Câu 3. Tổng của hai đơn thức 4xy và 8xy là: A. 4xy? В. 32х у C.4xy D. 4x y B;ZC theo thứ tự là: A. ZB< ZC< ZA B. ZC < ZA< ZB C. ZA> ZB> ZC D. ZC < ZB< ZACâu 5.Điểm kiểm tra học kì 1 môn Toán của tất cả học sinh trong lớp 7A được ghi lại như sau: 9 8 7 8 7 9 10 4 8 7 7 8 8 7 5 6. 9 10 6. 5 7 9a) Dấu hiệu là gì? Số các giá trị của dấu hiệu là bao nhiêu?b) Lập bảng tần số và tính số trung bình cộng của dấu hiệu.Số trung bình cộng của dấu hiệu trên là: A. 6,5 điểm B. 6,9 điểm sinh247.coM D. 7,5 điểmCâu 6. Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM+ AN = 2AB.a) Chứng minh rằng: BM = CN
Trang 11
I TRẮC NGHIỆM: Chọn đáp án trước câu trả lời đúng:
Câu 1 Kết quả thu gọn đơn thức 3 2 3
4x y xy
A. 3 3 3
4 3 3
4 y x
C.3 3 4
4 3 3
4x y
Câu 2 Giá trị của đa thức Px y2 2xy3 tại x 1,y2 là
Câu 3 Tổng của hai đơn thức 4x y và 2 8x y2 là:
A. 4x y4 2 B. 32x y2 C.4x y2 D.4x y 2
Câu 4 Cho ABC có AB6cm BC, 8cm AC, 10cm Số đo góc A; B; C theo thứ tự là:
A. B C A B. C A B C. A B C D. C B A
Câu 5
Điểm kiểm tra học kì 1 môn Toán của tất cả học sinh trong lớp 7A được ghi lại như sau:
a) Dấu hiệu ở đây là gì? Số các giá trị của dấu hiệu là bao nhiêu?
b) Lập bảng tần số và tính số trung bình cộng của dấu hiệu
Số trung bình cộng của dấu hiệu trên là:
Câu 6 Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB
a) Chứng minh rằng: BM = CN
b) Chứng minh rằng:BC đi qua trung điểm của đoạn thẳng MN
c) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K Chứng minh rằng BKM CKN từ
đó suy ra KC vuông góc với AN
ĐỀ ÔN TẬP GIỮA HỌC KÌ II – ĐỀ SỐ 1
MÔN TOÁN LỚP 7 Thời gian: 90 phút
THỰC HIỆN BỞI BAN CHUYÊN MÔN TUYENSINH247.COM
Trang 22
HƯỚNG DẪN GIẢI CHI TIẾT THỰC HIỆN : BAN CHUYÊN MÔN TUYENSINH247.COM
I TRẮC NGHIỆM:
Câu 1 (TH)
Phương pháp:
Ta nhân hệ số với nhau và nhân phần biến với nhau
Cách giải:
1
Chọn C.
Câu 2 (TH)
Phương pháp:
Thay x 1,y2 vào đa thức P để tìm giá trị của nó tại x 1,y2
Cách giải:
Thay x 1,y2 vào đa thức P ta có:
1; 2 1 2 2 1 2 3 2 4 3 1
Chọn B.
Câu 3 (TH)
Phương pháp:
Muốn cộng hai đơn thức đồng dạng ta cộng hệ số với nhau và giữ nguyên phần biến
Cách giải:
4x y 8x y 4 8 x y 4.x y
Chọn C.
Câu 4 (TH)
Phương pháp:
So sánh độ dài các cạnh rồi dựa vào mối quan hệ giữa cạnh và góc trong một tam giác để so sánh các góc với
nhau Trong một tam giác, góc đối diện với cạnh lớn hơn thì góc lớn hơn
Cách giải:
ABC
có AB6cm BC, 8cm AC, 10cm
Ta có: ABBCAC C A B
Chọn B.
Câu 5 (VD)
Trang 33
Phương pháp:
a) Nêu dấu hiệu Lưu ý: Dấu hiệu là vấn đề hay hiện tượng mà người điều tra quan tâm tìm hiểu
Chỉ ra số các giá trị của dấu hiệu
b) Tính trung bình cộng
Ta có công thức:
1 1 2 2 3 3 k k
x n x n x n x n
X
N
Trong đó:
1; 2; ; k
x x x là k giá trị khác nhau của dấu hiệu X
1; 2; ; k
n n n là tần số tương ứng
N là số các giá trị
X là số trung bình của dấu hiệu X
Cách giải:
a) Dấu hiệu: Điểm kiểm tra học kì 1 môn toán của mỗi bạn học sinh trong lớp 7A
Số các giá trị của dấu hiệu là: 30
b) Bảng tần số:
Trung bình cộng của dấu hiệu là:
3.1 4.1 5.3 6.4 7.9 8.6 9.4 10.2
7,1
30
(điểm)
Chọn C
II TỰ LUẬN
Câu 6 (VD)
Phương pháp:
a) sử dụng tính chất tam giác cân, sau đó dùng giả thiết đã cho lập luận để suy ra điều phải chứng minh
b) Sử dụng các trường hợp bằng nhau của tam giác để suy ra các cặp tam giác bằng nhau, từ đó suy ra điều phải chứng minh
c) Sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai góc bằng nhau, sử dụng thêm tính chất hai góc kề bù để suy ra điều phải chứng minh
Cách giải:
a) Do tam giác ABC cân tại A, suy ra AB = AC
Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN
Trang 44
Ta lại có AM + AN = 2AB(gt), nên suy ra 2ABBMCN 2AB
0
BM CN BM CN
b) Gọi I là giao điểm của MN và BC Vậy BM = CN (đpcm)
Qua M kẻ đường thẳng song song với AC cắt BC tại E
Do ME // NC nên ta có:
CNIIME(hai góc so le trong)
MEINCI (hai góc so le trong)
Ta chứng minh được MEI NCI g c g( )
Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN
c) Xét hai tam giác MIK và NIK có:
MI = IN (cmt), MIK NIK 900
IK là cạnh chung Do đó MIK NIK c g c( )
Suy ra KM = KN (hai cạnh tương ứng)
Xét hai tam giác ABK và ACK có:
AB = AC(gt),
BAKCAK (do BK là tia phân giác của góc BAC),
AK là cạnh chung,
Do đó ABK ACK c g c( )
Suy ra KB = KC (hai cạnh tương ứng)
Xét hai tam giác BKM và CKN có:
MB = CN, BK = KN, MK = KC,
Do đó BKM CKN c c c( ),
Suy ra MBK KCN
Mà MBK ACK ACK KCN180 : 20 900KCAN.(đpcm)