quãng đường:

-Là dạng bài tập mà vật chuyển động trên các đoạn đường khác nhau với các vận tốc khác nhau

* Phương pháp:

-Tính thời gian vật đi trên từng đoạn đường với các vận tốc tương ứng:

; ;

(Biểu diễ s s s1 , 2 , 3… theo S dựa vào đề bài)

- Áp dụng công thức:

1 2

tb

n

V

t t t t

 

  

*Ví dụ:

Trang 7

Một chuyển động trong nửa quãng đường đầu chuyển động với vận tốc không đổi Trong nửa quãng đường còn lại có vận tốc Tính vận tốc trung bình của v1 v2

nó trên toàn bộ quãng đường

Hướng dẫn :

- Gọi chiều dài cả quãng đường là S

Thời gian vật đi hết nửa quãng đường đầu và sau lần lượt là t t1, 2, ta có:

1 2

;

-Vận tốc TB trên cả quãng đường:

1 2

2

tb

v v

V

s s

v v

2.Bài toán chia thời gian:

Là dạng bài tập mà vật chuyển động trong các khoảng thời gian khác nhau với các vận tốc khác nhau:

* Phương pháp:

-Tính các quãng đường s s1 , 2, … mà vật đi được trong các khoảng thời gian khác nhau t t1, 2……

(Biểu diễn t t1 , 2……., tn theo thời gian đi cả quãng đường t)

-Áp dụng công thức : 1 2 n

tb

s s s s

V

  

 

Hướng dẫn

Gọi thời gian vật đi hết cả quãng đường S là t

- Quãng đường vật đi được trong nửa thời gian đầu và sau lần lượt là :

1 1 1 1 ; 2 2 2 2

sv tv sv tv

- Vận tốc TB trên cả quãng đường:

1 2 1 2 1 2

2

tb

t t

v v

s V

3 Bài tập tổng hợp ( vừa chia quãng đường, vừa chia thời gian) :

* Phương pháp:

- Nếu chia quãng đường thì ta tính thời gian đi trên quãng đường đó; Còn chia thời gian ta lại tính quãng đường đi được trong các khoảng thời gian đã chia

- Vận dụng các phép biến đổi toán học để tính s s1, 2 theo s; t t1, 2 theo t

- Áp dụng công thức: 1 2 n

tb

s V

  

 

* Ví dụ : Một vật chuyển động trong nửa thời gian đầu đi với vận tốc nửa thời v1

gian còn lại đi với vận tốc Tính vận tốc TB của vật trên quãng đường đã đi ?v2

Trang 8

hoặc

1 2

tb

n

V

t t t t

 

  

+ Chú ý: Ta cũng có thể giải bài tập này bằng cách chia thành nhiều bài toán nhỏ như dạng 1 và 2

* Ví dụ 1:

Một người đi từ A đến B 1/3 quãng đường đầu người đó đi với vận tốc 2/3 thời v1

gian còn lại đi với vận tốc Quãng đường cuối cùng đi với vận tốc Tính vận v2 v3

tốc trung bình của người đó trên cả quãng đường

Hướng dẫn:

Gọi chiều dài quãng đường AB là S

là thời gian ô tô đi hết 1/3 quãng đường đầu :

1

1 3

s t v

là thời gian ô tô đi quãng đường còn lại

2

t

- Quãng đường ô tô đi được trong 2/3 và 1/3 thời gian còn lại lần lượt là:

2 2 2 3 3 2

;

sv t sv t

Mặt khác ta có: 2 3 2 2 3 2

2

2 3

2 2

s s s v t v t s

s t

v v

 

- Vận tốc TB trên cả quãng đường:

 

1 2 3

3 2

tb

v v v

V

v v v

Chú ý: Ta cũng có thể giải bài tập này bằng cách chia thành nhiều bài toán nhỏ như dạng 1 và 2

VD 2:

Khoảng cách từ nhà đến trường là 12km Tan trường bố đi đón con, cùng với một con chó Vận tốc của con là v1 = 2km/h, vận tốc của bố là v2 = 4km/h Vận tốc của con chó thay đổi như sau:

Lúc chạy lại gặp con với vận tốc v3 = 8km/h, sau khi gặp đứa con thì quay lại chạy gặp bố với vận tốc v4 = 12km/h, rồi lại tiềp tục quá trình trên cho đến khi hai

bó con gặp nhau

Hỏi khi hai bố con gặp nhau thì con chó đã chạy được quãng đường là bao nhiêu ?

Hướng dẫn:

Thời gian hai bố con gặp nhau là: t = = = 2(h)

2

1 v v

S

12

+ Tính vận tốc trung bình của con chó:

- Thời gian con chó chạy lại gặp người con lần thứ nhất là:

Trang 9

t1 = = = 1,2 (h).

