Ở điều kiện cân bằng tĩnh, lực gia tốc W = Mg sẽ cân bằng với lực lò so Kl, với l là độ dãn của lò so do tác động của lực W.. ¾ Nếu vị trí cân bằng được chọn làm điểm tham chiếu, ta chỉ
Trang 1BÀI GIẢNG Biến Đổi Năng Lượng Điện Cơ
TS Hồ Phạm Huy Ánh
TS Nguyễn Quang Nam
March 2010
http://www4.hcmut.edu.vn/~hphanh/teach.html
Trang 2¾ Các phần tử tập trung trong hệ thống cơ bao gồm: vật nặng (động năng), lò
so (thế năng), và bộ giảm chấn (tiêu tán năng lượng) Định luật Newton được dùng để biểu diễn các phương trình về chuyển động
¾ Khảo sát vật nặng M = W/g treo trên lò so có độ cứng K Ở điều kiện cân
bằng tĩnh, lực gia tốc W = Mg sẽ cân bằng với lực lò so Kl, với l là độ dãn của lò
so do tác động của lực W
¾ Nếu vị trí cân bằng được chọn làm điểm tham chiếu, ta chỉ khảo sát các lực làm vật xê dịch Khảo sát sơ đồ ở Fig 4.35(c) của GT
¾ Định luật Newton: Lực gia tốc theo chiều x dương sẽ cân bằng với tổng đại số các lực tác động lên vật theo chiều x dương đó
Khảo sát hệ thống vật nặng-lò so
Kx x
M && = − hay M x && + Kx = 0
Trang 3¾ Khi vị trí cân bằng được chọn làm tham chiếu (xem Fig 4.36), ta được:
Mg Ky
y
M && = − + M y && + Ky = Mg
Kl
Mg =
( − ) = 0
y
M &&
¾ Lưu ý:
¾ Ta tiếp tục khảo sát vật nặng M được đở bởi lò so (xem Fig 4.37), có phối
hợp thêm lò so-giảm chấn (dashpot) f(t) là lực tác động Khoảng cách x được
đo từ vị trí cân bằng tĩnh Bộ dashpot lý tưởng sẽ phát lực tỉ lệ với vận tốc tương đối giữa 2 node, có kí hiệu thể hiện trên Hình 4.38
M x
f
( ) ( )
dt
dx B x
K x
K t
f
f f
f t
f x
−
−
−
=
−
−
−
=
2 1
2 1
&&
Khảo sát hệ thống vật nặng-lò so có phần tử tiêu tán
Trang 4¾ Lập phương trình cơ cho hệ thống thể hiện trên Hình 4.40.
Bài Tập 4.17
M1
x1
K2x
1 1
B x & B2x &
K1x1
f1(t)
2 3
B x &
M1
x2
K3x2
x &
2
B
K2x
f2(t)
¾ Ta đặt x2 – x1 = x
1 1
2 2
M && = − & − & − − − & −
Trang 5¾ Thiết lập các phương trình mô tả các ràng buộc điện-cơ cho phép minh họa quá trình động học của hệ thống Các phương trình này ràng buộc nhau, biểu diễn dưới dạng hệ phương trình vi phân bậc nhất Đó chính là mô hình không gian trạng thái (state space model ) của hệ thống
¾ BT 4.19: Khảo sát hệ thống cho ở Hình 4.43, lập hệ phương trình chuyển
động điện-cơ dưới dạng mô hình không gian trạng thái Sử dụng kết quả từ
thông liên kết có ở BT 4.8:
Thiết lập mô hình không gian trạng thái
( ) R ( ) x
i N x
R R
i N
g c
2 2
= +
=
i
N
Wm
2
2 2 ' =
Ö
¾ Quan hệ về điện cho ta,
dx A x
R
i N dt
di x
R
N iR
vs
0 2
2 2
2
μ
− +
=
Trang 6¾ Quan hệ về cơ của hệ thống,
x AR
i
N f
dt
dx B l
x
K dt
x
d
0
2 2 2
2
μ
−
=
= +
− +
Với l > 0 là vị trí cân bằng tĩnh của thành phần di động Nếu vị trí thực của thành phần di động được tính từ vị trí cân bằng, thì phương trình cơ sẽ có biến (x – l) Phương trình trên có được phải thỏa điều kiện sau,
0
2
2
=
−
=
−
dt
l x d dt
l x d
¾ Mô hình không gian trạng thái của hệ thống sẽ gồm 3 phương trình vi phân bậc nhất Ba biến trạng thái ( state variables ) gồm x, dx/dt (hay v), và i
Thiết lập mô hình không gian trạng thái (tt)
Trang 7¾ Ta xây dựng ba phương trình vi phân bậc nhất này bằng cách lấy vi phân x, v, và i
và tìm cách biểu diễn chúng chỉ theo các biến x, v, i, và các biến đầu vào hệ thống Bằng cách này, ta có được mô hình không gian trạng thái của hệ thống như sau,
v dt
dx =
⎢
⎣
⎡
−
−
−
−
x AR
i N M
dt
dv
2 0
2 2 1
μ
( ) ⎢ ⎣ ⎡ − + ( ) + ⎥ ⎦ ⎤
A x
R
i
N iR
x L dt
di
0 2
2
2
1
μ
Trong đó
x R
N x
L
2
=
( 1 2 3 ) 1
1 f x , x , x
x & =
( 1 2 3 ) 2
2 f x , x , x
x & =
( x x x u )
f
x &3 = 3 1, 2, 3,
Thiết lập mô hình không gian trạng thái (tt)
Trang 8¾ Khảo sát phương trình Nếu biến đầu vào u là hằng số, ta đặt , có thể đưa về dạng phương trình Phương
trình dạng này có thể cho nhiều nghiệm Chúng được gọi là các điểm cân bằng tỉnh ( static equilibrium points )
¾ Với hệ thống có số chiều không quá lớn, ta có thể dùng đồ thị để
minh họa Với hệ thống bậc cao có số chiều quá lớn, các kĩ thuật số
thường được áp dụng để cho đáp án khả thi.