3

1 v v

S

12

- Quãng đường con chó đã chạy được là:

S1 = t1.v3 = 1,2.8 = 9,6 (km)

- Thời gian con chó chạy lại gặp bố lần thứ nhất là:

t2 = = = 0,3 (h)

4 2

1

v v

S

4 2 , 1 6 , 9

- Quãng đường con chó đã chạy được là:

S2 = t2.v4 = 0,3.12 = 3,6 (km)

Vận tốc trung bình của con chó là:

vtb = = = 8,8(km)

2 1

2 1

t t

S S

3 , 0 2 , 1

6 , 3 6 , 9

Vận tốc trung bình của con chó không thay đổi trong suốt quá trình chạy do đó: Quãng đường con chó chạy được cho đến khi hai bố con gặp nhau là: Schó = vtb.t

= 8,8.2= 17,6(km)

Vậy đến khi hai bố con gặp nhau thì con chó đã chạy được quãng đường là 17,6 km

1 Bài tập vận dụng:

Bài 1 Hai người cùng xuất phát từ hai địa điểm A và B với vận tốc v1, người thứ nhất đi từ A đến B chia đường thành 4 chặng bằng nhau, vận tốc đi ở các chặng là:

v1, 2v1, 3v1, 4v1 Người thứ hai đi từ B về A chia thời gian thành 4 khoảng bằng nhau, vận tốc đi ở các khoảng là: v1, 2v1, 3v1, 4v1

a Tìm vận tốc trung bình của mỗi người trên quãng đường AB

b Ai là người đến đích trước tiên?

Bài 2: Một người đi xe máy từ A đế B cách nhau 3600m, nửa quãng đường đầu xe

đi với vận tốc v1, nửa quãng đường sau người đó đi với vận tốc v2 = v1/2 Hãy xác định

v1, v2 sao cho sau 10 phút người ấy đến được điểm B

Bài 3 Một người đi xe đạp đi từ A đến B Trên ¼ quãng đường đầu người đó đi với vận tốc v1, nửa thời gian còn lại đi với vận tốc v2, nửa quãng đường còn lại đi với vận tốc v1 và đoạn cuối cùng đi với vận tốc v2 tính vận tốc trung bình của người đó trên cả quãng đường

Bài 4 Một người đi trên quãng đường S chia thành n chặng không đều nhau, chiều dài các chặng đó lần lượt là S1, S2, S3, … Sn

Trang 10

Thời gian người đó đi các chặng tương ứng là t1, t2, t3,… tn tính vận tốc trung bình của người đó trên toàn bộ quãng đường Chứng minh rằng vận tốc trung bình

đó lớn hơn vận tốc bé nhất và nhỏ hơn vận tốc lớn nhất

Bài 5 Một ca nô đi xuôi dòng từ bến A đến bến B của một con sông cách nhau 90km, rồi lại trở về A Cho biết vận tốc của ca nô là 25km/h và vận tốc dòng nước

Là 5km/h Tính vận tốc của ca nô khi xuôi dòng , khi ngược dòng và vận tốc trung bình của ca nô trên toàn bộ cuộc hành trình cả đi và về

DẠNG 3: VẬN TỐC TƯƠNG ĐỐI

1 Lý thuyết:

Hai vật chuyển động trên một đường thẳng có tốc độ lần lượt là và Vận v1 v2

tốc của chuyển động 1 so với chuyển động 2, hoặc của chuyển động 2 so với

chuyển động 1( gọi lầ vận tốc tương đối) là:

+ Nếu hai chuyển động cùng chiều: v12 v21  v1 v2

+ Nếu hai chuyển động ngược chiều: v12 v21  v1 v2

* Hệ quả:

- Nếu hai vật cách nhau một khoảng L chuyển động hướng về nhau thì thời gian hai vật gặp nhau là: t =

1 2

L

vv

- Nếu hai vật cách nhau một khoảng L : Vật 1 đuổi theo vật 2 thì thời gian hai vật gặp nhau là: t =

1 2

L

vv

2.Phương pháp:

- Xác định vận tốc tương đối của vật này đối với vật kia v12

- Xác định quãng đường vật này đi được đối với vật kia s12

- Vận dụng công thức t = và giải như các bài tập thông thường12

12

s v

( hoặc áp dụng công thức t = )

12

AB v

* Chú ý: Nếu các vật tham gia chuyển động không phải là chất điểm

( có chiều dài đáng kể) thì ta xét chuyển động của các điểm trên các vật; Và chọn các điểm sao cho cuối cùng chúng gặp nhau ( ngang nhau) Và áp dụng công

thức t =

12

AB

v

3 Ví dụ:

Ngày đăng: 21/03/2022, 09:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w