¾ Giải BT 4.19 , đặt các đạo hàm về 0 sẽ cho kết quả
Các điểm cân bằng
( ) x u f
x & = , 0
=
0
=
e
( ) f ( ) i x x
AR
i N l
x
e
,
2 0
2 2
−
=
=
−
−
μ
xe có thể tìm được trên đồ thị là giao điểm của –K(x – l) và –fe(ie, x)
Trang 9¾ Có hai nhóm phương pháp chính: tường minh (explicit) và nội hàm (implicit) Phương pháp Euler’s là dạng tường minh điển hình, nó dễ dùng khi cài đặt cho hệ thống nhỏ Với hệ thống lớn, phương pháp nội hàm tỏ ra mạnh hơn nhờ tính ổn định với nghiệm số tìm được
¾ Khảo sát phương trình
Với x, f, và u là các vector
¾ Thời gian tích phân sẽ được chẻ đều với giá trị chọn Δt phù hợp (xem Fig 4.45) Trong khoảng từng bước từ tn đến tn+1, toán tử tích phân được xem là hằng Vì thế
ta được,
Tích phân số
( ) x u f
= 1
1
,
n
n
n
n
t
t
t
t x & t dt f x u dt
( ) ( ) ( tn x tn tn tn ) ( ) ( ) f ( x tn u tn ) t[f ( x ( ) ( ) tn u tn )]
Trang 10¾ Hãy tính x(t) ở các thời điểm t = 0.1, 0.2, và 0.3 seconds.
Bài Tập 4.21
2 x
t
x & = − + x ( ) 0 = 1
( ) ( ) [ ( ( ) n ) ]
n n
n
t x
f t x
x +1 = + Δ ,
¾ Ta chọn Δt = 0.1 s Công thức tổng quát để tính x(n+1) như sau
,
2 , 1 , 0
=
n
( )
1
0 =
x
¾ Tại t0
¾ Tại t1 = 0.1 s
( )
( x 0 , t0 ) = − ( 0 + 2 ) 12 = − 2
f
( )1 = x( )0 + Δ t [ f ( x( )0 , t0) ] = 1 + 0 1 × ( ) − 2 = 0 8
x
( )
8 0
1 =
x f ( x( )1 , t1) = − ( 0 1 + 2 ) 0 82 = − 1 344
( )2 = x( )1 + Δ t [ f ( x( )1 , t1) ] = 0 8 + 0 1 × ( − 1 344 ) = 0 6656
x
5681
0
3 =
4939
0
4 =
x
Trang 11¾ Hãy tính i(t) dùng phương pháp Euler R = (1 + 3i2) Ω, L = 1 H, and v(t) = 10t V.
Bài Tập 4.22
( ) t v
iR dt
di
dt
di
= +
3
¾ Ta đặt i = x, và v(t) = u
( x ) x u ( ) t f ( x u t )
dt
dx
, , 3
−
0
( ) ( ) ( ( ) ( ) n)
n n
n n
t u
x tf x
x +1 = + Δ , ,
,
2 , 1 , 0
=
n
( )
0
0 =
0
0 =
u f ( x( )0 , u( )0 , t0 ) = 0 ( )
0
1 =
x
⇒
( )
0
1 =
25 0
1 =
u f ( x( )1 , u( )1 , t1) ( = − 1 + 02 ) 0 + 0 25 = 0 25
( )2 = x( )1 + ( 0 025 )( 0 25 ) = 0 00625
x
⇒